linux_dsm_epyc7002/arch/powerpc/include/asm/book3s/32/pgtable.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

487 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
#define __ARCH_USE_5LEVEL_HACK
#include <asm-generic/pgtable-nopmd.h>
#include <asm/book3s/32/hash.h>
/* And here we include common definitions */
#include <asm/pte-common.h>
#define PTE_INDEX_SIZE PTE_SHIFT
#define PMD_INDEX_SIZE 0
#define PUD_INDEX_SIZE 0
#define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
#define PMD_CACHE_INDEX PMD_INDEX_SIZE
#ifndef __ASSEMBLY__
#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
#define PMD_TABLE_SIZE 0
#define PUD_TABLE_SIZE 0
#define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
#endif /* __ASSEMBLY__ */
#define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
#define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
/*
* The normal case is that PTEs are 32-bits and we have a 1-page
* 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
*
* For any >32-bit physical address platform, we can use the following
* two level page table layout where the pgdir is 8KB and the MS 13 bits
* are an index to the second level table. The combined pgdir/pmd first
* level has 2048 entries and the second level has 512 64-bit PTE entries.
* -Matt
*/
/* PGDIR_SHIFT determines what a top-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
/*
* This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
* value (for now) on others, from where we can start layout kernel
* virtual space that goes below PKMAP and FIXMAP
*/
#ifdef CONFIG_HIGHMEM
#define KVIRT_TOP PKMAP_BASE
#else
#define KVIRT_TOP (0xfe000000UL) /* for now, could be FIXMAP_BASE ? */
#endif
/*
* ioremap_bot starts at that address. Early ioremaps move down from there,
* until mem_init() at which point this becomes the top of the vmalloc
* and ioremap space
*/
#ifdef CONFIG_NOT_COHERENT_CACHE
#define IOREMAP_TOP ((KVIRT_TOP - CONFIG_CONSISTENT_SIZE) & PAGE_MASK)
#else
#define IOREMAP_TOP KVIRT_TOP
#endif
/*
* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 16MB value just means that there will be a 64MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*
* We no longer map larger than phys RAM with the BATs so we don't have
* to worry about the VMALLOC_OFFSET causing problems. We do have to worry
* about clashes between our early calls to ioremap() that start growing down
* from ioremap_base being run into the VM area allocations (growing upwards
* from VMALLOC_START). For this reason we have ioremap_bot to check when
* we actually run into our mappings setup in the early boot with the VM
* system. This really does become a problem for machines with good amounts
* of RAM. -- Cort
*/
#define VMALLOC_OFFSET (0x1000000) /* 16M */
#ifdef PPC_PIN_SIZE
#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#else
#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
#endif
#define VMALLOC_END ioremap_bot
#ifndef __ASSEMBLY__
#include <linux/sched.h>
#include <linux/threads.h>
#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
extern unsigned long ioremap_bot;
/* Bits to mask out from a PGD to get to the PUD page */
#define PGD_MASKED_BITS 0
#define pte_ERROR(e) \
pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
(unsigned long long)pte_val(e))
#define pgd_ERROR(e) \
pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
/*
* Bits in a linux-style PTE. These match the bits in the
* (hardware-defined) PowerPC PTE as closely as possible.
*/
#define pte_clear(mm, addr, ptep) \
do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
static inline void pmd_clear(pmd_t *pmdp)
{
*pmdp = __pmd(0);
}
/*
* When flushing the tlb entry for a page, we also need to flush the hash
* table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
*/
extern int flush_hash_pages(unsigned context, unsigned long va,
unsigned long pmdval, int count);
/* Add an HPTE to the hash table */
extern void add_hash_page(unsigned context, unsigned long va,
unsigned long pmdval);
/* Flush an entry from the TLB/hash table */
extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
unsigned long address);
/*
* PTE updates. This function is called whenever an existing
* valid PTE is updated. This does -not- include set_pte_at()
* which nowadays only sets a new PTE.
