mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 16:59:46 +07:00
6ce48b0c6e
While checking discard timeout, we use specified type UMOUNT_DISCARD_TIMEOUT, so just replace doplicy.timeout with it, and switch doplicy.timeout to bool type. Signed-off-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
4873 lines
124 KiB
C
4873 lines
124 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/segment.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/sched/signal.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "segment.h"
|
|
#include "node.h"
|
|
#include "gc.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
#define __reverse_ffz(x) __reverse_ffs(~(x))
|
|
|
|
static struct kmem_cache *discard_entry_slab;
|
|
static struct kmem_cache *discard_cmd_slab;
|
|
static struct kmem_cache *sit_entry_set_slab;
|
|
static struct kmem_cache *inmem_entry_slab;
|
|
|
|
static unsigned long __reverse_ulong(unsigned char *str)
|
|
{
|
|
unsigned long tmp = 0;
|
|
int shift = 24, idx = 0;
|
|
|
|
#if BITS_PER_LONG == 64
|
|
shift = 56;
|
|
#endif
|
|
while (shift >= 0) {
|
|
tmp |= (unsigned long)str[idx++] << shift;
|
|
shift -= BITS_PER_BYTE;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
|
|
* MSB and LSB are reversed in a byte by f2fs_set_bit.
|
|
*/
|
|
static inline unsigned long __reverse_ffs(unsigned long word)
|
|
{
|
|
int num = 0;
|
|
|
|
#if BITS_PER_LONG == 64
|
|
if ((word & 0xffffffff00000000UL) == 0)
|
|
num += 32;
|
|
else
|
|
word >>= 32;
|
|
#endif
|
|
if ((word & 0xffff0000) == 0)
|
|
num += 16;
|
|
else
|
|
word >>= 16;
|
|
|
|
if ((word & 0xff00) == 0)
|
|
num += 8;
|
|
else
|
|
word >>= 8;
|
|
|
|
if ((word & 0xf0) == 0)
|
|
num += 4;
|
|
else
|
|
word >>= 4;
|
|
|
|
if ((word & 0xc) == 0)
|
|
num += 2;
|
|
else
|
|
word >>= 2;
|
|
|
|
if ((word & 0x2) == 0)
|
|
num += 1;
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
|
|
* f2fs_set_bit makes MSB and LSB reversed in a byte.
|
|
* @size must be integral times of unsigned long.
|
|
* Example:
|
|
* MSB <--> LSB
|
|
* f2fs_set_bit(0, bitmap) => 1000 0000
|
|
* f2fs_set_bit(7, bitmap) => 0000 0001
|
|
*/
|
|
static unsigned long __find_rev_next_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr + BIT_WORD(offset);
|
|
unsigned long result = size;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
size -= (offset & ~(BITS_PER_LONG - 1));
|
|
offset %= BITS_PER_LONG;
|
|
|
|
while (1) {
|
|
if (*p == 0)
|
|
goto pass;
|
|
|
|
tmp = __reverse_ulong((unsigned char *)p);
|
|
|
|
tmp &= ~0UL >> offset;
|
|
if (size < BITS_PER_LONG)
|
|
tmp &= (~0UL << (BITS_PER_LONG - size));
|
|
if (tmp)
|
|
goto found;
|
|
pass:
|
|
if (size <= BITS_PER_LONG)
|
|
break;
|
|
size -= BITS_PER_LONG;
|
|
offset = 0;
|
|
p++;
|
|
}
|
|
return result;
|
|
found:
|
|
return result - size + __reverse_ffs(tmp);
|
|
}
|
|
|
|
static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
|
|
unsigned long size, unsigned long offset)
|
|
{
|
|
const unsigned long *p = addr + BIT_WORD(offset);
|
|
unsigned long result = size;
|
|
unsigned long tmp;
|
|
|
|
if (offset >= size)
|
|
return size;
|
|
|
|
size -= (offset & ~(BITS_PER_LONG - 1));
|
|
offset %= BITS_PER_LONG;
|
|
|
|
while (1) {
|
|
if (*p == ~0UL)
|
|
goto pass;
|
|
|
|
tmp = __reverse_ulong((unsigned char *)p);
|
|
|
|
if (offset)
|
|
tmp |= ~0UL << (BITS_PER_LONG - offset);
|
|
if (size < BITS_PER_LONG)
|
|
tmp |= ~0UL >> size;
|
|
if (tmp != ~0UL)
|
|
goto found;
|
|
pass:
|
|
if (size <= BITS_PER_LONG)
|
|
break;
|
|
size -= BITS_PER_LONG;
|
|
offset = 0;
|
|
p++;
|
|
}
|
|
return result;
|
|
found:
|
|
return result - size + __reverse_ffz(tmp);
|
|
}
|
|
|
|
bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
|
|
{
|
|
int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
|
|
int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
|
|
int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
if (f2fs_lfs_mode(sbi))
|
|
return false;
|
|
if (sbi->gc_mode == GC_URGENT)
|
|
return true;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
|
|
return true;
|
|
|
|
return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
|
|
SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
|
|
}
|
|
|
|
void f2fs_register_inmem_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct inmem_pages *new;
|
|
|
|
f2fs_trace_pid(page);
|
|
|
|
f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
|
|
|
|
new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
|
|
|
|
/* add atomic page indices to the list */
|
|
new->page = page;
|
|
INIT_LIST_HEAD(&new->list);
|
|
|
|
/* increase reference count with clean state */
|
|
get_page(page);
|
|
mutex_lock(&F2FS_I(inode)->inmem_lock);
|
|
list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
|
|
inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
|
|
mutex_unlock(&F2FS_I(inode)->inmem_lock);
|
|
|
|
trace_f2fs_register_inmem_page(page, INMEM);
|
|
}
|
|
|
|
static int __revoke_inmem_pages(struct inode *inode,
|
|
struct list_head *head, bool drop, bool recover,
|
|
bool trylock)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct inmem_pages *cur, *tmp;
|
|
int err = 0;
|
|
|
|
list_for_each_entry_safe(cur, tmp, head, list) {
|
|
struct page *page = cur->page;
|
|
|
|
if (drop)
|
|
trace_f2fs_commit_inmem_page(page, INMEM_DROP);
|
|
|
|
if (trylock) {
|
|
/*
|
|
* to avoid deadlock in between page lock and
|
|
* inmem_lock.
|
|
*/
|
|
if (!trylock_page(page))
|
|
continue;
|
|
} else {
|
|
lock_page(page);
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true, true);
|
|
|
|
if (recover) {
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
|
|
trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
|
|
retry:
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = f2fs_get_dnode_of_data(&dn, page->index,
|
|
LOOKUP_NODE);
|
|
if (err) {
|
|
if (err == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC,
|
|
DEFAULT_IO_TIMEOUT);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
err = -EAGAIN;
|
|
goto next;
|
|
}
|
|
|
|
err = f2fs_get_node_info(sbi, dn.nid, &ni);
|
|
if (err) {
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
|
|
if (cur->old_addr == NEW_ADDR) {
|
|
f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
|
|
f2fs_update_data_blkaddr(&dn, NEW_ADDR);
|
|
} else
|
|
f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
|
|
cur->old_addr, ni.version, true, true);
|
|
f2fs_put_dnode(&dn);
|
|
}
|
|
next:
|
|
/* we don't need to invalidate this in the sccessful status */
|
|
if (drop || recover) {
|
|
ClearPageUptodate(page);
|
|
clear_cold_data(page);
|
|
}
|
|
f2fs_clear_page_private(page);
|
|
f2fs_put_page(page, 1);
|
|
|
|
list_del(&cur->list);
|
|
kmem_cache_free(inmem_entry_slab, cur);
|
|
dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
|
|
{
|
|
struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
unsigned int count = sbi->atomic_files;
|
|
unsigned int looped = 0;
|
|
next:
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
return;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
|
|
inode = igrab(&fi->vfs_inode);
|
|
if (inode)
|
|
list_move_tail(&fi->inmem_ilist, head);
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
|
|
if (inode) {
|
|
if (gc_failure) {
|
|
if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
|
|
goto skip;
|
|
}
|
|
set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
|
|
f2fs_drop_inmem_pages(inode);
|
|
skip:
|
|
iput(inode);
|
|
}
|
|
congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
|
|
cond_resched();
|
|
if (gc_failure) {
|
|
if (++looped >= count)
|
|
return;
|
|
}
|
|
goto next;
|
|
}
|
|
|
|
void f2fs_drop_inmem_pages(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
|
|
while (!list_empty(&fi->inmem_pages)) {
|
|
mutex_lock(&fi->inmem_lock);
|
|
__revoke_inmem_pages(inode, &fi->inmem_pages,
|
|
true, false, true);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
}
|
|
|
|
fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
|
|
|
|
spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
if (!list_empty(&fi->inmem_ilist))
|
|
list_del_init(&fi->inmem_ilist);
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
clear_inode_flag(inode, FI_ATOMIC_FILE);
|
|
sbi->atomic_files--;
|
|
}
|
|
spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
|
|
}
|
|
|
|
void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct list_head *head = &fi->inmem_pages;
|
|
struct inmem_pages *cur = NULL;
|
|
|
|
f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
|
|
|
|
mutex_lock(&fi->inmem_lock);
|
|
list_for_each_entry(cur, head, list) {
|
|
if (cur->page == page)
|
|
break;
|
|
}
|
|
|
|
f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
|
|
list_del(&cur->list);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
dec_page_count(sbi, F2FS_INMEM_PAGES);
|
|
kmem_cache_free(inmem_entry_slab, cur);
|
|
|
|
ClearPageUptodate(page);
|
|
f2fs_clear_page_private(page);
|
|
f2fs_put_page(page, 0);
|
|
|
|
trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
|
|
}
|
|
|
|
static int __f2fs_commit_inmem_pages(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct inmem_pages *cur, *tmp;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = inode->i_ino,
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_PRIO,
|
|
.io_type = FS_DATA_IO,
|
|
};
|
|
struct list_head revoke_list;
|
|
bool submit_bio = false;
|
|
int err = 0;
|
|
|
|
INIT_LIST_HEAD(&revoke_list);
|
|
|
|
list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
|
|
struct page *page = cur->page;
|
|
|
|
lock_page(page);
|
|
if (page->mapping == inode->i_mapping) {
|
|
trace_f2fs_commit_inmem_page(page, INMEM);
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true, true);
|
|
|
|
set_page_dirty(page);
|
|
if (clear_page_dirty_for_io(page)) {
|
|
inode_dec_dirty_pages(inode);
|
|
f2fs_remove_dirty_inode(inode);
|
|
}
|
|
retry:
|
|
fio.page = page;
|
|
fio.old_blkaddr = NULL_ADDR;
|
|
fio.encrypted_page = NULL;
|
|
fio.need_lock = LOCK_DONE;
|
|
err = f2fs_do_write_data_page(&fio);
|
|
if (err) {
|
|
if (err == -ENOMEM) {
|
|
congestion_wait(BLK_RW_ASYNC,
|
|
DEFAULT_IO_TIMEOUT);
|
|
cond_resched();
|
|
goto retry;
|
|
}
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
/* record old blkaddr for revoking */
|
|
cur->old_addr = fio.old_blkaddr;
|
|
submit_bio = true;
|
|
}
|
|
unlock_page(page);
|
|
list_move_tail(&cur->list, &revoke_list);
|
|
}
|
|
|
|
if (submit_bio)
|
|
f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
|
|
|
|
if (err) {
|
|
/*
|
|
* try to revoke all committed pages, but still we could fail
|
|
* due to no memory or other reason, if that happened, EAGAIN
|
|
* will be returned, which means in such case, transaction is
|
|
* already not integrity, caller should use journal to do the
|
|
* recovery or rewrite & commit last transaction. For other
|
|
* error number, revoking was done by filesystem itself.
|
|
*/
|
|
err = __revoke_inmem_pages(inode, &revoke_list,
|
|
false, true, false);
|
|
|
|
/* drop all uncommitted pages */
|
|
__revoke_inmem_pages(inode, &fi->inmem_pages,
|
|
true, false, false);
|
|
} else {
|
|
__revoke_inmem_pages(inode, &revoke_list,
|
|
false, false, false);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int f2fs_commit_inmem_pages(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
int err;
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
|
|
down_write(&fi->i_gc_rwsem[WRITE]);
|
|
|
|
f2fs_lock_op(sbi);
|
|
set_inode_flag(inode, FI_ATOMIC_COMMIT);
|
|
|
|
mutex_lock(&fi->inmem_lock);
|
|
err = __f2fs_commit_inmem_pages(inode);
|
|
mutex_unlock(&fi->inmem_lock);
|
|
|
|
clear_inode_flag(inode, FI_ATOMIC_COMMIT);
|
|
|
|
f2fs_unlock_op(sbi);
|
|
up_write(&fi->i_gc_rwsem[WRITE]);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This function balances dirty node and dentry pages.
|
|
* In addition, it controls garbage collection.
|
|
*/
|
|
void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
|
|
{
|
|
if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
|
|
f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
}
|
|
|
|
/* balance_fs_bg is able to be pending */
|
|
if (need && excess_cached_nats(sbi))
|
|
f2fs_balance_fs_bg(sbi, false);
|
|
|
|
if (!f2fs_is_checkpoint_ready(sbi))
|
|
return;
|
|
|
|
/*
|
|
* We should do GC or end up with checkpoint, if there are so many dirty
|
|
* dir/node pages without enough free segments.
