mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 02:27:51 +07:00
312521d054
Since acpi_numa_arch_fixup() is only used in arch ia64, move it there to make a generic interface easier. This avoids empty function stubs or some complex kconfig options for x86 and arm64. Signed-off-by: Robert Richter <rrichter@cavium.com> Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org> Signed-off-by: David Daney <david.daney@cavium.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1061 lines
29 KiB
C
1061 lines
29 KiB
C
/*
|
|
* Architecture-specific setup.
|
|
*
|
|
* Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
* Copyright (C) 2000, 2004 Intel Corp
|
|
* Rohit Seth <rohit.seth@intel.com>
|
|
* Suresh Siddha <suresh.b.siddha@intel.com>
|
|
* Gordon Jin <gordon.jin@intel.com>
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
*
|
|
* 12/26/04 S.Siddha, G.Jin, R.Seth
|
|
* Add multi-threading and multi-core detection
|
|
* 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
|
|
* 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
|
|
* 03/31/00 R.Seth cpu_initialized and current->processor fixes
|
|
* 02/04/00 D.Mosberger some more get_cpuinfo fixes...
|
|
* 02/01/00 R.Seth fixed get_cpuinfo for SMP
|
|
* 01/07/99 S.Eranian added the support for command line argument
|
|
* 06/24/99 W.Drummond added boot_cpu_data.
|
|
* 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()"
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/acpi.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/string.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/crash_dump.h>
|
|
|
|
#include <asm/machvec.h>
|
|
#include <asm/mca.h>
|
|
#include <asm/meminit.h>
|
|
#include <asm/page.h>
|
|
#include <asm/patch.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/hpsim.h>
|
|
|
|
#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
|
|
# error "struct cpuinfo_ia64 too big!"
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long __per_cpu_offset[NR_CPUS];
|
|
EXPORT_SYMBOL(__per_cpu_offset);
|
|
#endif
|
|
|
|
DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
|
|
DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
|
|
unsigned long ia64_cycles_per_usec;
|
|
struct ia64_boot_param *ia64_boot_param;
|
|
struct screen_info screen_info;
|
|
unsigned long vga_console_iobase;
|
|
unsigned long vga_console_membase;
|
|
|
|
static struct resource data_resource = {
|
|
.name = "Kernel data",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
static struct resource code_resource = {
|
|
.name = "Kernel code",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
static struct resource bss_resource = {
|
|
.name = "Kernel bss",
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
|
|
};
|
|
|
|
unsigned long ia64_max_cacheline_size;
|
|
|
|
unsigned long ia64_iobase; /* virtual address for I/O accesses */
|
|
EXPORT_SYMBOL(ia64_iobase);
|
|
struct io_space io_space[MAX_IO_SPACES];
|
|
EXPORT_SYMBOL(io_space);
|
|
unsigned int num_io_spaces;
|
|
|
|
/*
|
|
* "flush_icache_range()" needs to know what processor dependent stride size to use
|
|
* when it makes i-cache(s) coherent with d-caches.
|
|
*/
|
|
#define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */
|
|
unsigned long ia64_i_cache_stride_shift = ~0;
|
|
/*
|
|
* "clflush_cache_range()" needs to know what processor dependent stride size to
|
|
* use when it flushes cache lines including both d-cache and i-cache.
|
|
*/
|
|
/* Safest way to go: 32 bytes by 32 bytes */
|
|
#define CACHE_STRIDE_SHIFT 5
|
|
unsigned long ia64_cache_stride_shift = ~0;
|
|
|
|
/*
|
|
* The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This
|
|
* mask specifies a mask of address bits that must be 0 in order for two buffers to be
|
|
* mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
|
|
* address of the second buffer must be aligned to (merge_mask+1) in order to be
|
|
* mergeable). By default, we assume there is no I/O MMU which can merge physically
|
|
* discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
|
|
* page-size of 2^64.
|
|
*/
|
|
unsigned long ia64_max_iommu_merge_mask = ~0UL;
|
|
EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
|
|
|
|
/*
|
|
* We use a special marker for the end of memory and it uses the extra (+1) slot
|
|
*/
|
|
struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
|
|
int num_rsvd_regions __initdata;
|
|
|
|
|
|
/*
|
|
* Filter incoming memory segments based on the primitive map created from the boot
|
|
* parameters. Segments contained in the map are removed from the memory ranges. A
|
|
* caller-specified function is called with the memory ranges that remain after filtering.
|
|
* This routine does not assume the incoming segments are sorted.
|
|
*/
|
|
int __init
|
|
filter_rsvd_memory (u64 start, u64 end, void *arg)
|
|
{
|
|
u64 range_start, range_end, prev_start;
|
|
void (*func)(unsigned long, unsigned long, int);
|
|
int i;
|
|
|
|
#if IGNORE_PFN0
|
|
if (start == PAGE_OFFSET) {
|
|
printk(KERN_WARNING "warning: skipping physical page 0\n");
|
|
start += PAGE_SIZE;
|
|
if (start >= end) return 0;
|
|
}
|
|
#endif
|
|
/*
|
|
* lowest possible address(walker uses virtual)
|
|
*/
|
|
prev_start = PAGE_OFFSET;
|
|
func = arg;
|
|
|
|
for (i = 0; i < num_rsvd_regions; ++i) {
|
|
range_start = max(start, prev_start);
|
|
range_end = min(end, rsvd_region[i].start);
|
|
|
|
if (range_start < range_end)
|
|
call_pernode_memory(__pa(range_start), range_end - range_start, func);
|
|
|
|
/* nothing more available in this segment */
|
|
if (range_end == end) return 0;
|
|
|
|
prev_start = rsvd_region[i].end;
|
|
}
|
|
/* end of memory marker allows full processing inside loop body */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Similar to "filter_rsvd_memory()", but the reserved memory ranges
|
|
* are not filtered out.