*
* Depending on the type of MMU, we may need to use atomic updates
* and the PTE may be either 32 or 64 bit wide. In the later case,
* when using atomic updates, only the low part of the PTE is
* accessed atomically.
*
* In addition, on 44x, we also maintain a global flag indicating
* that an executable user mapping was modified, which is needed
* to properly flush the virtually tagged instruction cache of
* those implementations.
*/
#ifndef CONFIG_PTE_64BIT
static inline unsigned long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
unsigned long old, tmp;
__asm__ __volatile__("\
1: lwarx %0,0,%3\n\
andc %1,%0,%4\n\
or %1,%1,%5\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%3\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
#else /* CONFIG_PTE_64BIT */
static inline unsigned long long pte_update(pte_t *p,
unsigned long clr,
unsigned long set)
{
unsigned long long old;
unsigned long tmp;
__asm__ __volatile__("\
1: lwarx %L0,0,%4\n\
lwzx %0,0,%3\n\
andc %1,%L0,%5\n\
or %1,%1,%6\n"
PPC405_ERR77(0,%3)
" stwcx. %1,0,%4\n\
bne- 1b"
: "=&r" (old), "=&r" (tmp), "=m" (*p)
: "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
: "cc" );
return old;
}
#endif /* CONFIG_PTE_64BIT */
/*
* 2.6 calls this without flushing the TLB entry; this is wrong
* for our hash-based implementation, we fix that up here.
*/
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
{
unsigned long old;
old = pte_update(ptep, _PAGE_ACCESSED, 0);
if (old & _PAGE_HASHPTE) {
unsigned long ptephys = __pa(ptep) & PAGE_MASK;
flush_hash_pages(context, addr, ptephys, 1);
}
return (old & _PAGE_ACCESSED) != 0;
}
#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
__ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
}
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), _PAGE_RO);
}
static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
unsigned long addr, pte_t *ptep)
{
ptep_set_wrprotect(mm, addr, ptep);
}
static inline void __ptep_set_access_flags(struct mm_struct *mm,
pte_t *ptep, pte_t entry,
unsigned long address)
{
unsigned long set = pte_val(entry) &
(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
unsigned long clr = ~pte_val(entry) & _PAGE_RO;
pte_update(ptep, clr, set);
}
#define __HAVE_ARCH_PTE_SAME
#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
/*
* Note that on Book E processors, the pmd contains the kernel virtual
* (lowmem) address of the pte page. The physical address is less useful
* because everything runs with translation enabled (even the TLB miss
* handler). On everything else the pmd contains the physical address
* of the pte page. -- paulus
*/
#ifndef CONFIG_BOOKE
#define pmd_page_vaddr(pmd) \
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
#else
#define pmd_page_vaddr(pmd) \
((unsigned long) (pmd_val(pmd) & PAGE_MASK))
#define pmd_page(pmd) \
pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
#endif
/* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/* to find an entry in a page-table-directory */
#define pgd_index(address) ((address) >> PGDIR_SHIFT)
#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
/* Find an entry in the third-level page table.. */
#define pte_index(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir, addr) \
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
#define pte_offset_map(dir, addr) \
((pte_t *) kmap_atomic(pmd_page(*(dir))) + pte_index(addr))
#define pte_unmap(pte) kunmap_atomic(pte)
/*
* Encode and decode a swap entry.
* Note that the bits we use in a PTE for representing a swap entry
* must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
* -- paulus
*/
#define __swp_type(entry) ((entry).val & 0x1f)
#define __swp_offset(entry) ((entry).val >> 5)
#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
int map_kernel_page(unsigned long va, phys_addr_t pa, int flags);
/* Generic accessors to PTE bits */
static inline int pte_write(pte_t pte) { return !!(pte_val(pte) & _PAGE_RW);}
static inline int pte_read(pte_t pte) { return 1; }
static inline int pte_dirty(pte_t pte) { return !!(pte_val(pte) & _PAGE_DIRTY); }
static inline int pte_young(pte_t pte) { return !!(pte_val(pte) & _PAGE_ACCESSED); }
static inline int pte_special(pte_t pte) { return !!(pte_val(pte) & _PAGE_SPECIAL); }
static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
/* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*
* Even if PTEs can be unsigned long long, a PFN is always an unsigned
* long for now.
