linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_psr.c
Rodrigo Vivi 65f61b426d drm/i915: Instrument PSR parameter for debuging with link standby x link off.
Unfortunately we don't know all panels and platforms out there and we
found internal prototypes without VBT proper set but where only
link in standby worked well.

So, before enable PSR by default let's instrument the PSR parameter
in a way that we can identify different panels out there that might
require or work better with link standby mode.

It is also useful to say that for backward compatibility I'm not
changing the meaning of this flag. So "0" still means disabled
and "1" means enabled with full support and maximum power savings.

v2: Use positive value instead of negative for different operation mode
    as suggested by Daniel.

v3: As Paulo suggested use 2 to force link standby and 3 to force link
    fully on. Also split the link_standby introduction in a separated patch.

v4: Use DRM_ERROR for link off request on platforms that don't support and
    Remove the quirk promise.

Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Paulo Zanoni <paulo.r.zanoni@intel.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Paulo Zanoni <paulo.r.zanoni@intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1454356928-19779-1-git-send-email-rodrigo.vivi@intel.com
2016-02-01 12:03:36 -08:00

805 lines
25 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Panel Self Refresh (PSR/SRD)
*
* Since Haswell Display controller supports Panel Self-Refresh on display
* panels witch have a remote frame buffer (RFB) implemented according to PSR
* spec in eDP1.3. PSR feature allows the display to go to lower standby states
* when system is idle but display is on as it eliminates display refresh
* request to DDR memory completely as long as the frame buffer for that
* display is unchanged.
*
* Panel Self Refresh must be supported by both Hardware (source) and
* Panel (sink).
*
* PSR saves power by caching the framebuffer in the panel RFB, which allows us
* to power down the link and memory controller. For DSI panels the same idea
* is called "manual mode".
*
* The implementation uses the hardware-based PSR support which automatically
* enters/exits self-refresh mode. The hardware takes care of sending the
* required DP aux message and could even retrain the link (that part isn't
* enabled yet though). The hardware also keeps track of any frontbuffer
* changes to know when to exit self-refresh mode again. Unfortunately that
* part doesn't work too well, hence why the i915 PSR support uses the
* software frontbuffer tracking to make sure it doesn't miss a screen
* update. For this integration intel_psr_invalidate() and intel_psr_flush()
* get called by the frontbuffer tracking code. Note that because of locking
* issues the self-refresh re-enable code is done from a work queue, which
* must be correctly synchronized/cancelled when shutting down the pipe."
*/
#include <drm/drmP.h>
#include "intel_drv.h"
#include "i915_drv.h"
static bool is_edp_psr(struct intel_dp *intel_dp)
{
return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
}
static bool vlv_is_psr_active_on_pipe(struct drm_device *dev, int pipe)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t val;
val = I915_READ(VLV_PSRSTAT(pipe)) &
VLV_EDP_PSR_CURR_STATE_MASK;
return (val == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
(val == VLV_EDP_PSR_ACTIVE_SF_UPDATE);
}
static void intel_psr_write_vsc(struct intel_dp *intel_dp,
const struct edp_vsc_psr *vsc_psr)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
uint32_t *data = (uint32_t *) vsc_psr;
unsigned int i;
/* As per BSPec (Pipe Video Data Island Packet), we need to disable
the video DIP being updated before program video DIP data buffer
registers for DIP being updated. */
I915_WRITE(ctl_reg, 0);
POSTING_READ(ctl_reg);
for (i = 0; i < sizeof(*vsc_psr); i += 4) {
I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