|
|
*/
|
|
if (has_not_enough_free_secs(sbi, 0, 0)) {
|
|
down_write(&sbi->gc_lock);
|
|
f2fs_gc(sbi, false, false, NULL_SEGNO);
|
|
}
|
|
}
|
|
|
|
void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
|
|
{
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
return;
|
|
|
|
/* try to shrink extent cache when there is no enough memory */
|
|
if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
|
|
f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
|
|
|
|
/* check the # of cached NAT entries */
|
|
if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
|
|
f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
|
|
|
|
if (!f2fs_available_free_memory(sbi, FREE_NIDS))
|
|
f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
|
|
else
|
|
f2fs_build_free_nids(sbi, false, false);
|
|
|
|
if (!is_idle(sbi, REQ_TIME) &&
|
|
(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
|
|
return;
|
|
|
|
/* checkpoint is the only way to shrink partial cached entries */
|
|
if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
|
|
!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
|
|
excess_prefree_segs(sbi) ||
|
|
excess_dirty_nats(sbi) ||
|
|
excess_dirty_nodes(sbi) ||
|
|
f2fs_time_over(sbi, CP_TIME)) {
|
|
if (test_opt(sbi, DATA_FLUSH) && from_bg) {
|
|
struct blk_plug plug;
|
|
|
|
mutex_lock(&sbi->flush_lock);
|
|
|
|
blk_start_plug(&plug);
|
|
f2fs_sync_dirty_inodes(sbi, FILE_INODE);
|
|
blk_finish_plug(&plug);
|
|
|
|
mutex_unlock(&sbi->flush_lock);
|
|
}
|
|
f2fs_sync_fs(sbi->sb, true);
|
|
stat_inc_bg_cp_count(sbi->stat_info);
|
|
}
|
|
}
|
|
|
|
static int __submit_flush_wait(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev)
|
|
{
|
|
struct bio *bio;
|
|
int ret;
|
|
|
|
bio = f2fs_bio_alloc(sbi, 0, false);
|
|
if (!bio)
|
|
return -ENOMEM;
|
|
|
|
bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
|
|
bio_set_dev(bio, bdev);
|
|
ret = submit_bio_wait(bio);
|
|
bio_put(bio);
|
|
|
|
trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
|
|
test_opt(sbi, FLUSH_MERGE), ret);
|
|
return ret;
|
|
}
|
|
|
|
static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
|
|
if (!f2fs_is_multi_device(sbi))
|
|
return __submit_flush_wait(sbi, sbi->sb->s_bdev);
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
|
|
continue;
|
|
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
|
|
if (ret)
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int issue_flush_thread(void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = data;
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
wait_queue_head_t *q = &fcc->flush_wait_queue;
|
|
repeat:
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
|
|
sb_start_intwrite(sbi->sb);
|
|
|
|
if (!llist_empty(&fcc->issue_list)) {
|
|
struct flush_cmd *cmd, *next;
|
|
int ret;
|
|
|
|
fcc->dispatch_list = llist_del_all(&fcc->issue_list);
|
|
fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
|
|
|
|
cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
|
|
|
|
ret = submit_flush_wait(sbi, cmd->ino);
|
|
atomic_inc(&fcc->issued_flush);
|
|
|
|
llist_for_each_entry_safe(cmd, next,
|
|
fcc->dispatch_list, llnode) {
|
|
cmd->ret = ret;
|
|
complete(&cmd->wait);
|
|
}
|
|
fcc->dispatch_list = NULL;
|
|
}
|
|
|
|
sb_end_intwrite(sbi->sb);
|
|
|
|
wait_event_interruptible(*q,
|
|
kthread_should_stop() || !llist_empty(&fcc->issue_list));
|
|
goto repeat;
|
|
}
|
|
|
|
int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
struct flush_cmd cmd;
|
|
int ret;
|
|
|
|
if (test_opt(sbi, NOBARRIER))
|
|
return 0;
|
|
|
|
if (!test_opt(sbi, FLUSH_MERGE)) {
|
|
atomic_inc(&fcc->queued_flush);
|
|
ret = submit_flush_wait(sbi, ino);
|
|
atomic_dec(&fcc->queued_flush);
|
|
atomic_inc(&fcc->issued_flush);
|
|
return ret;
|
|
}
|
|
|
|
if (atomic_inc_return(&fcc->queued_flush) == 1 ||
|
|
f2fs_is_multi_device(sbi)) {
|
|
ret = submit_flush_wait(sbi, ino);
|
|
atomic_dec(&fcc->queued_flush);
|
|
|
|
atomic_inc(&fcc->issued_flush);
|
|
return ret;
|
|
}
|
|
|
|
cmd.ino = ino;
|
|
init_completion(&cmd.wait);
|
|
|
|
llist_add(&cmd.llnode, &fcc->issue_list);
|
|
|
|
/* update issue_list before we wake up issue_flush thread */
|
|
smp_mb();
|
|
|
|
if (waitqueue_active(&fcc->flush_wait_queue))
|
|
wake_up(&fcc->flush_wait_queue);
|
|
|
|
if (fcc->f2fs_issue_flush) {
|
|
wait_for_completion(&cmd.wait);
|
|
atomic_dec(&fcc->queued_flush);
|
|
} else {
|
|
struct llist_node *list;
|
|
|
|
list = llist_del_all(&fcc->issue_list);
|
|
if (!list) {
|
|
wait_for_completion(&cmd.wait);
|
|
atomic_dec(&fcc->queued_flush);
|
|
} else {
|
|
struct flush_cmd *tmp, *next;
|
|
|
|
ret = submit_flush_wait(sbi, ino);
|
|
|
|
llist_for_each_entry_safe(tmp, next, list, llnode) {
|
|
if (tmp == &cmd) {
|
|
cmd.ret = ret;
|
|
atomic_dec(&fcc->queued_flush);
|
|
continue;
|
|
}
|
|
tmp->ret = ret;
|
|
complete(&tmp->wait);
|
|
}
|
|
}
|
|
}
|
|
|
|
return cmd.ret;
|
|
}
|
|
|
|
int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
|
struct flush_cmd_control *fcc;
|
|
int err = 0;
|
|
|
|
if (SM_I(sbi)->fcc_info) {
|
|
fcc = SM_I(sbi)->fcc_info;
|
|
if (fcc->f2fs_issue_flush)
|
|
return err;
|
|
goto init_thread;
|
|
}
|
|
|
|
fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
|
|
if (!fcc)
|
|
return -ENOMEM;
|
|
atomic_set(&fcc->issued_flush, 0);
|
|
atomic_set(&fcc->queued_flush, 0);
|
|
init_waitqueue_head(&fcc->flush_wait_queue);
|
|
init_llist_head(&fcc->issue_list);
|
|
SM_I(sbi)->fcc_info = fcc;
|
|
if (!test_opt(sbi, FLUSH_MERGE))
|
|
return err;
|
|
|
|
init_thread:
|
|
fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
|
|
"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
|
|
if (IS_ERR(fcc->f2fs_issue_flush)) {
|
|
err = PTR_ERR(fcc->f2fs_issue_flush);
|
|
kvfree(fcc);
|
|
SM_I(sbi)->fcc_info = NULL;
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
|
|
{
|
|
struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
|
|
|
|
if (fcc && fcc->f2fs_issue_flush) {
|
|
struct task_struct *flush_thread = fcc->f2fs_issue_flush;
|
|
|
|
fcc->f2fs_issue_flush = NULL;
|
|
kthread_stop(flush_thread);
|
|
}
|
|
if (free) {
|
|
kvfree(fcc);
|
|
SM_I(sbi)->fcc_info = NULL;
|
|
}
|
|
}
|
|
|
|
int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
int ret = 0, i;
|
|
|
|
if (!f2fs_is_multi_device(sbi))
|
|
return 0;
|
|
|
|
for (i = 1; i < sbi->s_ndevs; i++) {
|
|
if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
|
|
continue;
|
|
ret = __submit_flush_wait(sbi, FDEV(i).bdev);
|
|
if (ret)
|
|
break;
|
|
|
|
spin_lock(&sbi->dev_lock);
|
|
f2fs_clear_bit(i, (char *)&sbi->dirty_device);
|
|
spin_unlock(&sbi->dev_lock);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
/* need not be added */
|
|
if (IS_CURSEG(sbi, segno))
|
|
return;
|
|
|
|
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
|
|
dirty_i->nr_dirty[dirty_type]++;
|
|
|
|
if (dirty_type == DIRTY) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, segno);
|
|
enum dirty_type t = sentry->type;
|
|
|
|
if (unlikely(t >= DIRTY)) {
|
|
f2fs_bug_on(sbi, 1);
|
|
return;
|
|
}
|
|
if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
|
|
dirty_i->nr_dirty[t]++;
|
|
}
|
|
}
|
|
|
|
static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
|
|
dirty_i->nr_dirty[dirty_type]--;
|
|
|
|
if (dirty_type == DIRTY) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, segno);
|
|
enum dirty_type t = sentry->type;
|
|
|
|
if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
|
|
dirty_i->nr_dirty[t]--;
|
|
|
|
if (get_valid_blocks(sbi, segno, true) == 0) {
|
|
clear_bit(GET_SEC_FROM_SEG(sbi, segno),
|
|
dirty_i->victim_secmap);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
clear_bit(segno, SIT_I(sbi)->invalid_segmap);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Should not occur error such as -ENOMEM.
|
|
* Adding dirty entry into seglist is not critical operation.
|
|
* If a given segment is one of current working segments, it won't be added.
|
|
*/
|
|
static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned short valid_blocks, ckpt_valid_blocks;
|
|
|
|
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
|
|
return;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
valid_blocks = get_valid_blocks(sbi, segno, false);
|
|
ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
|
|
|
|
if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
|
|
ckpt_valid_blocks == sbi->blocks_per_seg)) {
|
|
__locate_dirty_segment(sbi, segno, PRE);
|
|
__remove_dirty_segment(sbi, segno, DIRTY);
|
|
} else if (valid_blocks < sbi->blocks_per_seg) {
|
|
__locate_dirty_segment(sbi, segno, DIRTY);
|
|
} else {
|
|
/* Recovery routine with SSR needs this */
|
|
__remove_dirty_segment(sbi, segno, DIRTY);
|
|
}
|
|
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
|
|
void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int segno;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
|
|
if (get_valid_blocks(sbi, segno, false))
|
|
continue;
|
|
if (IS_CURSEG(sbi, segno))
|
|
continue;
|
|
__locate_dirty_segment(sbi, segno, PRE);
|
|
__remove_dirty_segment(sbi, segno, DIRTY);
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
|
|
{
|
|
int ovp_hole_segs =
|
|
(overprovision_segments(sbi) - reserved_segments(sbi));
|
|
block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
block_t holes[2] = {0, 0}; /* DATA and NODE */
|
|
block_t unusable;
|
|
struct seg_entry *se;
|
|
unsigned int segno;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
|
|
se = get_seg_entry(sbi, segno);
|
|
if (IS_NODESEG(se->type))
|
|
holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
|
|
else
|
|
holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
|
|
if (unusable > ovp_holes)
|
|
return unusable - ovp_holes;
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
|
|
{
|
|
int ovp_hole_segs =
|
|
(overprovision_segments(sbi) - reserved_segments(sbi));
|
|
if (unusable > F2FS_OPTION(sbi).unusable_cap)
|
|
return -EAGAIN;
|
|
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
|
|
dirty_segments(sbi) > ovp_hole_segs)
|
|
return -EAGAIN;
|
|
return 0;
|
|
}
|
|
|
|
/* This is only used by SBI_CP_DISABLED */
|
|
static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int segno = 0;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
|
|
if (get_valid_blocks(sbi, segno, false))
|
|
continue;
|
|
if (get_ckpt_valid_blocks(sbi, segno))
|
|
continue;
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
return segno;
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
return NULL_SEGNO;
|
|
}
|
|
|
|
static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc;
|
|
|
|
f2fs_bug_on(sbi, !len);
|
|
|
|
pend_list = &dcc->pend_list[plist_idx(len)];
|
|
|
|
dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
|
|
INIT_LIST_HEAD(&dc->list);
|
|
dc->bdev = bdev;
|
|
dc->lstart = lstart;
|
|
dc->start = start;
|
|
dc->len = len;
|
|
dc->ref = 0;
|
|
dc->state = D_PREP;
|
|
dc->queued = 0;
|
|
dc->error = 0;
|
|
init_completion(&dc->wait);
|
|
list_add_tail(&dc->list, pend_list);
|
|
spin_lock_init(&dc->lock);
|
|
dc->bio_ref = 0;
|
|
atomic_inc(&dcc->discard_cmd_cnt);
|
|
dcc->undiscard_blks += len;
|
|
|
|
return dc;
|
|
}
|
|
|
|
static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len,
|
|
struct rb_node *parent, struct rb_node **p,
|
|
bool leftmost)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *dc;
|
|
|
|
dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
|
|
|
|
rb_link_node(&dc->rb_node, parent, p);
|
|
rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
|
|
|
|
return dc;
|
|
}
|
|
|
|
static void __detach_discard_cmd(struct discard_cmd_control *dcc,
|
|
struct discard_cmd *dc)
|
|
{
|
|
if (dc->state == D_DONE)
|
|
atomic_sub(dc->queued, &dcc->queued_discard);
|
|
|
|
list_del(&dc->list);
|
|
rb_erase_cached(&dc->rb_node, &dcc->root);
|
|
dcc->undiscard_blks -= dc->len;
|
|
|
|
kmem_cache_free(discard_cmd_slab, dc);
|
|
|
|
atomic_dec(&dcc->discard_cmd_cnt);
|
|
}
|
|
|
|
static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
unsigned long flags;
|
|
|
|
trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
|
|
|
|
spin_lock_irqsave(&dc->lock, flags);
|
|
if (dc->bio_ref) {
|
|
spin_unlock_irqrestore(&dc->lock, flags);
|
|
return;
|
|
}
|
|
spin_unlock_irqrestore(&dc->lock, flags);
|
|
|
|
f2fs_bug_on(sbi, dc->ref);
|
|
|
|
if (dc->error == -EOPNOTSUPP)
|
|
dc->error = 0;
|
|
|
|
if (dc->error)
|
|
printk_ratelimited(
|
|
"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
|
|
KERN_INFO, sbi->sb->s_id,
|
|
dc->lstart, dc->start, dc->len, dc->error);
|
|
__detach_discard_cmd(dcc, dc);
|
|
}
|
|
|
|
static void f2fs_submit_discard_endio(struct bio *bio)
|
|
{
|
|
struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
|
|
unsigned long flags;
|
|
|
|
dc->error = blk_status_to_errno(bio->bi_status);
|
|
|
|
spin_lock_irqsave(&dc->lock, flags);
|
|
dc->bio_ref--;
|
|
if (!dc->bio_ref && dc->state == D_SUBMIT) {
|
|
dc->state = D_DONE;
|
|
complete_all(&dc->wait);
|
|
}
|
|
spin_unlock_irqrestore(&dc->lock, flags);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
|
|
block_t start, block_t end)
|
|
{
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
struct seg_entry *sentry;
|
|
unsigned int segno;
|
|
block_t blk = start;
|
|
unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
|
|
unsigned long *map;
|
|
|
|
while (blk < end) {
|
|
segno = GET_SEGNO(sbi, blk);
|
|
sentry = get_seg_entry(sbi, segno);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
|
|
|
|
if (end < START_BLOCK(sbi, segno + 1))
|
|
size = GET_BLKOFF_FROM_SEG0(sbi, end);
|
|
else
|
|
size = max_blocks;
|
|
map = (unsigned long *)(sentry->cur_valid_map);
|
|
offset = __find_rev_next_bit(map, size, offset);
|
|
f2fs_bug_on(sbi, offset != size);
|
|
blk = START_BLOCK(sbi, segno + 1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init_discard_policy(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
int discard_type, unsigned int granularity)
|
|
{
|
|
/* common policy */
|
|
dpolicy->type = discard_type;
|
|
dpolicy->sync = true;
|
|
dpolicy->ordered = false;
|
|
dpolicy->granularity = granularity;
|
|
|
|
dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
|
|
dpolicy->io_aware_gran = MAX_PLIST_NUM;
|
|
dpolicy->timeout = false;
|
|
|
|
if (discard_type == DPOLICY_BG) {
|
|
dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
|
|
dpolicy->io_aware = true;
|
|
dpolicy->sync = false;
|
|
dpolicy->ordered = true;
|
|
if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
|
|
dpolicy->granularity = 1;
|
|
dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
}
|
|
} else if (discard_type == DPOLICY_FORCE) {
|
|
dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
|
|
dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
|
|
dpolicy->io_aware = false;
|
|
} else if (discard_type == DPOLICY_FSTRIM) {
|
|
dpolicy->io_aware = false;
|
|
} else if (discard_type == DPOLICY_UMOUNT) {
|
|
dpolicy->max_requests = UINT_MAX;
|
|
dpolicy->io_aware = false;
|
|
/* we need to issue all to keep CP_TRIMMED_FLAG */
|
|
dpolicy->granularity = 1;
|
|
dpolicy->timeout = true;
|
|
}
|
|
}
|
|
|
|
static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len);
|
|
/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
|
|
static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
struct discard_cmd *dc,
|
|
unsigned int *issued)
|
|
{
|
|
struct block_device *bdev = dc->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
unsigned int max_discard_blocks =
|
|
SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
|
|
&(dcc->fstrim_list) : &(dcc->wait_list);
|
|
int flag = dpolicy->sync ? REQ_SYNC : 0;
|
|
block_t lstart, start, len, total_len;
|
|
int err = 0;
|
|
|
|
if (dc->state != D_PREP)
|
|
return 0;
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
|
|
return 0;
|
|
|
|
trace_f2fs_issue_discard(bdev, dc->start, dc->len);
|
|
|
|
lstart = dc->lstart;
|
|
start = dc->start;
|
|
len = dc->len;
|
|
total_len = len;
|
|
|
|
dc->len = 0;
|
|
|
|
while (total_len && *issued < dpolicy->max_requests && !err) {
|
|
struct bio *bio = NULL;
|
|
unsigned long flags;
|
|
bool last = true;
|
|
|
|
if (len > max_discard_blocks) {
|
|
len = max_discard_blocks;
|
|
last = false;
|
|
}
|
|
|
|
(*issued)++;
|
|
if (*issued == dpolicy->max_requests)
|
|
last = true;
|
|
|
|
dc->len += len;
|
|
|
|
if (time_to_inject(sbi, FAULT_DISCARD)) {
|
|
f2fs_show_injection_info(sbi, FAULT_DISCARD);
|
|
err = -EIO;
|
|
goto submit;
|
|
}
|
|
err = __blkdev_issue_discard(bdev,
|
|
SECTOR_FROM_BLOCK(start),
|
|
SECTOR_FROM_BLOCK(len),
|
|
GFP_NOFS, 0, &bio);
|
|
submit:
|
|
if (err) {
|
|
spin_lock_irqsave(&dc->lock, flags);
|
|
if (dc->state == D_PARTIAL)
|
|
dc->state = D_SUBMIT;
|
|
spin_unlock_irqrestore(&dc->lock, flags);
|
|
|
|
break;
|
|
}
|
|
|
|
f2fs_bug_on(sbi, !bio);
|
|
|
|
/*
|
|
* should keep before submission to avoid D_DONE
|
|
* right away
|
|
*/
|
|
spin_lock_irqsave(&dc->lock, flags);
|
|
if (last)
|
|
dc->state = D_SUBMIT;
|
|
else
|
|
dc->state = D_PARTIAL;
|
|
dc->bio_ref++;
|
|
spin_unlock_irqrestore(&dc->lock, flags);
|
|
|
|
atomic_inc(&dcc->queued_discard);
|
|
dc->queued++;
|
|
list_move_tail(&dc->list, wait_list);
|
|
|
|
/* sanity check on discard range */
|
|
__check_sit_bitmap(sbi, lstart, lstart + len);
|
|
|
|
bio->bi_private = dc;
|
|
bio->bi_end_io = f2fs_submit_discard_endio;
|
|
bio->bi_opf |= flag;
|
|
submit_bio(bio);
|
|
|
|
atomic_inc(&dcc->issued_discard);
|
|
|
|
f2fs_update_iostat(sbi, FS_DISCARD, 1);
|
|
|
|
lstart += len;
|
|
start += len;
|
|
total_len -= len;
|
|
len = total_len;
|
|
}
|
|
|
|
if (!err && len)
|
|