*/
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
{
return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
pgprot_val(pgprot));
}
static inline unsigned long pte_pfn(pte_t pte)
{
return pte_val(pte) >> PTE_RPN_SHIFT;
}
/* Generic modifiers for PTE bits */
static inline pte_t pte_wrprotect(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_RW);
}
static inline pte_t pte_mkclean(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_DIRTY);
}
static inline pte_t pte_mkold(pte_t pte)
{
return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
}
static inline pte_t pte_mkwrite(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_RW);
}
static inline pte_t pte_mkdirty(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_DIRTY);
}
static inline pte_t pte_mkyoung(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_ACCESSED);
}
static inline pte_t pte_mkspecial(pte_t pte)
{
return __pte(pte_val(pte) | _PAGE_SPECIAL);
}
static inline pte_t pte_mkhuge(pte_t pte)
{
return pte;
}
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
}
/* This low level function performs the actual PTE insertion
* Setting the PTE depends on the MMU type and other factors. It's
* an horrible mess that I'm not going to try to clean up now but
* I'm keeping it in one place rather than spread around
*/
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
#if defined(CONFIG_PPC_STD_MMU_32) && defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
* helper pte_update() which does an atomic update. We need to do that
* because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
* per-CPU PTE such as a kmap_atomic, we do a simple update preserving
* the hash bits instead (ie, same as the non-SMP case)
*/
if (percpu)
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
else
pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte));
#elif defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
/* Second case is 32-bit with 64-bit PTE. In this case, we
* can just store as long as we do the two halves in the right order
* with a barrier in between. This is possible because we take care,
* in the hash code, to pre-invalidate if the PTE was already hashed,
* which synchronizes us with any concurrent invalidation.
* In the percpu case, we also fallback to the simple update preserving
* the hash bits
*/
if (percpu) {
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
return;
}
if (pte_val(*ptep) & _PAGE_HASHPTE)
flush_hash_entry(mm, ptep, addr);
__asm__ __volatile__("\
stw%U0%X0 %2,%0\n\
eieio\n\
stw%U0%X0 %L2,%1"
: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
: "r" (pte) : "memory");
#elif defined(CONFIG_PPC_STD_MMU_32)
/* Third case is 32-bit hash table in UP mode, we need to preserve
* the _PAGE_HASHPTE bit since we may not have invalidated the previous
* translation in the hash yet (done in a subsequent flush_tlb_xxx())
* and see we need to keep track that this PTE needs invalidating
*/
*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
| (pte_val(pte) & ~_PAGE_HASHPTE));
#else
#error "Not supported "
#endif
}
/*
* Macro to mark a page protection value as "uncacheable".
*/
#define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
_PAGE_WRITETHRU)
#define pgprot_noncached pgprot_noncached
static inline pgprot_t pgprot_noncached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE | _PAGE_GUARDED);
}
#define pgprot_noncached_wc pgprot_noncached_wc
static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_NO_CACHE);
}
#define pgprot_cached pgprot_cached
static inline pgprot_t pgprot_cached(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT);
}
#define pgprot_cached_wthru pgprot_cached_wthru
static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
{
return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
_PAGE_COHERENT | _PAGE_WRITETHRU);
}
#define pgprot_cached_noncoherent pgprot_cached_noncoherent
static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
{
return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
}
#define pgprot_writecombine pgprot_writecombine
static inline pgprot_t pgprot_writecombine(pgprot_t prot)
{
return pgprot_noncached_wc(prot);
}
#endif /* !__ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_32_PGTABLE_H */