i >> 2), *data);
data++;
}
for (; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4)
I915_WRITE(HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder,
i >> 2), 0);
I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
POSTING_READ(ctl_reg);
}
static void vlv_psr_setup_vsc(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
uint32_t val;
/* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
val = I915_READ(VLV_VSCSDP(pipe));
val &= ~VLV_EDP_PSR_SDP_FREQ_MASK;
val |= VLV_EDP_PSR_SDP_FREQ_EVFRAME;
I915_WRITE(VLV_VSCSDP(pipe), val);
}
static void skl_psr_setup_su_vsc(struct intel_dp *intel_dp)
{
struct edp_vsc_psr psr_vsc;
/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x3;
psr_vsc.sdp_header.HB3 = 0xb;
intel_psr_write_vsc(intel_dp, &psr_vsc);
}
static void hsw_psr_setup_vsc(struct intel_dp *intel_dp)
{
struct edp_vsc_psr psr_vsc;
/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
memset(&psr_vsc, 0, sizeof(psr_vsc));
psr_vsc.sdp_header.HB0 = 0;
psr_vsc.sdp_header.HB1 = 0x7;
psr_vsc.sdp_header.HB2 = 0x2;
psr_vsc.sdp_header.HB3 = 0x8;
intel_psr_write_vsc(intel_dp, &psr_vsc);
}
static void vlv_psr_enable_sink(struct intel_dp *intel_dp)
{
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
}
static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv,
enum port port)
{
if (INTEL_INFO(dev_priv)->gen >= 9)
return DP_AUX_CH_CTL(port);
else
return EDP_PSR_AUX_CTL;
}
static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv,
enum port port, int index)
{
if (INTEL_INFO(dev_priv)->gen >= 9)
return DP_AUX_CH_DATA(port, index);
else
return EDP_PSR_AUX_DATA(index);
}
static void hsw_psr_enable_sink(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t aux_clock_divider;
i915_reg_t aux_ctl_reg;
int precharge = 0x3;
static const uint8_t aux_msg[] = {
[0] = DP_AUX_NATIVE_WRITE << 4,
[1] = DP_SET_POWER >> 8,
[2] = DP_SET_POWER & 0xff,
[3] = 1 - 1,
[4] = DP_SET_POWER_D0,
};
enum port port = dig_port->port;
int i;
BUILD_BUG_ON(sizeof(aux_msg) > 20);
aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
/* Enable AUX frame sync at sink */
if (dev_priv->psr.aux_frame_sync)
drm_dp_dpcd_writeb(&intel_dp->aux,
DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF,
DP_AUX_FRAME_SYNC_ENABLE);
aux_ctl_reg = psr_aux_ctl_reg(dev_priv, port);
/* Setup AUX registers */
for (i = 0; i < sizeof(aux_msg); i += 4)
I915_WRITE(psr_aux_data_reg(dev_priv, port, i >> 2),
intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
if (INTEL_INFO(dev)->gen >= 9) {
uint32_t val;
val = I915_READ(aux_ctl_reg);
val &= ~DP_AUX_CH_CTL_TIME_OUT_MASK;
val |= DP_AUX_CH_CTL_TIME_OUT_1600us;
val &= ~DP_AUX_CH_CTL_MESSAGE_SIZE_MASK;
val |= (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
/* Use hardcoded data values for PSR, frame sync and GTC */
val &= ~DP_AUX_CH_CTL_PSR_DATA_AUX_REG_SKL;
val &= ~DP_AUX_CH_CTL_FS_DATA_AUX_REG_SKL;
val &= ~DP_AUX_CH_CTL_GTC_DATA_AUX_REG_SKL;
I915_WRITE(aux_ctl_reg, val);
} else {
I915_WRITE(aux_ctl_reg,
DP_AUX_CH_CTL_TIME_OUT_400us |
(sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
}
if (dev_priv->psr.link_standby)
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
else
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
DP_PSR_ENABLE);
}
static void vlv_psr_enable_source(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dig_port->base.base.crtc;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
/* Transition from PSR_state 0 to PSR_state 1, i.e. PSR Inactive */
I915_WRITE(VLV_PSRCTL(pipe),
VLV_EDP_PSR_MODE_SW_TIMER |
VLV_EDP_PSR_SRC_TRANSMITTER_STATE |
VLV_EDP_PSR_ENABLE);
}
static void vlv_psr_activate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dig_port->base.base.crtc;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
/* Let's do the transition from PSR_state 1 to PSR_state 2
* that is PSR transition to active - static frame transmission.
* Then Hardware is responsible for the transition to PSR_state 3
* that is PSR active - no Remote Frame Buffer (RFB) update.