__update_discard_tree_range(sbi, bdev, lstart, start, len);
|
|
return err;
|
|
}
|
|
|
|
static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len,
|
|
struct rb_node **insert_p,
|
|
struct rb_node *insert_parent)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct rb_node **p;
|
|
struct rb_node *parent = NULL;
|
|
struct discard_cmd *dc = NULL;
|
|
bool leftmost = true;
|
|
|
|
if (insert_p && insert_parent) {
|
|
parent = insert_parent;
|
|
p = insert_p;
|
|
goto do_insert;
|
|
}
|
|
|
|
p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
|
|
lstart, &leftmost);
|
|
do_insert:
|
|
dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
|
|
p, leftmost);
|
|
if (!dc)
|
|
return NULL;
|
|
|
|
return dc;
|
|
}
|
|
|
|
static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
|
|
struct discard_cmd *dc)
|
|
{
|
|
list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
|
|
}
|
|
|
|
static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc, block_t blkaddr)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_info di = dc->di;
|
|
bool modified = false;
|
|
|
|
if (dc->state == D_DONE || dc->len == 1) {
|
|
__remove_discard_cmd(sbi, dc);
|
|
return;
|
|
}
|
|
|
|
dcc->undiscard_blks -= di.len;
|
|
|
|
if (blkaddr > di.lstart) {
|
|
dc->len = blkaddr - dc->lstart;
|
|
dcc->undiscard_blks += dc->len;
|
|
__relocate_discard_cmd(dcc, dc);
|
|
modified = true;
|
|
}
|
|
|
|
if (blkaddr < di.lstart + di.len - 1) {
|
|
if (modified) {
|
|
__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
|
|
di.start + blkaddr + 1 - di.lstart,
|
|
di.lstart + di.len - 1 - blkaddr,
|
|
NULL, NULL);
|
|
} else {
|
|
dc->lstart++;
|
|
dc->len--;
|
|
dc->start++;
|
|
dcc->undiscard_blks += dc->len;
|
|
__relocate_discard_cmd(dcc, dc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t lstart,
|
|
block_t start, block_t len)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
|
|
struct discard_cmd *dc;
|
|
struct discard_info di = {0};
|
|
struct rb_node **insert_p = NULL, *insert_parent = NULL;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
unsigned int max_discard_blocks =
|
|
SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
|
|
block_t end = lstart + len;
|
|
|
|
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
|
|
NULL, lstart,
|
|
(struct rb_entry **)&prev_dc,
|
|
(struct rb_entry **)&next_dc,
|
|
&insert_p, &insert_parent, true, NULL);
|
|
if (dc)
|
|
prev_dc = dc;
|
|
|
|
if (!prev_dc) {
|
|
di.lstart = lstart;
|
|
di.len = next_dc ? next_dc->lstart - lstart : len;
|
|
di.len = min(di.len, len);
|
|
di.start = start;
|
|
}
|
|
|
|
while (1) {
|
|
struct rb_node *node;
|
|
bool merged = false;
|
|
struct discard_cmd *tdc = NULL;
|
|
|
|
if (prev_dc) {
|
|
di.lstart = prev_dc->lstart + prev_dc->len;
|
|
if (di.lstart < lstart)
|
|
di.lstart = lstart;
|
|
if (di.lstart >= end)
|
|
break;
|
|
|
|
if (!next_dc || next_dc->lstart > end)
|
|
di.len = end - di.lstart;
|
|
else
|
|
di.len = next_dc->lstart - di.lstart;
|
|
di.start = start + di.lstart - lstart;
|
|
}
|
|
|
|
if (!di.len)
|
|
goto next;
|
|
|
|
if (prev_dc && prev_dc->state == D_PREP &&
|
|
prev_dc->bdev == bdev &&
|
|
__is_discard_back_mergeable(&di, &prev_dc->di,
|
|
max_discard_blocks)) {
|
|
prev_dc->di.len += di.len;
|
|
dcc->undiscard_blks += di.len;
|
|
__relocate_discard_cmd(dcc, prev_dc);
|
|
di = prev_dc->di;
|
|
tdc = prev_dc;
|
|
merged = true;
|
|
}
|
|
|
|
if (next_dc && next_dc->state == D_PREP &&
|
|
next_dc->bdev == bdev &&
|
|
__is_discard_front_mergeable(&di, &next_dc->di,
|
|
max_discard_blocks)) {
|
|
next_dc->di.lstart = di.lstart;
|
|
next_dc->di.len += di.len;
|
|
next_dc->di.start = di.start;
|
|
dcc->undiscard_blks += di.len;
|
|
__relocate_discard_cmd(dcc, next_dc);
|
|
if (tdc)
|
|
__remove_discard_cmd(sbi, tdc);
|
|
merged = true;
|
|
}
|
|
|
|
if (!merged) {
|
|
__insert_discard_tree(sbi, bdev, di.lstart, di.start,
|
|
di.len, NULL, NULL);
|
|
}
|
|
next:
|
|
prev_dc = next_dc;
|
|
if (!prev_dc)
|
|
break;
|
|
|
|
node = rb_next(&prev_dc->rb_node);
|
|
next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
|
|
}
|
|
}
|
|
|
|
static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
block_t lblkstart = blkstart;
|
|
|
|
if (!f2fs_bdev_support_discard(bdev))
|
|
return 0;
|
|
|
|
trace_f2fs_queue_discard(bdev, blkstart, blklen);
|
|
|
|
if (f2fs_is_multi_device(sbi)) {
|
|
int devi = f2fs_target_device_index(sbi, blkstart);
|
|
|
|
blkstart -= FDEV(devi).start_blk;
|
|
}
|
|
mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
|
|
__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
|
|
mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
|
|
struct rb_node **insert_p = NULL, *insert_parent = NULL;
|
|
struct discard_cmd *dc;
|
|
struct blk_plug plug;
|
|
unsigned int pos = dcc->next_pos;
|
|
unsigned int issued = 0;
|
|
bool io_interrupted = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
|
|
NULL, pos,
|
|
(struct rb_entry **)&prev_dc,
|
|
(struct rb_entry **)&next_dc,
|
|
&insert_p, &insert_parent, true, NULL);
|
|
if (!dc)
|
|
dc = next_dc;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
while (dc) {
|
|
struct rb_node *node;
|
|
int err = 0;
|
|
|
|
if (dc->state != D_PREP)
|
|
goto next;
|
|
|
|
if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
|
|
io_interrupted = true;
|
|
break;
|
|
}
|
|
|
|
dcc->next_pos = dc->lstart + dc->len;
|
|
err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
|
|
|
|
if (issued >= dpolicy->max_requests)
|
|
break;
|
|
next:
|
|
node = rb_next(&dc->rb_node);
|
|
if (err)
|
|
__remove_discard_cmd(sbi, dc);
|
|
dc = rb_entry_safe(node, struct discard_cmd, rb_node);
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
if (!dc)
|
|
dcc->next_pos = 0;
|
|
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (!issued && io_interrupted)
|
|
issued = -1;
|
|
|
|
return issued;
|
|
}
|
|
|
|
static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc, *tmp;
|
|
struct blk_plug plug;
|
|
int i, issued = 0;
|
|
bool io_interrupted = false;
|
|
|
|
if (dpolicy->timeout)
|
|
f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
|
|
|
|
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
|
|
if (dpolicy->timeout &&
|
|
f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
|
|
break;
|
|
|
|
if (i + 1 < dpolicy->granularity)
|
|
break;
|
|
|
|
if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
|
|
return __issue_discard_cmd_orderly(sbi, dpolicy);
|
|
|
|
pend_list = &dcc->pend_list[i];
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
if (list_empty(pend_list))
|
|
goto next;
|
|
if (unlikely(dcc->rbtree_check))
|
|
f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
|
|
&dcc->root));
|
|
blk_start_plug(&plug);
|
|
list_for_each_entry_safe(dc, tmp, pend_list, list) {
|
|
f2fs_bug_on(sbi, dc->state != D_PREP);
|
|
|
|
if (dpolicy->timeout &&
|
|
f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
|
|
break;
|
|
|
|
if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
|
|
!is_idle(sbi, DISCARD_TIME)) {
|
|
io_interrupted = true;
|
|
break;
|
|
}
|
|
|
|
__submit_discard_cmd(sbi, dpolicy, dc, &issued);
|
|
|
|
if (issued >= dpolicy->max_requests)
|
|
break;
|
|
}
|
|
blk_finish_plug(&plug);
|
|
next:
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (issued >= dpolicy->max_requests || io_interrupted)
|
|
break;
|
|
}
|
|
|
|
if (!issued && io_interrupted)
|
|
issued = -1;
|
|
|
|
return issued;
|
|
}
|
|
|
|
static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *pend_list;
|
|
struct discard_cmd *dc, *tmp;
|
|
int i;
|
|
bool dropped = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
|
|
pend_list = &dcc->pend_list[i];
|
|
list_for_each_entry_safe(dc, tmp, pend_list, list) {
|
|
f2fs_bug_on(sbi, dc->state != D_PREP);
|
|
__remove_discard_cmd(sbi, dc);
|
|
dropped = true;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
return dropped;
|
|
}
|
|
|
|
void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
|
|
{
|
|
__drop_discard_cmd(sbi);
|
|
}
|
|
|
|
static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
|
|
struct discard_cmd *dc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
unsigned int len = 0;
|
|
|
|
wait_for_completion_io(&dc->wait);
|
|
mutex_lock(&dcc->cmd_lock);
|
|
f2fs_bug_on(sbi, dc->state != D_DONE);
|
|
dc->ref--;
|
|
if (!dc->ref) {
|
|
if (!dc->error)
|
|
len = dc->len;
|
|
__remove_discard_cmd(sbi, dc);
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
return len;
|
|
}
|
|
|
|
static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
block_t start, block_t end)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
|
|
&(dcc->fstrim_list) : &(dcc->wait_list);
|
|
struct discard_cmd *dc, *tmp;
|
|
bool need_wait;
|
|
unsigned int trimmed = 0;
|
|
|
|
next:
|
|
need_wait = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
list_for_each_entry_safe(dc, tmp, wait_list, list) {
|
|
if (dc->lstart + dc->len <= start || end <= dc->lstart)
|
|
continue;
|
|
if (dc->len < dpolicy->granularity)
|
|
continue;
|
|
if (dc->state == D_DONE && !dc->ref) {
|
|
wait_for_completion_io(&dc->wait);
|
|
if (!dc->error)
|
|
trimmed += dc->len;
|
|
__remove_discard_cmd(sbi, dc);
|
|
} else {
|
|
dc->ref++;
|
|
need_wait = true;
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (need_wait) {
|
|
trimmed += __wait_one_discard_bio(sbi, dc);
|
|
goto next;
|
|
}
|
|
|
|
return trimmed;
|
|
}
|
|
|
|
static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy)
|
|
{
|
|
struct discard_policy dp;
|
|
unsigned int discard_blks;
|
|
|
|
if (dpolicy)
|
|
return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
|
|
|
|
/* wait all */
|
|
__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
|
|
discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
|
|
__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
|
|
discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
|
|
|
|
return discard_blks;
|
|
}
|
|
|
|
/* This should be covered by global mutex, &sit_i->sentry_lock */
|
|
static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *dc;
|
|
bool need_wait = false;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
|
|
NULL, blkaddr);
|
|
if (dc) {
|
|
if (dc->state == D_PREP) {
|
|
__punch_discard_cmd(sbi, dc, blkaddr);
|
|
} else {
|
|
dc->ref++;
|
|
need_wait = true;
|
|
}
|
|
}
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
if (need_wait)
|
|
__wait_one_discard_bio(sbi, dc);
|
|
}
|
|
|
|
void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
|
|
if (dcc && dcc->f2fs_issue_discard) {
|
|
struct task_struct *discard_thread = dcc->f2fs_issue_discard;
|
|
|
|
dcc->f2fs_issue_discard = NULL;
|
|
kthread_stop(discard_thread);
|
|
}
|
|
}
|
|
|
|
/* This comes from f2fs_put_super */
|
|
bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_policy dpolicy;
|
|
bool dropped;
|
|
|
|
__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
|
|
dcc->discard_granularity);
|
|
__issue_discard_cmd(sbi, &dpolicy);
|
|
dropped = __drop_discard_cmd(sbi);
|
|
|
|
/* just to make sure there is no pending discard commands */
|
|
__wait_all_discard_cmd(sbi, NULL);
|
|
|
|
f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
|
|
return dropped;
|
|
}
|
|
|
|
static int issue_discard_thread(void *data)
|
|
{
|
|
struct f2fs_sb_info *sbi = data;
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
wait_queue_head_t *q = &dcc->discard_wait_queue;
|
|
struct discard_policy dpolicy;
|
|
unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
|
|
int issued;
|
|
|
|
set_freezable();
|
|
|
|
do {
|
|
__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
|
|
dcc->discard_granularity);
|
|
|
|
wait_event_interruptible_timeout(*q,
|
|
kthread_should_stop() || freezing(current) ||
|
|
dcc->discard_wake,
|
|
msecs_to_jiffies(wait_ms));
|
|
|
|
if (dcc->discard_wake)
|
|
dcc->discard_wake = 0;
|
|
|
|
/* clean up pending candidates before going to sleep */
|
|
if (atomic_read(&dcc->queued_discard))
|
|
__wait_all_discard_cmd(sbi, NULL);
|
|
|
|
if (try_to_freeze())
|
|
continue;
|
|
if (f2fs_readonly(sbi->sb))
|
|
continue;
|
|
if (kthread_should_stop())
|
|
return 0;
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
|
|
wait_ms = dpolicy.max_interval;
|
|
continue;
|
|
}
|
|
|
|
if (sbi->gc_mode == GC_URGENT)
|
|
__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
|
|
|
|
sb_start_intwrite(sbi->sb);
|
|
|
|
issued = __issue_discard_cmd(sbi, &dpolicy);
|
|
if (issued > 0) {
|
|
__wait_all_discard_cmd(sbi, &dpolicy);
|
|
wait_ms = dpolicy.min_interval;
|
|
} else if (issued == -1){
|
|
wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
|
|
if (!wait_ms)
|
|
wait_ms = dpolicy.mid_interval;
|
|
} else {
|
|
wait_ms = dpolicy.max_interval;
|
|
}
|
|
|
|
sb_end_intwrite(sbi->sb);
|
|
|
|
} while (!kthread_should_stop());
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
sector_t sector, nr_sects;
|
|
block_t lblkstart = blkstart;
|
|
int devi = 0;
|
|
|
|
if (f2fs_is_multi_device(sbi)) {
|
|
devi = f2fs_target_device_index(sbi, blkstart);
|
|
if (blkstart < FDEV(devi).start_blk ||
|
|
blkstart > FDEV(devi).end_blk) {
|
|
f2fs_err(sbi, "Invalid block %x", blkstart);
|
|
return -EIO;
|
|
}
|
|
blkstart -= FDEV(devi).start_blk;
|
|
}
|
|
|
|
/* For sequential zones, reset the zone write pointer */
|
|
if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
|
|
sector = SECTOR_FROM_BLOCK(blkstart);
|
|
nr_sects = SECTOR_FROM_BLOCK(blklen);
|
|
|
|
if (sector & (bdev_zone_sectors(bdev) - 1) ||
|
|
nr_sects != bdev_zone_sectors(bdev)) {
|
|
f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
|
|
devi, sbi->s_ndevs ? FDEV(devi).path : "",
|
|
blkstart, blklen);
|
|
return -EIO;
|
|
}
|
|
trace_f2fs_issue_reset_zone(bdev, blkstart);
|
|
return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
|
|
sector, nr_sects, GFP_NOFS);
|
|
}
|
|
|
|
/* For conventional zones, use regular discard if supported */
|
|
return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
|
|
}
|
|
#endif
|
|
|
|
static int __issue_discard_async(struct f2fs_sb_info *sbi,
|
|
struct block_device *bdev, block_t blkstart, block_t blklen)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
|
|
return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
|
|
#endif
|
|
return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
|
|
}
|
|
|
|
static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
|
|
block_t blkstart, block_t blklen)
|
|
{
|
|
sector_t start = blkstart, len = 0;
|
|
struct block_device *bdev;
|
|
struct seg_entry *se;
|
|
unsigned int offset;
|
|
block_t i;
|
|
int err = 0;
|
|
|
|
bdev = f2fs_target_device(sbi, blkstart, NULL);
|
|
|
|
for (i = blkstart; i < blkstart + blklen; i++, len++) {
|
|
if (i != start) {
|
|
struct block_device *bdev2 =
|
|
f2fs_target_device(sbi, i, NULL);
|
|
|
|
if (bdev2 != bdev) {
|
|
err = __issue_discard_async(sbi, bdev,
|
|
start, len);
|
|
if (err)
|
|
return err;
|
|
bdev = bdev2;
|
|
start = i;
|
|
len = 0;
|
|
}
|
|
}
|
|
|
|
se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, i);
|
|
|
|
if (!f2fs_test_and_set_bit(offset, se->discard_map))
|
|
sbi->discard_blks--;
|
|
}
|
|
|
|
if (len)
|
|
err = __issue_discard_async(sbi, bdev, start, len);
|
|
return err;
|
|
}
|
|
|
|
static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
|
|
bool check_only)
|
|
{
|
|
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
|
|
int max_blocks = sbi->blocks_per_seg;
|
|
struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
|
|
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
|
|
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
|
|
unsigned long *discard_map = (unsigned long *)se->discard_map;
|
|
unsigned long *dmap = SIT_I(sbi)->tmp_map;
|
|
unsigned int start = 0, end = -1;
|
|
bool force = (cpc->reason & CP_DISCARD);
|
|
struct discard_entry *de = NULL;
|
|
struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
|
|
int i;
|
|
|
|
if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
|
|
return false;
|
|
|
|
if (!force) {
|
|
if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
|
|
SM_I(sbi)->dcc_info->nr_discards >=
|
|
SM_I(sbi)->dcc_info->max_discards)
|
|
return false;
|
|
}
|
|
|
|
/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
|
|
for (i = 0; i < entries; i++)
|
|
dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
|
|
(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
|
|
|
|
while (force || SM_I(sbi)->dcc_info->nr_discards <=
|
|
SM_I(sbi)->dcc_info->max_discards) {
|
|
start = __find_rev_next_bit(dmap, max_blocks, end + 1);
|
|
if (start >= max_blocks)
|
|
break;
|
|
|
|
end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
|
|
if (force && start && end != max_blocks
|
|
&& (end - start) < cpc->trim_minlen)
|
|
continue;
|
|
|
|
if (check_only)
|
|
return true;
|
|
|
|
if (!de) {
|
|
de = f2fs_kmem_cache_alloc(discard_entry_slab,
|
|
GFP_F2FS_ZERO);
|
|
de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
|
|
list_add_tail(&de->list, head);
|
|
}
|
|
|
|
for (i = start; i < end; i++)
|
|
__set_bit_le(i, (void *)de->discard_map);
|
|
|
|
SM_I(sbi)->dcc_info->nr_discards += end - start;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void release_discard_addr(struct discard_entry *entry)
|
|
{
|
|
list_del(&entry->list);
|
|
kmem_cache_free(discard_entry_slab, entry);
|
|
}
|
|
|
|
void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
|
|
struct discard_entry *entry, *this;
|
|
|
|
/* drop caches */
|
|
list_for_each_entry_safe(entry, this, head, list)
|
|
release_discard_addr(entry);
|
|
}
|
|
|
|
/*
|
|
* Should call f2fs_clear_prefree_segments after checkpoint is done.
|
|
*/
|
|
static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int segno;
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
|
|
__set_test_and_free(sbi, segno);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
|
|
struct cp_control *cpc)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct list_head *head = &dcc->entry_list;
|
|
struct discard_entry *entry, *this;
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
|
|
unsigned int start = 0, end = -1;
|
|
unsigned int secno, start_segno;
|
|
bool force = (cpc->reason & CP_DISCARD);
|
|
bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
|
|
while (1) {
|
|
int i;
|
|
|
|
if (need_align && end != -1)
|
|
end--;
|
|
start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
|
|
if (start >= MAIN_SEGS(sbi))
|
|
break;
|
|
end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
|
|
start + 1);
|
|
|
|
if (need_align) {
|
|
start = rounddown(start, sbi->segs_per_sec);
|
|
end = roundup(end, sbi->segs_per_sec);
|
|
}
|
|
|
|
for (i = start; i < end; i++) {
|
|
if (test_and_clear_bit(i, prefree_map))
|
|
dirty_i->nr_dirty[PRE]--;
|
|
}
|
|
|
|
if (!f2fs_realtime_discard_enable(sbi))
|
|
continue;
|
|
|
|
if (force && start >= cpc->trim_start &&
|
|
(end - 1) <= cpc->trim_end)
|
|
continue;
|
|
|
|
if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
|
|
f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
|
|
(end - start) << sbi->log_blocks_per_seg);
|
|
continue;
|
|
}
|
|
next:
|
|
secno = GET_SEC_FROM_SEG(sbi, start);
|
|
start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
if (!IS_CURSEC(sbi, secno) &&
|
|
!get_valid_blocks(sbi, start, true))
|
|
f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
|
|
sbi->segs_per_sec << sbi->log_blocks_per_seg);
|
|
|
|
start = start_segno + sbi->segs_per_sec;
|
|
if (start < end)
|
|
goto next;
|
|
else
|
|
end = start - 1;
|
|
}
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
/* send small discards */
|
|
list_for_each_entry_safe(entry, this, head, list) {
|
|
unsigned int cur_pos = 0, next_pos, len, total_len = 0;
|
|
bool is_valid = test_bit_le(0, entry->discard_map);
|
|
|
|
find_next:
|
|
if (is_valid) {
|
|
next_pos = find_next_zero_bit_le(entry->discard_map,
|
|
sbi->blocks_per_seg, cur_pos);
|
|
len = next_pos - cur_pos;
|
|
|
|
if (f2fs_sb_has_blkzoned(sbi) ||
|
|
(force && len < cpc->trim_minlen))
|
|
goto skip;
|
|
|
|
f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
|
|
len);
|
|
total_len += len;
|
|
} else {
|
|
next_pos = find_next_bit_le(entry->discard_map,
|
|
sbi->blocks_per_seg, cur_pos);
|
|
}
|
|
skip:
|
|
cur_pos = next_pos;
|
|
is_valid = !is_valid;
|
|
|
|
if (cur_pos < sbi->blocks_per_seg)
|
|
goto find_next;
|
|
|
|
release_discard_addr(entry);
|
|
dcc->nr_discards -= total_len;
|
|
}
|
|
|
|
wake_up_discard_thread(sbi, false);
|
|
}
|
|
|
|
static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
|
struct discard_cmd_control *dcc;
|
|
int err = 0, i;
|
|
|
|
if (SM_I(sbi)->dcc_info) {
|
|
dcc = SM_I(sbi)->dcc_info;
|
|
goto init_thread;
|
|
}
|
|
|
|
dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
|
|
if (!dcc)
|
|
return -ENOMEM;
|
|
|
|
dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
|
|
INIT_LIST_HEAD(&dcc->entry_list);
|
|
for (i = 0; i < MAX_PLIST_NUM; i++)
|
|
INIT_LIST_HEAD(&dcc->pend_list[i]);
|
|
INIT_LIST_HEAD(&dcc->wait_list);
|
|
INIT_LIST_HEAD(&dcc->fstrim_list);
|
|
mutex_init(&dcc->cmd_lock);
|
|
atomic_set(&dcc->issued_discard, 0);
|
|
atomic_set(&dcc->queued_discard, 0);
|
|
atomic_set(&dcc->discard_cmd_cnt, 0);
|
|
dcc->nr_discards = 0;
|
|
dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
|
|
dcc->undiscard_blks = 0;
|
|
dcc->next_pos = 0;
|
|
dcc->root = RB_ROOT_CACHED;
|
|
dcc->rbtree_check = false;
|
|
|
|
init_waitqueue_head(&dcc->discard_wait_queue);
|
|
SM_I(sbi)->dcc_info = dcc;
|
|
init_thread:
|
|
dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
|
|
"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
|
|
if (IS_ERR(dcc->f2fs_issue_discard)) {
|
|
err = PTR_ERR(dcc->f2fs_issue_discard);
|
|
kvfree(dcc);
|
|
SM_I(sbi)->dcc_info = NULL;
|
|
return err;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
|
|
if (!dcc)
|
|
return;
|
|
|
|
f2fs_stop_discard_thread(sbi);
|
|
|
|
/*
|
|
* Recovery can cache discard commands, so in error path of
|
|
* fill_super(), it needs to give a chance to handle them.
|
|
*/
|
|
if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
|
|
f2fs_issue_discard_timeout(sbi);
|
|
|
|
kvfree(dcc);
|
|
SM_I(sbi)->dcc_info = NULL;
|
|
}
|
|
|
|
static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
|
|
sit_i->dirty_sentries++;
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
|
|
unsigned int segno, int modified)
|
|
{
|
|
struct seg_entry *se = get_seg_entry(sbi, segno);
|
|
se->type = type;
|
|
if (modified)
|
|
__mark_sit_entry_dirty(sbi, segno);
|
|
}
|
|
|
|
static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
|
|
{
|
|
struct seg_entry *se;
|
|
unsigned int segno, offset;
|
|
long int new_vblocks;
|
|
bool exist;
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
bool mir_exist;
|
|
#endif
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
|
|
se = get_seg_entry(sbi, segno);
|
|
new_vblocks = se->valid_blocks + del;
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
|
|
f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
|
|
(new_vblocks > sbi->blocks_per_seg)));
|
|
|
|
se->valid_blocks = new_vblocks;
|
|
se->mtime = get_mtime(sbi, false);
|
|
if (se->mtime > SIT_I(sbi)->max_mtime)
|
|
SIT_I(sbi)->max_mtime = se->mtime;
|
|
|
|
/* Update valid block bitmap */
|
|
if (del > 0) {
|
|
exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
mir_exist = f2fs_test_and_set_bit(offset,
|
|
se->cur_valid_map_mir);
|
|
if (unlikely(exist != mir_exist)) {
|
|
f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
|
|
blkaddr, exist);
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
#endif
|
|
if (unlikely(exist)) {
|
|
f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
|
|
blkaddr);
|
|
f2fs_bug_on(sbi, 1);
|
|
se->valid_blocks--;
|
|
del = 0;
|
|
}
|
|
|
|
if (!f2fs_test_and_set_bit(offset, se->discard_map))
|
|
sbi->discard_blks--;
|
|
|
|
/*
|
|
* SSR should never reuse block which is checkpointed
|
|
* or newly invalidated.
|
|
*/
|
|
if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
|
|
if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
|
|
se->ckpt_valid_blocks++;
|
|
}
|
|
} else {
|
|
exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
mir_exist = f2fs_test_and_clear_bit(offset,
|
|
se->cur_valid_map_mir);
|
|
if (unlikely(exist != mir_exist)) {
|
|
f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
|
|
blkaddr, exist);
|
|
f2fs_bug_on(sbi, 1);
|
|
}
|
|
#endif
|
|
if (unlikely(!exist)) {
|
|
f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
|
|
blkaddr);
|
|
f2fs_bug_on(sbi, 1);
|
|
se->valid_blocks++;
|
|
del = 0;
|
|
} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
|
|
/*
|
|
* If checkpoints are off, we must not reuse data that
|
|
* was used in the previous checkpoint. If it was used
|
|
* before, we must track that to know how much space we
|
|
* really have.
|
|
*/
|
|
if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
|
|
spin_lock(&sbi->stat_lock);
|
|
sbi->unusable_block_count++;
|
|
spin_unlock(&sbi->stat_lock);
|
|
}
|
|
}
|
|
|
|
if (f2fs_test_and_clear_bit(offset, se->discard_map))
|
|
sbi->discard_blks++;
|
|
}
|
|
if (!f2fs_test_bit(offset, se->ckpt_valid_map))
|
|
se->ckpt_valid_blocks += del;
|
|
|
|
__mark_sit_entry_dirty(sbi, segno);
|
|
|
|
/* update total number of valid blocks to be written in ckpt area */
|
|
SIT_I(sbi)->written_valid_blocks += del;
|
|
|
|
if (__is_large_section(sbi))
|
|
get_sec_entry(sbi, segno)->valid_blocks += del;
|
|
}
|
|
|
|
void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
|
|
{
|
|
unsigned int segno = GET_SEGNO(sbi, addr);
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
f2fs_bug_on(sbi, addr == NULL_ADDR);
|
|
if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
|
|
return;
|
|
|
|
invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
|
|
|
|
/* add it into sit main buffer */
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
update_sit_entry(sbi, addr, -1);
|
|
|
|
/* add it into dirty seglist */
|
|
locate_dirty_segment(sbi, segno);
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
}
|
|
|
|
bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int segno, offset;
|
|
struct seg_entry *se;
|
|
bool is_cp = false;
|
|
|
|
if (!__is_valid_data_blkaddr(blkaddr))
|
|
return true;
|
|
|
|
down_read(&sit_i->sentry_lock);
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
|
|
if (f2fs_test_bit(offset, se->ckpt_valid_map))
|
|
is_cp = true;
|
|
|
|
up_read(&sit_i->sentry_lock);
|
|
|
|
return is_cp;
|
|
}
|
|
|
|
/*
|
|
* This function should be resided under the curseg_mutex lock
|
|
*/
|
|
static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
|
|
struct f2fs_summary *sum)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
void *addr = curseg->sum_blk;
|
|
addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
|
|
memcpy(addr, sum, sizeof(struct f2fs_summary));
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of current summary pages for writing
|
|
*/
|
|
int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
|
|
{
|
|
int valid_sum_count = 0;
|
|
int i, sum_in_page;
|
|
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
if (sbi->ckpt->alloc_type[i] == SSR)
|
|
valid_sum_count += sbi->blocks_per_seg;
|
|
else {
|
|
if (for_ra)
|
|
valid_sum_count += le16_to_cpu(
|
|
F2FS_CKPT(sbi)->cur_data_blkoff[i]);
|
|
else
|
|
valid_sum_count += curseg_blkoff(sbi, i);
|
|
}
|
|
}
|
|
|
|
sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
|
|
SUM_FOOTER_SIZE) / SUMMARY_SIZE;
|
|
if (valid_sum_count <= sum_in_page)
|
|
return 1;
|
|
else if ((valid_sum_count - sum_in_page) <=
|
|
(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
|
|
return 2;
|
|
return 3;
|
|
}
|
|
|
|
/*
|
|
* Caller should put this summary page
|
|
*/
|
|
struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
|
|
{
|
|
return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
|
|
}
|
|
|
|
void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
|
|
void *src, block_t blk_addr)
|
|
{
|
|
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
|
|
|
|
memcpy(page_address(page), src, PAGE_SIZE);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
static void write_sum_page(struct f2fs_sb_info *sbi,
|
|
struct f2fs_summary_block *sum_blk, block_t blk_addr)
|
|
{
|
|
f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
|
|
}
|
|
|
|
static void write_current_sum_page(struct f2fs_sb_info *sbi,
|
|
int type, block_t blk_addr)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
|
|
struct f2fs_summary_block *src = curseg->sum_blk;
|
|
struct f2fs_summary_block *dst;
|
|
|
|
dst = (struct f2fs_summary_block *)page_address(page);
|
|
memset(dst, 0, PAGE_SIZE);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
down_read(&curseg->journal_rwsem);
|
|
memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
|
|
up_read(&curseg->journal_rwsem);
|
|
|
|
memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
|
|
memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
|
|
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
|
|
static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int segno = curseg->segno + 1;
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
|
|
if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
|
|
return !test_bit(segno, free_i->free_segmap);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find a new segment from the free segments bitmap to right order
|
|
* This function should be returned with success, otherwise BUG
|
|
*/
|
|
static void get_new_segment(struct f2fs_sb_info *sbi,
|
|
unsigned int *newseg, bool new_sec, int dir)
|
|
{
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int segno, secno, zoneno;
|
|
unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
|
|
unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
|
|
unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
|
|
unsigned int left_start = hint;
|
|
bool init = true;
|
|
int go_left = 0;
|
|
int i;
|
|
|
|
spin_lock(&free_i->segmap_lock);
|
|
|
|
if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
|
|
segno = find_next_zero_bit(free_i->free_segmap,
|
|
GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
|
|
if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
|
|
goto got_it;
|
|
}
|
|
find_other_zone:
|
|
secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
|
|
if (secno >= MAIN_SECS(sbi)) {
|
|
if (dir == ALLOC_RIGHT) {
|
|
secno = find_next_zero_bit(free_i->free_secmap,
|
|
MAIN_SECS(sbi), 0);
|
|
f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
|
|
} else {
|
|
go_left = 1;
|
|
left_start = hint - 1;
|
|
}
|
|
}
|
|
if (go_left == 0)
|
|
goto skip_left;
|
|
|
|
while (test_bit(left_start, free_i->free_secmap)) {
|
|
if (left_start > 0) {
|
|
left_start--;
|
|
continue;
|
|
}
|
|
left_start = find_next_zero_bit(free_i->free_secmap,
|
|
MAIN_SECS(sbi), 0);
|
|
f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
|
|
break;
|
|
}
|
|
secno = left_start;
|
|
skip_left:
|
|
segno = GET_SEG_FROM_SEC(sbi, secno);
|
|
zoneno = GET_ZONE_FROM_SEC(sbi, secno);
|
|
|
|
/* give up on finding another zone */
|
|
if (!init)
|
|
goto got_it;
|
|
if (sbi->secs_per_zone == 1)
|
|
goto got_it;
|
|
if (zoneno == old_zoneno)
|
|
goto got_it;
|
|
if (dir == ALLOC_LEFT) {
|
|
if (!go_left && zoneno + 1 >= total_zones)
|
|
goto got_it;
|
|
if (go_left && zoneno == 0)
|
|
goto got_it;
|
|
}
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++)
|
|
if (CURSEG_I(sbi, i)->zone == zoneno)
|
|
break;
|
|
|
|
if (i < NR_CURSEG_TYPE) {
|
|
/* zone is in user, try another */
|
|
if (go_left)
|
|
hint = zoneno * sbi->secs_per_zone - 1;
|
|
else if (zoneno + 1 >= total_zones)
|
|
hint = 0;
|
|
else
|
|
hint = (zoneno + 1) * sbi->secs_per_zone;
|
|
init = false;
|
|
goto find_other_zone;
|
|
}
|
|
got_it:
|
|
/* set it as dirty segment in free segmap */
|
|
f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
|
|
__set_inuse(sbi, segno);
|
|
*newseg = segno;
|
|
spin_unlock(&free_i->segmap_lock);
|
|
}
|
|
|
|
static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
struct summary_footer *sum_footer;
|
|
|
|
curseg->segno = curseg->next_segno;
|
|
curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
|
|
curseg->next_blkoff = 0;
|
|
curseg->next_segno = NULL_SEGNO;
|
|
|
|
sum_footer = &(curseg->sum_blk->footer);
|
|
memset(sum_footer, 0, sizeof(struct summary_footer));
|
|
if (IS_DATASEG(type))
|
|
SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
|
|
if (IS_NODESEG(type))
|
|
SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
|
|
__set_sit_entry_type(sbi, type, curseg->segno, modified);
|
|
}
|
|
|
|
static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
/* if segs_per_sec is large than 1, we need to keep original policy. */
|
|
if (__is_large_section(sbi))
|
|
return CURSEG_I(sbi, type)->segno;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
|
|
return 0;
|
|
|
|
if (test_opt(sbi, NOHEAP) &&
|
|
(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
|
|
return 0;
|
|
|
|
if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
|
|
return SIT_I(sbi)->last_victim[ALLOC_NEXT];
|
|
|
|
/* find segments from 0 to reuse freed segments */
|
|
if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
|
|
return 0;
|
|
|
|
return CURSEG_I(sbi, type)->segno;
|
|
}
|
|
|
|
/*
|
|
* Allocate a current working segment.