*/
I915_WRITE(VLV_PSRCTL(pipe), I915_READ(VLV_PSRCTL(pipe)) |
VLV_EDP_PSR_ACTIVE_ENTRY);
}
static void hsw_psr_enable_source(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t max_sleep_time = 0x1f;
/*
* Let's respect VBT in case VBT asks a higher idle_frame value.
* Let's use 6 as the minimum to cover all known cases including
* the off-by-one issue that HW has in some cases. Also there are
* cases where sink should be able to train
* with the 5 or 6 idle patterns.
*/
uint32_t idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
uint32_t val = 0x0;
if (IS_HASWELL(dev))
val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
if (dev_priv->psr.link_standby)
val |= EDP_PSR_LINK_STANDBY;
I915_WRITE(EDP_PSR_CTL, val |
max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
EDP_PSR_ENABLE);
if (dev_priv->psr.psr2_support)
I915_WRITE(EDP_PSR2_CTL, EDP_PSR2_ENABLE |
EDP_SU_TRACK_ENABLE | EDP_PSR2_TP2_TIME_100);
}
static bool intel_psr_match_conditions(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc = dig_port->base.base.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
lockdep_assert_held(&dev_priv->psr.lock);
WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
dev_priv->psr.source_ok = false;
/*
* HSW spec explicitly says PSR is tied to port A.
* BDW+ platforms with DDI implementation of PSR have different
* PSR registers per transcoder and we only implement transcoder EDP
* ones. Since by Display design transcoder EDP is tied to port A
* we can safely escape based on the port A.
*/
if (HAS_DDI(dev) && dig_port->port != PORT_A) {
DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
return false;
}
if (!i915.enable_psr) {
DRM_DEBUG_KMS("PSR disable by flag\n");
return false;
}
if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
!dev_priv->psr.link_standby) {
DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
return false;
}
if (IS_HASWELL(dev) &&
I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config->cpu_transcoder)) &
S3D_ENABLE) {
DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
return false;
}
if (IS_HASWELL(dev) &&
intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
return false;
}
dev_priv->psr.source_ok = true;
return true;
}
static void intel_psr_activate(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
WARN_ON(dev_priv->psr.active);
lockdep_assert_held(&dev_priv->psr.lock);
/* Enable/Re-enable PSR on the host */
if (HAS_DDI(dev))
/* On HSW+ after we enable PSR on source it will activate it
* as soon as it match configure idle_frame count. So
* we just actually enable it here on activation time.
*/
hsw_psr_enable_source(intel_dp);
else
vlv_psr_activate(intel_dp);
dev_priv->psr.active = true;
}
/**
* intel_psr_enable - Enable PSR
* @intel_dp: Intel DP
*
* This function can only be called after the pipe is fully trained and enabled.
*/
void intel_psr_enable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
if (!HAS_PSR(dev)) {
DRM_DEBUG_KMS("PSR not supported on this platform\n");
return;
}
if (!is_edp_psr(intel_dp)) {
DRM_DEBUG_KMS("PSR not supported by this panel\n");
return;
}
mutex_lock(&dev_priv->psr.lock);
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR already in use\n");
goto unlock;
}
if (!intel_psr_match_conditions(intel_dp))
goto unlock;
dev_priv->psr.busy_frontbuffer_bits = 0;
if (HAS_DDI(dev)) {
hsw_psr_setup_vsc(intel_dp);
if (dev_priv->psr.psr2_support) {
/* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
if (crtc->config->pipe_src_w > 3200 ||
crtc->config->pipe_src_h > 2000)
dev_priv->psr.psr2_support = false;
else
skl_psr_setup_su_vsc(intel_dp);
}
/*
* Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD.
* Also mask LPSP to avoid dependency on other drivers that
* might block runtime_pm besides preventing other hw tracking
* issues now we can rely on frontbuffer tracking.
*/
I915_WRITE(EDP_PSR_DEBUG_CTL, EDP_PSR_DEBUG_MASK_MEMUP |
EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
/* Enable PSR on the panel */
hsw_psr_enable_sink(intel_dp);
if (INTEL_INFO(dev)->gen >= 9)
intel_psr_activate(intel_dp);
} else {
vlv_psr_setup_vsc(intel_dp);
/* Enable PSR on the panel */
vlv_psr_enable_sink(intel_dp);
/* On HSW+ enable_source also means go to PSR entry/active
* state as soon as idle_frame achieved and here would be
* to soon. However on VLV enable_source just enable PSR
* but let it on inactive state. So we might do this prior
* to active transition, i.e. here.