|
|
* This function always allocates a free segment in LFS manner.
|
|
*/
|
|
static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int segno = curseg->segno;
|
|
int dir = ALLOC_LEFT;
|
|
|
|
write_sum_page(sbi, curseg->sum_blk,
|
|
GET_SUM_BLOCK(sbi, segno));
|
|
if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
|
|
dir = ALLOC_RIGHT;
|
|
|
|
if (test_opt(sbi, NOHEAP))
|
|
dir = ALLOC_RIGHT;
|
|
|
|
segno = __get_next_segno(sbi, type);
|
|
get_new_segment(sbi, &segno, new_sec, dir);
|
|
curseg->next_segno = segno;
|
|
reset_curseg(sbi, type, 1);
|
|
curseg->alloc_type = LFS;
|
|
}
|
|
|
|
static void __next_free_blkoff(struct f2fs_sb_info *sbi,
|
|
struct curseg_info *seg, block_t start)
|
|
{
|
|
struct seg_entry *se = get_seg_entry(sbi, seg->segno);
|
|
int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
|
|
unsigned long *target_map = SIT_I(sbi)->tmp_map;
|
|
unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
|
|
unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
|
|
int i, pos;
|
|
|
|
for (i = 0; i < entries; i++)
|
|
target_map[i] = ckpt_map[i] | cur_map[i];
|
|
|
|
pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
|
|
|
|
seg->next_blkoff = pos;
|
|
}
|
|
|
|
/*
|
|
* If a segment is written by LFS manner, next block offset is just obtained
|
|
* by increasing the current block offset. However, if a segment is written by
|
|
* SSR manner, next block offset obtained by calling __next_free_blkoff
|
|
*/
|
|
static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
|
|
struct curseg_info *seg)
|
|
{
|
|
if (seg->alloc_type == SSR)
|
|
__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
|
|
else
|
|
seg->next_blkoff++;
|
|
}
|
|
|
|
/*
|
|
* This function always allocates a used segment(from dirty seglist) by SSR
|
|
* manner, so it should recover the existing segment information of valid blocks
|
|
*/
|
|
static void change_curseg(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int new_segno = curseg->next_segno;
|
|
struct f2fs_summary_block *sum_node;
|
|
struct page *sum_page;
|
|
|
|
write_sum_page(sbi, curseg->sum_blk,
|
|
GET_SUM_BLOCK(sbi, curseg->segno));
|
|
__set_test_and_inuse(sbi, new_segno);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
__remove_dirty_segment(sbi, new_segno, PRE);
|
|
__remove_dirty_segment(sbi, new_segno, DIRTY);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
|
|
reset_curseg(sbi, type, 1);
|
|
curseg->alloc_type = SSR;
|
|
__next_free_blkoff(sbi, curseg, 0);
|
|
|
|
sum_page = f2fs_get_sum_page(sbi, new_segno);
|
|
f2fs_bug_on(sbi, IS_ERR(sum_page));
|
|
sum_node = (struct f2fs_summary_block *)page_address(sum_page);
|
|
memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
|
|
f2fs_put_page(sum_page, 1);
|
|
}
|
|
|
|
static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
|
|
unsigned segno = NULL_SEGNO;
|
|
int i, cnt;
|
|
bool reversed = false;
|
|
|
|
/* f2fs_need_SSR() already forces to do this */
|
|
if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
|
|
curseg->next_segno = segno;
|
|
return 1;
|
|
}
|
|
|
|
/* For node segments, let's do SSR more intensively */
|
|
if (IS_NODESEG(type)) {
|
|
if (type >= CURSEG_WARM_NODE) {
|
|
reversed = true;
|
|
i = CURSEG_COLD_NODE;
|
|
} else {
|
|
i = CURSEG_HOT_NODE;
|
|
}
|
|
cnt = NR_CURSEG_NODE_TYPE;
|
|
} else {
|
|
if (type >= CURSEG_WARM_DATA) {
|
|
reversed = true;
|
|
i = CURSEG_COLD_DATA;
|
|
} else {
|
|
i = CURSEG_HOT_DATA;
|
|
}
|
|
cnt = NR_CURSEG_DATA_TYPE;
|
|
}
|
|
|
|
for (; cnt-- > 0; reversed ? i-- : i++) {
|
|
if (i == type)
|
|
continue;
|
|
if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
|
|
curseg->next_segno = segno;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* find valid_blocks=0 in dirty list */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
|
|
segno = get_free_segment(sbi);
|
|
if (segno != NULL_SEGNO) {
|
|
curseg->next_segno = segno;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* flush out current segment and replace it with new segment
|
|
* This function should be returned with success, otherwise BUG
|
|
*/
|
|
static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
|
|
int type, bool force)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
|
|
if (force)
|
|
new_curseg(sbi, type, true);
|
|
else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
|
|
type == CURSEG_WARM_NODE)
|
|
new_curseg(sbi, type, false);
|
|
else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
|
|
likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
|
|
new_curseg(sbi, type, false);
|
|
else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
|
|
change_curseg(sbi, type);
|
|
else
|
|
new_curseg(sbi, type, false);
|
|
|
|
stat_inc_seg_type(sbi, curseg);
|
|
}
|
|
|
|
void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
|
|
unsigned int start, unsigned int end)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
unsigned int segno;
|
|
|
|
down_read(&SM_I(sbi)->curseg_lock);
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
down_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
segno = CURSEG_I(sbi, type)->segno;
|
|
if (segno < start || segno > end)
|
|
goto unlock;
|
|
|
|
if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
|
|
change_curseg(sbi, type);
|
|
else
|
|
new_curseg(sbi, type, true);
|
|
|
|
stat_inc_seg_type(sbi, curseg);
|
|
|
|
locate_dirty_segment(sbi, segno);
|
|
unlock:
|
|
up_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
if (segno != curseg->segno)
|
|
f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
|
|
type, segno, curseg->segno);
|
|
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
up_read(&SM_I(sbi)->curseg_lock);
|
|
}
|
|
|
|
void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg;
|
|
unsigned int old_segno;
|
|
int i;
|
|
|
|
down_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
if (type != NO_CHECK_TYPE && i != type)
|
|
continue;
|
|
|
|
curseg = CURSEG_I(sbi, i);
|
|
if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
|
|
get_valid_blocks(sbi, curseg->segno, false) ||
|
|
get_ckpt_valid_blocks(sbi, curseg->segno)) {
|
|
old_segno = curseg->segno;
|
|
SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
|
|
locate_dirty_segment(sbi, old_segno);
|
|
}
|
|
}
|
|
|
|
up_write(&SIT_I(sbi)->sentry_lock);
|
|
}
|
|
|
|
static const struct segment_allocation default_salloc_ops = {
|
|
.allocate_segment = allocate_segment_by_default,
|
|
};
|
|
|
|
bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
|
|
struct cp_control *cpc)
|
|
{
|
|
__u64 trim_start = cpc->trim_start;
|
|
bool has_candidate = false;
|
|
|
|
down_write(&SIT_I(sbi)->sentry_lock);
|
|
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
|
|
if (add_discard_addrs(sbi, cpc, true)) {
|
|
has_candidate = true;
|
|
break;
|
|
}
|
|
}
|
|
up_write(&SIT_I(sbi)->sentry_lock);
|
|
|
|
cpc->trim_start = trim_start;
|
|
return has_candidate;
|
|
}
|
|
|
|
static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
|
|
struct discard_policy *dpolicy,
|
|
unsigned int start, unsigned int end)
|
|
{
|
|
struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
|
|
struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
|
|
struct rb_node **insert_p = NULL, *insert_parent = NULL;
|
|
struct discard_cmd *dc;
|
|
struct blk_plug plug;
|
|
int issued;
|
|
unsigned int trimmed = 0;
|
|
|
|
next:
|
|
issued = 0;
|
|
|
|
mutex_lock(&dcc->cmd_lock);
|
|
if (unlikely(dcc->rbtree_check))
|
|
f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
|
|
&dcc->root));
|
|
|
|
dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
|
|
NULL, start,
|
|
(struct rb_entry **)&prev_dc,
|
|
(struct rb_entry **)&next_dc,
|
|
&insert_p, &insert_parent, true, NULL);
|
|
if (!dc)
|
|
dc = next_dc;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
while (dc && dc->lstart <= end) {
|
|
struct rb_node *node;
|
|
int err = 0;
|
|
|
|
if (dc->len < dpolicy->granularity)
|
|
goto skip;
|
|
|
|
if (dc->state != D_PREP) {
|
|
list_move_tail(&dc->list, &dcc->fstrim_list);
|
|
goto skip;
|
|
}
|
|
|
|
err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
|
|
|
|
if (issued >= dpolicy->max_requests) {
|
|
start = dc->lstart + dc->len;
|
|
|
|
if (err)
|
|
__remove_discard_cmd(sbi, dc);
|
|
|
|
blk_finish_plug(&plug);
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
trimmed += __wait_all_discard_cmd(sbi, NULL);
|
|
congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
|
|
goto next;
|
|
}
|
|
skip:
|
|
node = rb_next(&dc->rb_node);
|
|
if (err)
|
|
__remove_discard_cmd(sbi, dc);
|
|
dc = rb_entry_safe(node, struct discard_cmd, rb_node);
|
|
|
|
if (fatal_signal_pending(current))
|
|
break;
|
|
}
|
|
|
|
blk_finish_plug(&plug);
|
|
mutex_unlock(&dcc->cmd_lock);
|
|
|
|
return trimmed;
|
|
}
|
|
|
|
int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
|
|
{
|
|
__u64 start = F2FS_BYTES_TO_BLK(range->start);
|
|
__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
|
|
unsigned int start_segno, end_segno;
|
|
block_t start_block, end_block;
|
|
struct cp_control cpc;
|
|
struct discard_policy dpolicy;
|
|
unsigned long long trimmed = 0;
|
|
int err = 0;
|
|
bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
|
|
|
|
if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
|
|
return -EINVAL;
|
|
|
|
if (end < MAIN_BLKADDR(sbi))
|
|
goto out;
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
|
|
f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/* start/end segment number in main_area */
|
|
start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
|
|
end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
|
|
GET_SEGNO(sbi, end);
|
|
if (need_align) {
|
|
start_segno = rounddown(start_segno, sbi->segs_per_sec);
|
|
end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
|
|
}
|
|
|
|
cpc.reason = CP_DISCARD;
|
|
cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
|
|
cpc.trim_start = start_segno;
|
|
cpc.trim_end = end_segno;
|
|
|
|
if (sbi->discard_blks == 0)
|
|
goto out;
|
|
|
|
down_write(&sbi->gc_lock);
|
|
err = f2fs_write_checkpoint(sbi, &cpc);
|
|
up_write(&sbi->gc_lock);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* We filed discard candidates, but actually we don't need to wait for
|
|
* all of them, since they'll be issued in idle time along with runtime
|
|
* discard option. User configuration looks like using runtime discard
|
|
* or periodic fstrim instead of it.
|
|
*/
|
|
if (f2fs_realtime_discard_enable(sbi))
|
|
goto out;
|
|
|
|
start_block = START_BLOCK(sbi, start_segno);
|
|
end_block = START_BLOCK(sbi, end_segno + 1);
|
|
|
|
__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
|
|
trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
|
|
start_block, end_block);
|
|
|
|
trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
|
|
start_block, end_block);
|
|
out:
|
|
if (!err)
|
|
range->len = F2FS_BLK_TO_BYTES(trimmed);
|
|
return err;
|
|
}
|
|
|
|
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
if (curseg->next_blkoff < sbi->blocks_per_seg)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
|
|
{
|
|
switch (hint) {
|
|
case WRITE_LIFE_SHORT:
|
|
return CURSEG_HOT_DATA;
|
|
case WRITE_LIFE_EXTREME:
|
|
return CURSEG_COLD_DATA;
|
|
default:
|
|
return CURSEG_WARM_DATA;
|
|
}
|
|
}
|
|
|
|
/* This returns write hints for each segment type. This hints will be
|
|
* passed down to block layer. There are mapping tables which depend on
|
|
* the mount option 'whint_mode'.
|
|
*
|
|
* 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
|
|
*
|
|
* 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
|
|
*
|
|
* User F2FS Block
|
|
* ---- ---- -----
|
|
* META WRITE_LIFE_NOT_SET
|
|
* HOT_NODE "
|
|
* WARM_NODE "
|
|
* COLD_NODE "
|
|
* ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
|
|
* extension list " "
|
|
*
|
|
* -- buffered io
|
|
* WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
|
|
* WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
|
|
* WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
|
|
* WRITE_LIFE_NONE " "
|
|
* WRITE_LIFE_MEDIUM " "
|
|
* WRITE_LIFE_LONG " "
|
|
*
|
|
* -- direct io
|
|
* WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
|
|
* WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
|
|
* WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
|
|
* WRITE_LIFE_NONE " WRITE_LIFE_NONE
|
|
* WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
|
|
* WRITE_LIFE_LONG " WRITE_LIFE_LONG
|
|
*
|
|
* 3) whint_mode=fs-based. F2FS passes down hints with its policy.
|
|
*
|
|
* User F2FS Block
|
|
* ---- ---- -----
|
|
* META WRITE_LIFE_MEDIUM;
|
|
* HOT_NODE WRITE_LIFE_NOT_SET
|
|
* WARM_NODE "
|
|
* COLD_NODE WRITE_LIFE_NONE
|
|
* ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
|
|
* extension list " "
|
|
*
|
|
* -- buffered io
|
|
* WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
|
|
* WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
|
|
* WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
|
|
* WRITE_LIFE_NONE " "
|
|
* WRITE_LIFE_MEDIUM " "
|
|
* WRITE_LIFE_LONG " "
|
|
*
|
|
* -- direct io
|
|
* WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
|
|
* WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
|
|
* WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
|
|
* WRITE_LIFE_NONE " WRITE_LIFE_NONE
|
|
* WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
|
|
* WRITE_LIFE_LONG " WRITE_LIFE_LONG
|
|
*/
|
|
|
|
enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
|
|
enum page_type type, enum temp_type temp)
|
|
{
|
|
if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
|
|
if (type == DATA) {
|
|
if (temp == WARM)
|
|
return WRITE_LIFE_NOT_SET;
|
|
else if (temp == HOT)
|
|
return WRITE_LIFE_SHORT;
|
|
else if (temp == COLD)
|
|
return WRITE_LIFE_EXTREME;
|
|
} else {
|
|
return WRITE_LIFE_NOT_SET;
|
|
}
|
|
} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
|
|
if (type == DATA) {
|
|
if (temp == WARM)
|
|
return WRITE_LIFE_LONG;
|
|
else if (temp == HOT)
|
|
return WRITE_LIFE_SHORT;
|
|
else if (temp == COLD)
|
|
return WRITE_LIFE_EXTREME;
|
|
} else if (type == NODE) {
|
|
if (temp == WARM || temp == HOT)
|
|
return WRITE_LIFE_NOT_SET;
|
|
else if (temp == COLD)
|
|
return WRITE_LIFE_NONE;
|
|
} else if (type == META) {
|
|
return WRITE_LIFE_MEDIUM;
|
|
}
|
|
}
|
|
return WRITE_LIFE_NOT_SET;
|
|
}
|
|
|
|
static int __get_segment_type_2(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA)
|
|
return CURSEG_HOT_DATA;
|
|
else
|
|
return CURSEG_HOT_NODE;
|
|
}
|
|
|
|
static int __get_segment_type_4(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA) {
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (S_ISDIR(inode->i_mode))
|
|
return CURSEG_HOT_DATA;
|
|
else
|
|
return CURSEG_COLD_DATA;
|
|
} else {
|
|
if (IS_DNODE(fio->page) && is_cold_node(fio->page))
|
|
return CURSEG_WARM_NODE;
|
|
else
|
|
return CURSEG_COLD_NODE;
|
|
}
|
|
}
|
|
|
|
static int __get_segment_type_6(struct f2fs_io_info *fio)
|
|
{
|
|
if (fio->type == DATA) {
|
|
struct inode *inode = fio->page->mapping->host;
|
|
|
|
if (is_cold_data(fio->page) || file_is_cold(inode) ||
|
|
f2fs_compressed_file(inode))
|
|
return CURSEG_COLD_DATA;
|
|
if (file_is_hot(inode) ||
|
|
is_inode_flag_set(inode, FI_HOT_DATA) ||
|
|
f2fs_is_atomic_file(inode) ||
|
|
f2fs_is_volatile_file(inode))
|
|
return CURSEG_HOT_DATA;
|
|
return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
|
|
} else {
|
|
if (IS_DNODE(fio->page))
|
|
return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
|
|
CURSEG_HOT_NODE;
|
|
return CURSEG_COLD_NODE;
|
|
}
|
|
}
|
|
|
|
static int __get_segment_type(struct f2fs_io_info *fio)
|
|
{
|
|
int type = 0;
|
|
|
|
switch (F2FS_OPTION(fio->sbi).active_logs) {
|
|
case 2:
|
|
type = __get_segment_type_2(fio);
|
|
break;
|
|
case 4:
|
|
type = __get_segment_type_4(fio);
|
|
break;
|
|
case 6:
|
|
type = __get_segment_type_6(fio);
|
|
break;
|
|
default:
|
|
f2fs_bug_on(fio->sbi, true);
|
|
}
|
|
|
|
if (IS_HOT(type))
|
|
fio->temp = HOT;
|
|
else if (IS_WARM(type))
|
|
fio->temp = WARM;
|
|
else
|
|
fio->temp = COLD;
|
|
return type;
|
|
}
|
|
|
|
void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
|
|
block_t old_blkaddr, block_t *new_blkaddr,
|
|
struct f2fs_summary *sum, int type,
|
|
struct f2fs_io_info *fio, bool add_list)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
|
bool put_pin_sem = false;
|
|
|
|
if (type == CURSEG_COLD_DATA) {
|
|
/* GC during CURSEG_COLD_DATA_PINNED allocation */
|
|
if (down_read_trylock(&sbi->pin_sem)) {
|
|
put_pin_sem = true;
|
|
} else {
|
|
type = CURSEG_WARM_DATA;
|
|
curseg = CURSEG_I(sbi, type);
|
|
}
|
|
} else if (type == CURSEG_COLD_DATA_PINNED) {
|
|
type = CURSEG_COLD_DATA;
|
|
}
|
|
|
|
down_read(&SM_I(sbi)->curseg_lock);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
|
|
|
|
f2fs_wait_discard_bio(sbi, *new_blkaddr);
|
|
|
|
/*
|
|
* __add_sum_entry should be resided under the curseg_mutex
|
|
* because, this function updates a summary entry in the
|
|
* current summary block.