*/
vlv_psr_enable_source(intel_dp);
}
/*
* FIXME: Activation should happen immediately since this function
* is just called after pipe is fully trained and enabled.
* However on every platform we face issues when first activation
* follows a modeset so quickly.
* - On VLV/CHV we get bank screen on first activation
* - On HSW/BDW we get a recoverable frozen screen until next
* exit-activate sequence.
*/
if (INTEL_INFO(dev)->gen < 9)
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
dev_priv->psr.enabled = intel_dp;
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void vlv_psr_disable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc =
to_intel_crtc(intel_dig_port->base.base.crtc);
uint32_t val;
if (dev_priv->psr.active) {
/* Put VLV PSR back to PSR_state 0 that is PSR Disabled. */
if (wait_for((I915_READ(VLV_PSRSTAT(intel_crtc->pipe)) &
VLV_EDP_PSR_IN_TRANS) == 0, 1))
WARN(1, "PSR transition took longer than expected\n");
val = I915_READ(VLV_PSRCTL(intel_crtc->pipe));
val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
val &= ~VLV_EDP_PSR_ENABLE;
val &= ~VLV_EDP_PSR_MODE_MASK;
I915_WRITE(VLV_PSRCTL(intel_crtc->pipe), val);
dev_priv->psr.active = false;
} else {
WARN_ON(vlv_is_psr_active_on_pipe(dev, intel_crtc->pipe));
}
}
static void hsw_psr_disable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
if (dev_priv->psr.active) {
I915_WRITE(EDP_PSR_CTL,
I915_READ(EDP_PSR_CTL) & ~EDP_PSR_ENABLE);
/* Wait till PSR is idle */
if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
DRM_ERROR("Timed out waiting for PSR Idle State\n");
dev_priv->psr.active = false;
} else {
WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
}
}
/**
* intel_psr_disable - Disable PSR
* @intel_dp: Intel DP
*
* This function needs to be called before disabling pipe.
*/
void intel_psr_disable(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
/* Disable PSR on Source */
if (HAS_DDI(dev))
hsw_psr_disable(intel_dp);
else
vlv_psr_disable(intel_dp);
/* Disable PSR on Sink */
drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
dev_priv->psr.enabled = NULL;
mutex_unlock(&dev_priv->psr.lock);
cancel_delayed_work_sync(&dev_priv->psr.work);
}
static void intel_psr_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), psr.work.work);
struct intel_dp *intel_dp = dev_priv->psr.enabled;
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
/* We have to make sure PSR is ready for re-enable
* otherwise it keeps disabled until next full enable/disable cycle.
* PSR might take some time to get fully disabled
* and be ready for re-enable.
*/
if (HAS_DDI(dev_priv->dev)) {
if (wait_for((I915_READ(EDP_PSR_STATUS_CTL) &
EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
return;
}
} else {
if (wait_for((I915_READ(VLV_PSRSTAT(pipe)) &
VLV_EDP_PSR_IN_TRANS) == 0, 1)) {
DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
return;
}
}
mutex_lock(&dev_priv->psr.lock);
intel_dp = dev_priv->psr.enabled;
if (!intel_dp)
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck. Since psr_flush first clears this and then reschedules we
* won't ever miss a flush when bailing out here.
*/
if (dev_priv->psr.busy_frontbuffer_bits)
goto unlock;
intel_psr_activate(intel_dp);
unlock:
mutex_unlock(&dev_priv->psr.lock);
}
static void intel_psr_exit(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp *intel_dp = dev_priv->psr.enabled;
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
enum pipe pipe = to_intel_crtc(crtc)->pipe;
u32 val;
if (!dev_priv->psr.active)
return;
if (HAS_DDI(dev)) {
val = I915_READ(EDP_PSR_CTL);
WARN_ON(!(val & EDP_PSR_ENABLE));
I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
} else {
val = I915_READ(VLV_PSRCTL(pipe));
/* Here we do the transition from PSR_state 3 to PSR_state 5
* directly once PSR State 4 that is active with single frame
* update can be skipped. PSR_state 5 that is PSR exit then
* Hardware is responsible to transition back to PSR_state 1
* that is PSR inactive. Same state after
* vlv_edp_psr_enable_source.
*/
val &= ~VLV_EDP_PSR_ACTIVE_ENTRY;
I915_WRITE(VLV_PSRCTL(pipe), val);
/* Send AUX wake up - Spec says after transitioning to PSR
* active we have to send AUX wake up by writing 01h in DPCD
* 600h of sink device.
* XXX: This might slow down the transition, but without this
* HW doesn't complete the transition to PSR_state 1 and we
* never get the screen updated.
*/
drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D0);
}
dev_priv->psr.active = false;
}
/**
* intel_psr_single_frame_update - Single Frame Update
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* Some platforms support a single frame update feature that is used to
* send and update only one frame on Remote Frame Buffer.
* So far it is only implemented for Valleyview and Cherryview because
* hardware requires this to be done before a page flip.
*/
void intel_psr_single_frame_update(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
u32 val;
/*
* Single frame update is already supported on BDW+ but it requires
* many W/A and it isn't really needed.
*/
if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
return;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
if (frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)) {
val = I915_READ(VLV_PSRCTL(pipe));
/*
* We need to set this bit before writing registers for a flip.
* This bit will be self-clear when it gets to the PSR active state.
*/
I915_WRITE(VLV_PSRCTL(pipe), val | VLV_EDP_PSR_SINGLE_FRAME_UPDATE);
}
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_invalidate - Invalidade PSR
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
* disabled if the frontbuffer mask contains a buffer relevant to PSR.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
*/
void intel_psr_invalidate(struct drm_device *dev,
unsigned frontbuffer_bits)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
if (frontbuffer_bits)
intel_psr_exit(dev);
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_flush - Flush PSR
* @dev: DRM device
* @frontbuffer_bits: frontbuffer plane tracking bits
* @origin: which operation caused the flush
*
* Since the hardware frontbuffer tracking has gaps we need to integrate
* with the software frontbuffer tracking. This function gets called every
* time frontbuffer rendering has completed and flushed out to memory. PSR
* can be enabled again if no other frontbuffer relevant to PSR is dirty.
*
* Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
*/
void intel_psr_flush(struct drm_device *dev,
unsigned frontbuffer_bits, enum fb_op_origin origin)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_crtc *crtc;
enum pipe pipe;
mutex_lock(&dev_priv->psr.lock);
if (!dev_priv->psr.enabled) {
mutex_unlock(&dev_priv->psr.lock);
return;
}
crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* By definition flush = invalidate + flush */
if (frontbuffer_bits)
intel_psr_exit(dev);
if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
if (!work_busy(&dev_priv->psr.work.work))
schedule_delayed_work(&dev_priv->psr.work,
msecs_to_jiffies(100));
mutex_unlock(&dev_priv->psr.lock);
}
/**
* intel_psr_init - Init basic PSR work and mutex.
* @dev: DRM device
*
* This function is called only once at driver load to initialize basic
* PSR stuff.
*/
void intel_psr_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
/* Set link_standby x link_off defaults */
if (IS_HASWELL(dev) || IS_BROADWELL(dev))
/* HSW and BDW require workarounds that we don't implement. */
dev_priv->psr.link_standby = false;
else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
/* On VLV and CHV only standby mode is supported. */
dev_priv->psr.link_standby = true;
else
/* For new platforms let's respect VBT back again */
dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
/* Override link_standby x link_off defaults */
if (i915.enable_psr == 2 && !dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing link standby\n");
dev_priv->psr.link_standby = true;
}
if (i915.enable_psr == 3 && dev_priv->psr.link_standby) {
DRM_DEBUG_KMS("PSR: Forcing main link off\n");
dev_priv->psr.link_standby = false;
}
INIT_DELAYED_WORK(&dev_priv->psr.work, intel_psr_work);
mutex_init(&dev_priv->psr.lock);
}