|
|
*/
|
|
__add_sum_entry(sbi, type, sum);
|
|
|
|
__refresh_next_blkoff(sbi, curseg);
|
|
|
|
stat_inc_block_count(sbi, curseg);
|
|
|
|
/*
|
|
* SIT information should be updated before segment allocation,
|
|
* since SSR needs latest valid block information.
|
|
*/
|
|
update_sit_entry(sbi, *new_blkaddr, 1);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
|
|
update_sit_entry(sbi, old_blkaddr, -1);
|
|
|
|
if (!__has_curseg_space(sbi, type))
|
|
sit_i->s_ops->allocate_segment(sbi, type, false);
|
|
|
|
/*
|
|
* segment dirty status should be updated after segment allocation,
|
|
* so we just need to update status only one time after previous
|
|
* segment being closed.
|
|
*/
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
|
|
if (page && IS_NODESEG(type)) {
|
|
fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
|
|
|
|
f2fs_inode_chksum_set(sbi, page);
|
|
}
|
|
|
|
if (F2FS_IO_ALIGNED(sbi))
|
|
fio->retry = false;
|
|
|
|
if (add_list) {
|
|
struct f2fs_bio_info *io;
|
|
|
|
INIT_LIST_HEAD(&fio->list);
|
|
fio->in_list = true;
|
|
io = sbi->write_io[fio->type] + fio->temp;
|
|
spin_lock(&io->io_lock);
|
|
list_add_tail(&fio->list, &io->io_list);
|
|
spin_unlock(&io->io_lock);
|
|
}
|
|
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
|
|
up_read(&SM_I(sbi)->curseg_lock);
|
|
|
|
if (put_pin_sem)
|
|
up_read(&sbi->pin_sem);
|
|
}
|
|
|
|
static void update_device_state(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
unsigned int devidx;
|
|
|
|
if (!f2fs_is_multi_device(sbi))
|
|
return;
|
|
|
|
devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
|
|
|
|
/* update device state for fsync */
|
|
f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
|
|
|
|
/* update device state for checkpoint */
|
|
if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
|
|
spin_lock(&sbi->dev_lock);
|
|
f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
|
|
spin_unlock(&sbi->dev_lock);
|
|
}
|
|
}
|
|
|
|
static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
|
|
{
|
|
int type = __get_segment_type(fio);
|
|
bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
|
|
|
|
if (keep_order)
|
|
down_read(&fio->sbi->io_order_lock);
|
|
reallocate:
|
|
f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
|
|
&fio->new_blkaddr, sum, type, fio, true);
|
|
if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
|
|
invalidate_mapping_pages(META_MAPPING(fio->sbi),
|
|
fio->old_blkaddr, fio->old_blkaddr);
|
|
|
|
/* writeout dirty page into bdev */
|
|
f2fs_submit_page_write(fio);
|
|
if (fio->retry) {
|
|
fio->old_blkaddr = fio->new_blkaddr;
|
|
goto reallocate;
|
|
}
|
|
|
|
update_device_state(fio);
|
|
|
|
if (keep_order)
|
|
up_read(&fio->sbi->io_order_lock);
|
|
}
|
|
|
|
void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.temp = HOT,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
|
|
.old_blkaddr = page->index,
|
|
.new_blkaddr = page->index,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
.in_list = false,
|
|
};
|
|
|
|
if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
|
|
fio.op_flags &= ~REQ_META;
|
|
|
|
set_page_writeback(page);
|
|
ClearPageError(page);
|
|
f2fs_submit_page_write(&fio);
|
|
|
|
stat_inc_meta_count(sbi, page->index);
|
|
f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_summary sum;
|
|
|
|
set_summary(&sum, nid, 0, 0);
|
|
do_write_page(&sum, fio);
|
|
|
|
f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
void f2fs_outplace_write_data(struct dnode_of_data *dn,
|
|
struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
struct f2fs_summary sum;
|
|
|
|
f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
|
|
do_write_page(&sum, fio);
|
|
f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
|
|
|
|
f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
int f2fs_inplace_write_data(struct f2fs_io_info *fio)
|
|
{
|
|
int err;
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
unsigned int segno;
|
|
|
|
fio->new_blkaddr = fio->old_blkaddr;
|
|
/* i/o temperature is needed for passing down write hints */
|
|
__get_segment_type(fio);
|
|
|
|
segno = GET_SEGNO(sbi, fio->new_blkaddr);
|
|
|
|
if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
|
|
__func__, segno);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
stat_inc_inplace_blocks(fio->sbi);
|
|
|
|
if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
|
|
err = f2fs_merge_page_bio(fio);
|
|
else
|
|
err = f2fs_submit_page_bio(fio);
|
|
if (!err) {
|
|
update_device_state(fio);
|
|
f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
int i;
|
|
|
|
for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
|
|
if (CURSEG_I(sbi, i)->segno == segno)
|
|
break;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
|
block_t old_blkaddr, block_t new_blkaddr,
|
|
bool recover_curseg, bool recover_newaddr)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg;
|
|
unsigned int segno, old_cursegno;
|
|
struct seg_entry *se;
|
|
int type;
|
|
unsigned short old_blkoff;
|
|
|
|
segno = GET_SEGNO(sbi, new_blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
type = se->type;
|
|
|
|
down_write(&SM_I(sbi)->curseg_lock);
|
|
|
|
if (!recover_curseg) {
|
|
/* for recovery flow */
|
|
if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
|
|
if (old_blkaddr == NULL_ADDR)
|
|
type = CURSEG_COLD_DATA;
|
|
else
|
|
type = CURSEG_WARM_DATA;
|
|
}
|
|
} else {
|
|
if (IS_CURSEG(sbi, segno)) {
|
|
/* se->type is volatile as SSR allocation */
|
|
type = __f2fs_get_curseg(sbi, segno);
|
|
f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
|
|
} else {
|
|
type = CURSEG_WARM_DATA;
|
|
}
|
|
}
|
|
|
|
f2fs_bug_on(sbi, !IS_DATASEG(type));
|
|
curseg = CURSEG_I(sbi, type);
|
|
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
old_cursegno = curseg->segno;
|
|
old_blkoff = curseg->next_blkoff;
|
|
|
|
/* change the current segment */
|
|
if (segno != curseg->segno) {
|
|
curseg->next_segno = segno;
|
|
change_curseg(sbi, type);
|
|
}
|
|
|
|
curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
|
|
__add_sum_entry(sbi, type, sum);
|
|
|
|
if (!recover_curseg || recover_newaddr)
|
|
update_sit_entry(sbi, new_blkaddr, 1);
|
|
if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
old_blkaddr, old_blkaddr);
|
|
update_sit_entry(sbi, old_blkaddr, -1);
|
|
}
|
|
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
|
|
locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
|
|
|
|
locate_dirty_segment(sbi, old_cursegno);
|
|
|
|
if (recover_curseg) {
|
|
if (old_cursegno != curseg->segno) {
|
|
curseg->next_segno = old_cursegno;
|
|
change_curseg(sbi, type);
|
|
}
|
|
curseg->next_blkoff = old_blkoff;
|
|
}
|
|
|
|
up_write(&sit_i->sentry_lock);
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
up_write(&SM_I(sbi)->curseg_lock);
|
|
}
|
|
|
|
void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
|
|
block_t old_addr, block_t new_addr,
|
|
unsigned char version, bool recover_curseg,
|
|
bool recover_newaddr)
|
|
{
|
|
struct f2fs_summary sum;
|
|
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, version);
|
|
|
|
f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
|
|
recover_curseg, recover_newaddr);
|
|
|
|
f2fs_update_data_blkaddr(dn, new_addr);
|
|
}
|
|
|
|
void f2fs_wait_on_page_writeback(struct page *page,
|
|
enum page_type type, bool ordered, bool locked)
|
|
{
|
|
if (PageWriteback(page)) {
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
|
|
/* submit cached LFS IO */
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
|
|
/* sbumit cached IPU IO */
|
|
f2fs_submit_merged_ipu_write(sbi, NULL, page);
|
|
if (ordered) {
|
|
wait_on_page_writeback(page);
|
|
f2fs_bug_on(sbi, locked && PageWriteback(page));
|
|
} else {
|
|
wait_for_stable_page(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *cpage;
|
|
|
|
if (!f2fs_post_read_required(inode))
|
|
return;
|
|
|
|
if (!__is_valid_data_blkaddr(blkaddr))
|
|
return;
|
|
|
|
cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
|
|
if (cpage) {
|
|
f2fs_wait_on_page_writeback(cpage, DATA, true, true);
|
|
f2fs_put_page(cpage, 1);
|
|
}
|
|
}
|
|
|
|
void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
|
|
block_t len)
|
|
{
|
|
block_t i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
f2fs_wait_on_block_writeback(inode, blkaddr + i);
|
|
}
|
|
|
|
static int read_compacted_summaries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct curseg_info *seg_i;
|
|
unsigned char *kaddr;
|
|
struct page *page;
|
|
block_t start;
|
|
int i, j, offset;
|
|
|
|
start = start_sum_block(sbi);
|
|
|
|
page = f2fs_get_meta_page(sbi, start++);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
|
|
/* Step 1: restore nat cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
|
|
|
|
/* Step 2: restore sit cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
|
|
offset = 2 * SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 3: restore summary entries */
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
unsigned short blk_off;
|
|
unsigned int segno;
|
|
|
|
seg_i = CURSEG_I(sbi, i);
|
|
segno = le32_to_cpu(ckpt->cur_data_segno[i]);
|
|
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
|
|
seg_i->next_segno = segno;
|
|
reset_curseg(sbi, i, 0);
|
|
seg_i->alloc_type = ckpt->alloc_type[i];
|
|
seg_i->next_blkoff = blk_off;
|
|
|
|
if (seg_i->alloc_type == SSR)
|
|
blk_off = sbi->blocks_per_seg;
|
|
|
|
for (j = 0; j < blk_off; j++) {
|
|
struct f2fs_summary *s;
|
|
s = (struct f2fs_summary *)(kaddr + offset);
|
|
seg_i->sum_blk->entries[j] = *s;
|
|
offset += SUMMARY_SIZE;
|
|
if (offset + SUMMARY_SIZE <= PAGE_SIZE -
|
|
SUM_FOOTER_SIZE)
|
|
continue;
|
|
|
|
f2fs_put_page(page, 1);
|
|
page = NULL;
|
|
|
|
page = f2fs_get_meta_page(sbi, start++);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
offset = 0;
|
|
}
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_summary_block *sum;
|
|
struct curseg_info *curseg;
|
|
struct page *new;
|
|
unsigned short blk_off;
|
|
unsigned int segno = 0;
|
|
block_t blk_addr = 0;
|
|
int err = 0;
|
|
|
|
/* get segment number and block addr */
|
|
if (IS_DATASEG(type)) {
|
|
segno = le32_to_cpu(ckpt->cur_data_segno[type]);
|
|
blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
|
|
CURSEG_HOT_DATA]);
|
|
if (__exist_node_summaries(sbi))
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
|
|
else
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
|
|
} else {
|
|
segno = le32_to_cpu(ckpt->cur_node_segno[type -
|
|
CURSEG_HOT_NODE]);
|
|
blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
|
|
CURSEG_HOT_NODE]);
|
|
if (__exist_node_summaries(sbi))
|
|
blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
|
|
type - CURSEG_HOT_NODE);
|
|
else
|
|
blk_addr = GET_SUM_BLOCK(sbi, segno);
|
|
}
|
|
|
|
new = f2fs_get_meta_page(sbi, blk_addr);
|
|
if (IS_ERR(new))
|
|
return PTR_ERR(new);
|
|
sum = (struct f2fs_summary_block *)page_address(new);
|
|
|
|
if (IS_NODESEG(type)) {
|
|
if (__exist_node_summaries(sbi)) {
|
|
struct f2fs_summary *ns = &sum->entries[0];
|
|
int i;
|
|
for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
|
|
ns->version = 0;
|
|
ns->ofs_in_node = 0;
|
|
}
|
|
} else {
|
|
err = f2fs_restore_node_summary(sbi, segno, sum);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* set uncompleted segment to curseg */
|
|
curseg = CURSEG_I(sbi, type);
|
|
mutex_lock(&curseg->curseg_mutex);
|
|
|
|
/* update journal info */
|
|
down_write(&curseg->journal_rwsem);
|
|
memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
|
|
up_write(&curseg->journal_rwsem);
|
|
|
|
memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
|
|
memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
|
|
curseg->next_segno = segno;
|
|
reset_curseg(sbi, type, 0);
|
|
curseg->alloc_type = ckpt->alloc_type[type];
|
|
curseg->next_blkoff = blk_off;
|
|
mutex_unlock(&curseg->curseg_mutex);
|
|
out:
|
|
f2fs_put_page(new, 1);
|
|
return err;
|
|
}
|
|
|
|
static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
|
|
struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
|
|
int type = CURSEG_HOT_DATA;
|
|
int err;
|
|
|
|
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
|
|
int npages = f2fs_npages_for_summary_flush(sbi, true);
|
|
|
|
if (npages >= 2)
|
|
f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
|
|
META_CP, true);
|
|
|
|
/* restore for compacted data summary */
|
|
err = read_compacted_summaries(sbi);
|
|
if (err)
|
|
return err;
|
|
type = CURSEG_HOT_NODE;
|
|
}
|
|
|
|
if (__exist_node_summaries(sbi))
|
|
f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
|
|
NR_CURSEG_TYPE - type, META_CP, true);
|
|
|
|
for (; type <= CURSEG_COLD_NODE; type++) {
|
|
err = read_normal_summaries(sbi, type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* sanity check for summary blocks */
|
|
if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
|
|
sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
|
|
f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
|
|
nats_in_cursum(nat_j), sits_in_cursum(sit_j));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
struct page *page;
|
|
unsigned char *kaddr;
|
|
struct f2fs_summary *summary;
|
|
struct curseg_info *seg_i;
|
|
int written_size = 0;
|
|
int i, j;
|
|
|
|
page = f2fs_grab_meta_page(sbi, blkaddr++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
memset(kaddr, 0, PAGE_SIZE);
|
|
|
|
/* Step 1: write nat cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
|
|
memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
|
|
written_size += SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 2: write sit cache */
|
|
seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
|
|
written_size += SUM_JOURNAL_SIZE;
|
|
|
|
/* Step 3: write summary entries */
|
|
for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
|
|
unsigned short blkoff;
|
|
seg_i = CURSEG_I(sbi, i);
|
|
if (sbi->ckpt->alloc_type[i] == SSR)
|
|
blkoff = sbi->blocks_per_seg;
|
|
else
|
|
blkoff = curseg_blkoff(sbi, i);
|
|
|
|
for (j = 0; j < blkoff; j++) {
|
|
if (!page) {
|
|
page = f2fs_grab_meta_page(sbi, blkaddr++);
|
|
kaddr = (unsigned char *)page_address(page);
|
|
memset(kaddr, 0, PAGE_SIZE);
|
|
written_size = 0;
|
|
}
|
|
summary = (struct f2fs_summary *)(kaddr + written_size);
|
|
*summary = seg_i->sum_blk->entries[j];
|
|
written_size += SUMMARY_SIZE;
|
|
|
|
if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
|
|
SUM_FOOTER_SIZE)
|
|
continue;
|
|
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
page = NULL;
|
|
}
|
|
}
|
|
if (page) {
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
}
|
|
|
|
static void write_normal_summaries(struct f2fs_sb_info *sbi,
|
|
block_t blkaddr, int type)
|
|
{
|
|
int i, end;
|
|
if (IS_DATASEG(type))
|
|
end = type + NR_CURSEG_DATA_TYPE;
|
|
else
|
|
end = type + NR_CURSEG_NODE_TYPE;
|
|
|
|
for (i = type; i < end; i++)
|
|
write_current_sum_page(sbi, i, blkaddr + (i - type));
|
|
}
|
|
|
|
void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
|
|
write_compacted_summaries(sbi, start_blk);
|
|
else
|
|
write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
|
|
}
|
|
|
|
void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
|
|
}
|
|
|
|
int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
|
|
unsigned int val, int alloc)
|
|
{
|
|
int i;
|
|
|
|
if (type == NAT_JOURNAL) {
|
|
for (i = 0; i < nats_in_cursum(journal); i++) {
|
|
if (le32_to_cpu(nid_in_journal(journal, i)) == val)
|
|
return i;
|
|
}
|
|
if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
|
|
return update_nats_in_cursum(journal, 1);
|
|
} else if (type == SIT_JOURNAL) {
|
|
for (i = 0; i < sits_in_cursum(journal); i++)
|
|
if (le32_to_cpu(segno_in_journal(journal, i)) == val)
|
|
return i;
|
|
if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
|
|
return update_sits_in_cursum(journal, 1);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
|
|
unsigned int segno)
|
|
{
|
|
return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
|
|
}
|
|
|
|
static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
|
|
unsigned int start)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct page *page;
|
|
pgoff_t src_off, dst_off;
|
|
|
|
src_off = current_sit_addr(sbi, start);
|
|
dst_off = next_sit_addr(sbi, src_off);
|
|
|
|
page = f2fs_grab_meta_page(sbi, dst_off);
|
|
seg_info_to_sit_page(sbi, page, start);
|
|
|
|
set_page_dirty(page);
|
|
set_to_next_sit(sit_i, start);
|
|
|
|
return page;
|
|
}
|
|
|
|
static struct sit_entry_set *grab_sit_entry_set(void)
|
|
{
|
|
struct sit_entry_set *ses =
|
|
f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
|
|
|
|
ses->entry_cnt = 0;
|
|
INIT_LIST_HEAD(&ses->set_list);
|
|
return ses;
|
|
}
|
|
|
|
static void release_sit_entry_set(struct sit_entry_set *ses)
|
|
{
|
|
list_del(&ses->set_list);
|
|
kmem_cache_free(sit_entry_set_slab, ses);
|
|
}
|
|
|
|
static void adjust_sit_entry_set(struct sit_entry_set *ses,
|
|
struct list_head *head)
|
|
{
|
|
struct sit_entry_set *next = ses;
|
|
|
|
if (list_is_last(&ses->set_list, head))
|
|
return;
|
|
|
|
list_for_each_entry_continue(next, head, set_list)
|
|
if (ses->entry_cnt <= next->entry_cnt)
|
|
break;
|
|
|
|
list_move_tail(&ses->set_list, &next->set_list);
|
|
}
|
|
|
|
static void add_sit_entry(unsigned int segno, struct list_head *head)
|
|
{
|
|
struct sit_entry_set *ses;
|
|
unsigned int start_segno = START_SEGNO(segno);
|
|
|
|
list_for_each_entry(ses, head, set_list) {
|
|
if (ses->start_segno == start_segno) {
|
|
ses->entry_cnt++;
|
|
adjust_sit_entry_set(ses, head);
|
|
return;
|
|
}
|
|
}
|
|
|
|
ses = grab_sit_entry_set();
|
|
|
|
ses->start_segno = start_segno;
|
|
ses->entry_cnt++;
|
|
list_add(&ses->set_list, head);
|
|
}
|
|
|
|
static void add_sits_in_set(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
|
struct list_head *set_list = &sm_info->sit_entry_set;
|
|
unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
|
|
unsigned int segno;
|
|
|
|
for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
|
|
add_sit_entry(segno, set_list);
|
|
}
|
|
|
|
static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
int i;
|
|
|
|
down_write(&curseg->journal_rwsem);
|
|
for (i = 0; i < sits_in_cursum(journal); i++) {
|
|
unsigned int segno;
|
|
bool dirtied;
|
|
|
|
segno = le32_to_cpu(segno_in_journal(journal, i));
|
|
dirtied = __mark_sit_entry_dirty(sbi, segno);
|
|
|
|
if (!dirtied)
|
|
add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
|
|
}
|
|
update_sits_in_cursum(journal, -i);
|
|
up_write(&curseg->journal_rwsem);
|
|
}
|
|
|
|
/*
|
|
* CP calls this function, which flushes SIT entries including sit_journal,
|
|
* and moves prefree segs to free segs.
|
|
*/
|
|
void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
struct sit_entry_set *ses, *tmp;
|
|
struct list_head *head = &SM_I(sbi)->sit_entry_set;
|
|
bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
|
|
struct seg_entry *se;
|
|
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
if (!sit_i->dirty_sentries)
|
|
goto out;
|
|
|
|
/*
|
|
* add and account sit entries of dirty bitmap in sit entry
|
|
* set temporarily
|
|
*/
|
|
add_sits_in_set(sbi);
|
|
|
|
/*
|
|
* if there are no enough space in journal to store dirty sit
|
|
* entries, remove all entries from journal and add and account
|
|
* them in sit entry set.
|
|
*/
|
|
if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
|
|
!to_journal)
|
|
remove_sits_in_journal(sbi);
|
|
|
|
/*
|
|
* there are two steps to flush sit entries:
|
|
* #1, flush sit entries to journal in current cold data summary block.
|
|
* #2, flush sit entries to sit page.
|
|
*/
|
|
list_for_each_entry_safe(ses, tmp, head, set_list) {
|
|
struct page *page = NULL;
|
|
struct f2fs_sit_block *raw_sit = NULL;
|
|
unsigned int start_segno = ses->start_segno;
|
|
unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
|
|
(unsigned long)MAIN_SEGS(sbi));
|
|
unsigned int segno = start_segno;
|
|
|
|
if (to_journal &&
|
|
!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
|
|
to_journal = false;
|
|
|
|
if (to_journal) {
|
|
down_write(&curseg->journal_rwsem);
|
|
} else {
|
|
page = get_next_sit_page(sbi, start_segno);
|
|
raw_sit = page_address(page);
|
|
}
|
|
|
|
/* flush dirty sit entries in region of current sit set */
|
|
for_each_set_bit_from(segno, bitmap, end) {
|
|
int offset, sit_offset;
|
|
|
|
se = get_seg_entry(sbi, segno);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
|
|
SIT_VBLOCK_MAP_SIZE))
|
|
f2fs_bug_on(sbi, 1);
|
|
#endif
|
|
|
|
/* add discard candidates */
|
|
if (!(cpc->reason & CP_DISCARD)) {
|
|
cpc->trim_start = segno;
|
|
add_discard_addrs(sbi, cpc, false);
|
|
}
|
|
|
|
if (to_journal) {
|
|
offset = f2fs_lookup_journal_in_cursum(journal,
|
|
SIT_JOURNAL, segno, 1);
|
|
f2fs_bug_on(sbi, offset < 0);
|
|
segno_in_journal(journal, offset) =
|
|
cpu_to_le32(segno);
|
|
seg_info_to_raw_sit(se,
|
|
&sit_in_journal(journal, offset));
|
|
check_block_count(sbi, segno,
|
|
&sit_in_journal(journal, offset));
|
|
} else {
|
|
sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
|
|
seg_info_to_raw_sit(se,
|
|
&raw_sit->entries[sit_offset]);
|
|
check_block_count(sbi, segno,
|
|
&raw_sit->entries[sit_offset]);
|
|
}
|
|
|
|
__clear_bit(segno, bitmap);
|
|
sit_i->dirty_sentries--;
|
|
ses->entry_cnt--;
|
|
}
|
|
|
|
if (to_journal)
|
|
up_write(&curseg->journal_rwsem);
|
|
else
|
|
f2fs_put_page(page, 1);
|
|
|
|
f2fs_bug_on(sbi, ses->entry_cnt);
|
|
release_sit_entry_set(ses);
|
|
}
|
|
|
|
f2fs_bug_on(sbi, !list_empty(head));
|
|
f2fs_bug_on(sbi, sit_i->dirty_sentries);
|
|
out:
|
|
if (cpc->reason & CP_DISCARD) {
|
|
__u64 trim_start = cpc->trim_start;
|
|
|
|
for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
|
|
add_discard_addrs(sbi, cpc, false);
|
|
|
|
cpc->trim_start = trim_start;
|
|
}
|
|
up_write(&sit_i->sentry_lock);
|
|
|
|
set_prefree_as_free_segments(sbi);
|
|
}
|
|
|
|
static int build_sit_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct sit_info *sit_i;
|
|
unsigned int sit_segs, start;
|
|
char *src_bitmap, *bitmap;
|
|
unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
|
|
|
|
/* allocate memory for SIT information */
|
|
sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
|
|
if (!sit_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->sit_info = sit_i;
|
|
|
|
sit_i->sentries =
|
|
f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
|
|
MAIN_SEGS(sbi)),
|
|
GFP_KERNEL);
|
|
if (!sit_i->sentries)
|
|
return -ENOMEM;
|
|
|
|
main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
|
|
GFP_KERNEL);
|
|
if (!sit_i->dirty_sentries_bitmap)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
|
|
#else
|
|
bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
|
|
#endif
|
|
sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->bitmap)
|
|
return -ENOMEM;
|
|
|
|
bitmap = sit_i->bitmap;
|
|
|
|
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
|
sit_i->sentries[start].cur_valid_map = bitmap;
|
|
bitmap += SIT_VBLOCK_MAP_SIZE;
|
|
|
|
sit_i->sentries[start].ckpt_valid_map = bitmap;
|
|
bitmap += SIT_VBLOCK_MAP_SIZE;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
sit_i->sentries[start].cur_valid_map_mir = bitmap;
|
|
bitmap += SIT_VBLOCK_MAP_SIZE;
|
|
#endif
|
|
|
|
sit_i->sentries[start].discard_map = bitmap;
|
|
bitmap += SIT_VBLOCK_MAP_SIZE;
|
|
}
|
|
|
|
sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
|
|
if (!sit_i->tmp_map)
|
|
return -ENOMEM;
|
|
|
|
if (__is_large_section(sbi)) {
|
|
sit_i->sec_entries =
|
|
f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
|
|
MAIN_SECS(sbi)),
|
|
GFP_KERNEL);
|
|
if (!sit_i->sec_entries)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* get information related with SIT */
|
|
sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
|
|
|
|
/* setup SIT bitmap from ckeckpoint pack */
|
|
sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
|
|
src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
|
|
|
|
sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->sit_bitmap)
|
|
return -ENOMEM;
|
|
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
|
|
sit_bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->sit_bitmap_mir)
|
|
return -ENOMEM;
|
|
|
|
sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
|
|
main_bitmap_size, GFP_KERNEL);
|
|
if (!sit_i->invalid_segmap)
|
|
return -ENOMEM;
|
|
#endif
|
|
|
|
/* init SIT information */
|
|
sit_i->s_ops = &default_salloc_ops;
|
|
|
|
sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
|
|
sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
|
|
sit_i->written_valid_blocks = 0;
|
|
sit_i->bitmap_size = sit_bitmap_size;
|
|
sit_i->dirty_sentries = 0;
|
|
sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
|
|
sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
|
|
sit_i->mounted_time = ktime_get_boottime_seconds();
|
|
init_rwsem(&sit_i->sentry_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int build_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct free_segmap_info *free_i;
|
|
unsigned int bitmap_size, sec_bitmap_size;
|
|
|
|
/* allocate memory for free segmap information */
|
|
free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
|
|
if (!free_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->free_info = free_i;
|
|
|
|
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
|
|
if (!free_i->free_segmap)
|
|
return -ENOMEM;
|
|
|
|
sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
|
|
free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
|
|
if (!free_i->free_secmap)
|
|
return -ENOMEM;
|
|
|
|
/* set all segments as dirty temporarily */
|
|
memset(free_i->free_segmap, 0xff, bitmap_size);
|
|
memset(free_i->free_secmap, 0xff, sec_bitmap_size);
|
|
|
|
/* init free segmap information */
|
|
free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
|
|
free_i->free_segments = 0;
|
|
free_i->free_sections = 0;
|
|
spin_lock_init(&free_i->segmap_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int build_curseg(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *array;
|
|
int i;
|
|
|
|
array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
|
|
GFP_KERNEL);
|
|
if (!array)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->curseg_array = array;
|
|
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++) {
|
|
mutex_init(&array[i].curseg_mutex);
|
|
array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
|
|
if (!array[i].sum_blk)
|
|
return -ENOMEM;
|
|
init_rwsem(&array[i].journal_rwsem);
|
|
array[i].journal = f2fs_kzalloc(sbi,
|
|
sizeof(struct f2fs_journal), GFP_KERNEL);
|
|
if (!array[i].journal)
|
|
return -ENOMEM;
|
|
array[i].segno = NULL_SEGNO;
|
|
array[i].next_blkoff = 0;
|
|
}
|
|
return restore_curseg_summaries(sbi);
|
|
}
|
|
|
|
static int build_sit_entries(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
|
|
struct f2fs_journal *journal = curseg->journal;
|
|
struct seg_entry *se;
|
|
struct f2fs_sit_entry sit;
|
|
int sit_blk_cnt = SIT_BLK_CNT(sbi);
|
|
unsigned int i, start, end;
|
|
unsigned int readed, start_blk = 0;
|
|
int err = 0;
|
|
block_t total_node_blocks = 0;
|
|
|
|
do {
|
|
readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
|
|
META_SIT, true);
|
|
|
|
start = start_blk * sit_i->sents_per_block;
|
|
end = (start_blk + readed) * sit_i->sents_per_block;
|
|
|
|
for (; start < end && start < MAIN_SEGS(sbi); start++) {
|
|
struct f2fs_sit_block *sit_blk;
|
|
struct page *page;
|
|
|
|
se = &sit_i->sentries[start];
|
|
page = get_current_sit_page(sbi, start);
|
|
if (IS_ERR(page))
|
|
return PTR_ERR(page);
|
|
sit_blk = (struct f2fs_sit_block *)page_address(page);
|
|
sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
|
|
f2fs_put_page(page, 1);
|
|
|
|
err = check_block_count(sbi, start, &sit);
|
|
if (err)
|
|
return err;
|
|
seg_info_from_raw_sit(se, &sit);
|
|
if (IS_NODESEG(se->type))
|
|
total_node_blocks += se->valid_blocks;
|
|
|
|
/* build discard map only one time */
|
|
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
|
|
memset(se->discard_map, 0xff,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
} else {
|
|
memcpy(se->discard_map,
|
|
se->cur_valid_map,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
sbi->discard_blks +=
|
|
sbi->blocks_per_seg -
|
|
se->valid_blocks;
|
|
}
|
|
|
|
if (__is_large_section(sbi))
|
|
get_sec_entry(sbi, start)->valid_blocks +=
|
|
se->valid_blocks;
|
|
}
|
|
start_blk += readed;
|
|
} while (start_blk < sit_blk_cnt);
|
|
|
|
down_read(&curseg->journal_rwsem);
|
|
for (i = 0; i < sits_in_cursum(journal); i++) {
|
|
unsigned int old_valid_blocks;
|
|
|
|
start = le32_to_cpu(segno_in_journal(journal, i));
|
|
if (start >= MAIN_SEGS(sbi)) {
|
|
f2fs_err(sbi, "Wrong journal entry on segno %u",
|
|
start);
|
|
err = -EFSCORRUPTED;
|
|
break;
|
|
}
|
|
|
|
se = &sit_i->sentries[start];
|
|
sit = sit_in_journal(journal, i);
|
|
|
|
old_valid_blocks = se->valid_blocks;
|
|
if (IS_NODESEG(se->type))
|
|
total_node_blocks -= old_valid_blocks;
|
|
|
|
err = check_block_count(sbi, start, &sit);
|
|
if (err)
|
|
break;
|
|
seg_info_from_raw_sit(se, &sit);
|
|
if (IS_NODESEG(se->type))
|
|
total_node_blocks += se->valid_blocks;
|
|
|
|
if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
|
|
memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
|
|
} else {
|
|
memcpy(se->discard_map, se->cur_valid_map,
|
|
SIT_VBLOCK_MAP_SIZE);
|
|
sbi->discard_blks += old_valid_blocks;
|
|
sbi->discard_blks -= se->valid_blocks;
|
|
}
|
|
|
|
if (__is_large_section(sbi)) {
|
|
get_sec_entry(sbi, start)->valid_blocks +=
|
|
se->valid_blocks;
|
|
get_sec_entry(sbi, start)->valid_blocks -=
|
|
old_valid_blocks;
|
|
}
|
|
}
|
|
up_read(&curseg->journal_rwsem);
|
|
|
|
if (!err && total_node_blocks != valid_node_count(sbi)) {
|
|
f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
|
|
total_node_blocks, valid_node_count(sbi));
|
|
err = -EFSCORRUPTED;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void init_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
unsigned int start;
|
|
int type;
|
|
|
|
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
|
struct seg_entry *sentry = get_seg_entry(sbi, start);
|
|
if (!sentry->valid_blocks)
|
|
__set_free(sbi, start);
|
|
else
|
|
SIT_I(sbi)->written_valid_blocks +=
|
|
sentry->valid_blocks;
|
|
}
|
|
|
|
/* set use the current segments */
|
|
for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
|
|
struct curseg_info *curseg_t = CURSEG_I(sbi, type);
|
|
__set_test_and_inuse(sbi, curseg_t->segno);
|
|
}
|
|
}
|
|
|
|
static void init_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
struct free_segmap_info *free_i = FREE_I(sbi);
|
|
unsigned int segno = 0, offset = 0;
|
|
unsigned short valid_blocks;
|
|
|
|
while (1) {
|
|
/* find dirty segment based on free segmap */
|
|
segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
|
|
if (segno >= MAIN_SEGS(sbi))
|
|
break;
|
|
offset = segno + 1;
|
|
valid_blocks = get_valid_blocks(sbi, segno, false);
|
|
if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
|
|
continue;
|
|
if (valid_blocks > sbi->blocks_per_seg) {
|
|
f2fs_bug_on(sbi, 1);
|
|
continue;
|
|
}
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
__locate_dirty_segment(sbi, segno, DIRTY);
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
}
|
|
|
|
static int init_victim_secmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
|
|
|
|
dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
|
|
if (!dirty_i->victim_secmap)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int build_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i;
|
|
unsigned int bitmap_size, i;
|
|
|
|
/* allocate memory for dirty segments list information */
|
|
dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
|
|
GFP_KERNEL);
|
|
if (!dirty_i)
|
|
return -ENOMEM;
|
|
|
|
SM_I(sbi)->dirty_info = dirty_i;
|
|
mutex_init(&dirty_i->seglist_lock);
|
|
|
|
bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
|
|
|
|
for (i = 0; i < NR_DIRTY_TYPE; i++) {
|
|
dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
|
|
GFP_KERNEL);
|
|
if (!dirty_i->dirty_segmap[i])
|
|
return -ENOMEM;
|
|
}
|
|
|
|
init_dirty_segmap(sbi);
|
|
return init_victim_secmap(sbi);
|
|
}
|
|
|
|
static int sanity_check_curseg(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
|
|
* In LFS curseg, all blkaddr after .next_blkoff should be unused.
|
|
*/
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
struct curseg_info *curseg = CURSEG_I(sbi, i);
|
|
struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
|
|
unsigned int blkofs = curseg->next_blkoff;
|
|
|
|
if (f2fs_test_bit(blkofs, se->cur_valid_map))
|
|
goto out;
|
|
|
|
if (curseg->alloc_type == SSR)
|
|
continue;
|
|
|
|
for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
|
|
if (!f2fs_test_bit(blkofs, se->cur_valid_map))
|
|
continue;
|
|
out:
|
|
f2fs_err(sbi,
|
|
"Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
|
|
i, curseg->segno, curseg->alloc_type,
|
|
curseg->next_blkoff, blkofs);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_ZONED
|
|
|
|
static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
|
|
struct f2fs_dev_info *fdev,
|
|
struct blk_zone *zone)
|
|
{
|
|
unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
|
|
block_t zone_block, wp_block, last_valid_block;
|
|
unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
|
|
int i, s, b, ret;
|
|
struct seg_entry *se;
|
|
|
|
if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
|
|
return 0;
|
|
|
|
wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
|
|
wp_segno = GET_SEGNO(sbi, wp_block);
|
|
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
|
|
zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
|
|
zone_segno = GET_SEGNO(sbi, zone_block);
|
|
zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
|
|
|
|
if (zone_segno >= MAIN_SEGS(sbi))
|
|
return 0;
|
|
|
|
/*
|
|
* Skip check of zones cursegs point to, since
|
|
* fix_curseg_write_pointer() checks them.
|
|
*/
|
|
for (i = 0; i < NO_CHECK_TYPE; i++)
|
|
if (zone_secno == GET_SEC_FROM_SEG(sbi,
|
|
CURSEG_I(sbi, i)->segno))
|
|
return 0;
|
|
|
|
/*
|
|
* Get last valid block of the zone.
|
|
*/
|
|
last_valid_block = zone_block - 1;
|
|
for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
|
|
segno = zone_segno + s;
|
|
se = get_seg_entry(sbi, segno);
|
|
for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
|
|
if (f2fs_test_bit(b, se->cur_valid_map)) {
|
|
last_valid_block = START_BLOCK(sbi, segno) + b;
|
|
break;
|
|
}
|
|
if (last_valid_block >= zone_block)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If last valid block is beyond the write pointer, report the
|
|
* inconsistency. This inconsistency does not cause write error
|
|
* because the zone will not be selected for write operation until
|
|
* it get discarded. Just report it.
|
|
*/
|
|
if (last_valid_block >= wp_block) {
|
|
f2fs_notice(sbi, "Valid block beyond write pointer: "
|
|
"valid block[0x%x,0x%x] wp[0x%x,0x%x]",
|
|
GET_SEGNO(sbi, last_valid_block),
|
|
GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
|
|
wp_segno, wp_blkoff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If there is no valid block in the zone and if write pointer is
|
|
* not at zone start, reset the write pointer.
|
|
*/
|
|
if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
|
|
f2fs_notice(sbi,
|
|
"Zone without valid block has non-zero write "
|
|
"pointer. Reset the write pointer: wp[0x%x,0x%x]",
|
|
wp_segno, wp_blkoff);
|
|
ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
|
|
zone->len >> log_sectors_per_block);
|
|
if (ret) {
|
|
f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
|
|
fdev->path, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
|
|
block_t zone_blkaddr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (!bdev_is_zoned(FDEV(i).bdev))
|
|
continue;
|
|
if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
|
|
zone_blkaddr <= FDEV(i).end_blk))
|
|
return &FDEV(i);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
|
|
void *data) {
|
|
memcpy(data, zone, sizeof(struct blk_zone));
|
|
return 0;
|
|
}
|
|
|
|
static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
struct curseg_info *cs = CURSEG_I(sbi, type);
|
|
struct f2fs_dev_info *zbd;
|
|
struct blk_zone zone;
|
|
unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
|
|
block_t cs_zone_block, wp_block;
|
|
unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
|
|
sector_t zone_sector;
|
|
int err;
|
|
|
|
cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
|
|
cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
|
|
|
|
zbd = get_target_zoned_dev(sbi, cs_zone_block);
|
|
if (!zbd)
|
|
return 0;
|
|
|
|
/* report zone for the sector the curseg points to */
|
|
zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
|
|
<< log_sectors_per_block;
|
|
err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
|
|
report_one_zone_cb, &zone);
|
|
if (err != 1) {
|
|
f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
|
|
zbd->path, err);
|
|
return err;
|
|
}
|
|
|
|
if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
|
|
return 0;
|
|
|
|
wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
|
|
wp_segno = GET_SEGNO(sbi, wp_block);
|
|
wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
|
|
wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
|
|
|
|
if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
|
|
wp_sector_off == 0)
|
|
return 0;
|
|
|
|
f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
|
|
"curseg[0x%x,0x%x] wp[0x%x,0x%x]",
|
|
type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
|
|
|
|
f2fs_notice(sbi, "Assign new section to curseg[%d]: "
|
|
"curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
|
|
allocate_segment_by_default(sbi, type, true);
|
|
|
|
/* check consistency of the zone curseg pointed to */
|
|
if (check_zone_write_pointer(sbi, zbd, &zone))
|
|
return -EIO;
|
|
|
|
/* check newly assigned zone */
|
|
cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
|
|
cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
|
|
|
|
zbd = get_target_zoned_dev(sbi, cs_zone_block);
|
|
if (!zbd)
|
|
return 0;
|
|
|
|
zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
|
|
<< log_sectors_per_block;
|
|
err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
|
|
report_one_zone_cb, &zone);
|
|
if (err != 1) {
|
|
f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
|
|
zbd->path, err);
|
|
return err;
|
|
}
|
|
|
|
if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
|
|
return 0;
|
|
|
|
if (zone.wp != zone.start) {
|
|
f2fs_notice(sbi,
|
|
"New zone for curseg[%d] is not yet discarded. "
|
|
"Reset the zone: curseg[0x%x,0x%x]",
|
|
type, cs->segno, cs->next_blkoff);
|
|
err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
|
|
zone_sector >> log_sectors_per_block,
|
|
zone.len >> log_sectors_per_block);
|
|
if (err) {
|
|
f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
|
|
zbd->path, err);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < NO_CHECK_TYPE; i++) {
|
|
ret = fix_curseg_write_pointer(sbi, i);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct check_zone_write_pointer_args {
|
|
struct f2fs_sb_info *sbi;
|
|
struct f2fs_dev_info *fdev;
|
|
};
|
|
|
|
static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
|
|
void *data) {
|
|
struct check_zone_write_pointer_args *args;
|
|
args = (struct check_zone_write_pointer_args *)data;
|
|
|
|
return check_zone_write_pointer(args->sbi, args->fdev, zone);
|
|
}
|
|
|
|
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i, ret;
|
|
struct check_zone_write_pointer_args args;
|
|
|
|
for (i = 0; i < sbi->s_ndevs; i++) {
|
|
if (!bdev_is_zoned(FDEV(i).bdev))
|
|
continue;
|
|
|
|
args.sbi = sbi;
|
|
args.fdev = &FDEV(i);
|
|
ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
|
|
check_zone_write_pointer_cb, &args);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Update min, max modified time for cost-benefit GC algorithm
|
|
*/
|
|
static void init_min_max_mtime(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
unsigned int segno;
|
|
|
|
down_write(&sit_i->sentry_lock);
|
|
|
|
sit_i->min_mtime = ULLONG_MAX;
|
|
|
|
for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
|
|
unsigned int i;
|
|
unsigned long long mtime = 0;
|
|
|
|
for (i = 0; i < sbi->segs_per_sec; i++)
|
|
mtime += get_seg_entry(sbi, segno + i)->mtime;
|
|
|
|
mtime = div_u64(mtime, sbi->segs_per_sec);
|
|
|
|
if (sit_i->min_mtime > mtime)
|
|
sit_i->min_mtime = mtime;
|
|
}
|
|
sit_i->max_mtime = get_mtime(sbi, false);
|
|
up_write(&sit_i->sentry_lock);
|
|
}
|
|
|
|
int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_sm_info *sm_info;
|
|
int err;
|
|
|
|
sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
|
|
if (!sm_info)
|
|
return -ENOMEM;
|
|
|
|
/* init sm info */
|
|
sbi->sm_info = sm_info;
|
|
sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
|
|
sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
|
|
sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
|
|
sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
|
|
sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
|
|
sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
|
|
sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
|
|
sm_info->rec_prefree_segments = sm_info->main_segments *
|
|
DEF_RECLAIM_PREFREE_SEGMENTS / 100;
|
|
if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
|
|
sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
|
|
|
|
if (!f2fs_lfs_mode(sbi))
|
|
sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
|
|
sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
|
|
sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
|
|
sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
|
|
sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
|
|
sm_info->min_ssr_sections = reserved_sections(sbi);
|
|
|
|
INIT_LIST_HEAD(&sm_info->sit_entry_set);
|
|
|
|
init_rwsem(&sm_info->curseg_lock);
|
|
|
|
if (!f2fs_readonly(sbi->sb)) {
|
|
err = f2fs_create_flush_cmd_control(sbi);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
err = create_discard_cmd_control(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
err = build_sit_info(sbi);
|
|
if (err)
|
|
return err;
|
|
err = build_free_segmap(sbi);
|
|
if (err)
|
|
return err;
|
|
err = build_curseg(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* reinit free segmap based on SIT */
|
|
err = build_sit_entries(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
init_free_segmap(sbi);
|
|
err = build_dirty_segmap(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
err = sanity_check_curseg(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
init_min_max_mtime(sbi);
|
|
return 0;
|
|
}
|
|
|
|
static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
|
|
enum dirty_type dirty_type)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
|
|
mutex_lock(&dirty_i->seglist_lock);
|
|
kvfree(dirty_i->dirty_segmap[dirty_type]);
|
|
dirty_i->nr_dirty[dirty_type] = 0;
|
|
mutex_unlock(&dirty_i->seglist_lock);
|
|
}
|
|
|
|
static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
kvfree(dirty_i->victim_secmap);
|
|
}
|
|
|
|
static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
|
int i;
|
|
|
|
if (!dirty_i)
|
|
return;
|
|
|
|
/* discard pre-free/dirty segments list */
|
|
for (i = 0; i < NR_DIRTY_TYPE; i++)
|
|
discard_dirty_segmap(sbi, i);
|
|
|
|
destroy_victim_secmap(sbi);
|
|
SM_I(sbi)->dirty_info = NULL;
|
|
kvfree(dirty_i);
|
|
}
|
|
|
|
static void destroy_curseg(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct curseg_info *array = SM_I(sbi)->curseg_array;
|
|
int i;
|
|
|
|
if (!array)
|
|
return;
|
|
SM_I(sbi)->curseg_array = NULL;
|
|
for (i = 0; i < NR_CURSEG_TYPE; i++) {
|
|
kvfree(array[i].sum_blk);
|
|
kvfree(array[i].journal);
|
|
}
|
|
kvfree(array);
|
|
}
|
|
|
|
static void destroy_free_segmap(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct free_segmap_info *free_i = SM_I(sbi)->free_info;
|
|
if (!free_i)
|
|
return;
|
|
SM_I(sbi)->free_info = NULL;
|
|
kvfree(free_i->free_segmap);
|
|
kvfree(free_i->free_secmap);
|
|
kvfree(free_i);
|
|
}
|
|
|
|
static void destroy_sit_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct sit_info *sit_i = SIT_I(sbi);
|
|
|
|
if (!sit_i)
|
|
return;
|
|
|
|
if (sit_i->sentries)
|
|
kvfree(sit_i->bitmap);
|
|
kvfree(sit_i->tmp_map);
|
|
|
|
kvfree(sit_i->sentries);
|
|
kvfree(sit_i->sec_entries);
|
|
kvfree(sit_i->dirty_sentries_bitmap);
|
|
|
|
SM_I(sbi)->sit_info = NULL;
|
|
kvfree(sit_i->sit_bitmap);
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
kvfree(sit_i->sit_bitmap_mir);
|
|
kvfree(sit_i->invalid_segmap);
|
|
#endif
|
|
kvfree(sit_i);
|
|
}
|
|
|
|
void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_sm_info *sm_info = SM_I(sbi);
|
|
|
|
if (!sm_info)
|
|
return;
|
|
f2fs_destroy_flush_cmd_control(sbi, true);
|
|
destroy_discard_cmd_control(sbi);
|
|
destroy_dirty_segmap(sbi);
|
|
destroy_curseg(sbi);
|
|
destroy_free_segmap(sbi);
|
|
destroy_sit_info(sbi);
|
|
sbi->sm_info = NULL;
|
|
kvfree(sm_info);
|
|
}
|
|
|
|
int __init f2fs_create_segment_manager_caches(void)
|
|
{
|
|
discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
|
|
sizeof(struct discard_entry));
|
|
if (!discard_entry_slab)
|
|
goto fail;
|
|
|
|
discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
|
|
sizeof(struct discard_cmd));
|
|
if (!discard_cmd_slab)
|
|
goto destroy_discard_entry;
|
|
|
|
sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
|
|
sizeof(struct sit_entry_set));
|
|
if (!sit_entry_set_slab)
|
|
goto destroy_discard_cmd;
|
|
|
|
inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
|
|
sizeof(struct inmem_pages));
|
|
if (!inmem_entry_slab)
|
|
goto destroy_sit_entry_set;
|
|
return 0;
|
|
|
|
destroy_sit_entry_set:
|
|
kmem_cache_destroy(sit_entry_set_slab);
|
|
destroy_discard_cmd:
|
|
kmem_cache_destroy(discard_cmd_slab);
|
|
destroy_discard_entry:
|
|
kmem_cache_destroy(discard_entry_slab);
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_segment_manager_caches(void)
|
|
{
|
|
kmem_cache_destroy(sit_entry_set_slab);
|
|
kmem_cache_destroy(discard_cmd_slab);
|
|
kmem_cache_destroy(discard_entry_slab);
|
|
kmem_cache_destroy(inmem_entry_slab);
|
|
}
|