|
|
*/
|
|
int __init
|
|
filter_memory(u64 start, u64 end, void *arg)
|
|
{
|
|
void (*func)(unsigned long, unsigned long, int);
|
|
|
|
#if IGNORE_PFN0
|
|
if (start == PAGE_OFFSET) {
|
|
printk(KERN_WARNING "warning: skipping physical page 0\n");
|
|
start += PAGE_SIZE;
|
|
if (start >= end)
|
|
return 0;
|
|
}
|
|
#endif
|
|
func = arg;
|
|
if (start < end)
|
|
call_pernode_memory(__pa(start), end - start, func);
|
|
return 0;
|
|
}
|
|
|
|
static void __init
|
|
sort_regions (struct rsvd_region *rsvd_region, int max)
|
|
{
|
|
int j;
|
|
|
|
/* simple bubble sorting */
|
|
while (max--) {
|
|
for (j = 0; j < max; ++j) {
|
|
if (rsvd_region[j].start > rsvd_region[j+1].start) {
|
|
struct rsvd_region tmp;
|
|
tmp = rsvd_region[j];
|
|
rsvd_region[j] = rsvd_region[j + 1];
|
|
rsvd_region[j + 1] = tmp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* merge overlaps */
|
|
static int __init
|
|
merge_regions (struct rsvd_region *rsvd_region, int max)
|
|
{
|
|
int i;
|
|
for (i = 1; i < max; ++i) {
|
|
if (rsvd_region[i].start >= rsvd_region[i-1].end)
|
|
continue;
|
|
if (rsvd_region[i].end > rsvd_region[i-1].end)
|
|
rsvd_region[i-1].end = rsvd_region[i].end;
|
|
--max;
|
|
memmove(&rsvd_region[i], &rsvd_region[i+1],
|
|
(max - i) * sizeof(struct rsvd_region));
|
|
}
|
|
return max;
|
|
}
|
|
|
|
/*
|
|
* Request address space for all standard resources
|
|
*/
|
|
static int __init register_memory(void)
|
|
{
|
|
code_resource.start = ia64_tpa(_text);
|
|
code_resource.end = ia64_tpa(_etext) - 1;
|
|
data_resource.start = ia64_tpa(_etext);
|
|
data_resource.end = ia64_tpa(_edata) - 1;
|
|
bss_resource.start = ia64_tpa(__bss_start);
|
|
bss_resource.end = ia64_tpa(_end) - 1;
|
|
efi_initialize_iomem_resources(&code_resource, &data_resource,
|
|
&bss_resource);
|
|
|
|
return 0;
|
|
}
|
|
|
|
__initcall(register_memory);
|
|
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
|
|
/*
|
|
* This function checks if the reserved crashkernel is allowed on the specific
|
|
* IA64 machine flavour. Machines without an IO TLB use swiotlb and require
|
|
* some memory below 4 GB (i.e. in 32 bit area), see the implementation of
|
|
* lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
|
|
* in kdump case. See the comment in sba_init() in sba_iommu.c.
|
|
*
|
|
* So, the only machvec that really supports loading the kdump kernel
|
|
* over 4 GB is "sn2".
|
|
*/
|
|
static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
|
|
{
|
|
if (ia64_platform_is("sn2") || ia64_platform_is("uv"))
|
|
return 1;
|
|
else
|
|
return pbase < (1UL << 32);
|
|
}
|
|
|
|
static void __init setup_crashkernel(unsigned long total, int *n)
|
|
{
|
|
unsigned long long base = 0, size = 0;
|
|
int ret;
|
|
|
|
ret = parse_crashkernel(boot_command_line, total,
|
|
&size, &base);
|
|
if (ret == 0 && size > 0) {
|
|
if (!base) {
|
|
sort_regions(rsvd_region, *n);
|
|
*n = merge_regions(rsvd_region, *n);
|
|
base = kdump_find_rsvd_region(size,
|
|
rsvd_region, *n);
|
|
}
|
|
|
|
if (!check_crashkernel_memory(base, size)) {
|
|
pr_warning("crashkernel: There would be kdump memory "
|
|
"at %ld GB but this is unusable because it "
|
|
"must\nbe below 4 GB. Change the memory "
|
|
"configuration of the machine.\n",
|
|
(unsigned long)(base >> 30));
|
|
return;
|
|
}
|
|
|
|
if (base != ~0UL) {
|
|
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
|
|
"for crashkernel (System RAM: %ldMB)\n",
|
|
(unsigned long)(size >> 20),
|
|
(unsigned long)(base >> 20),
|
|
(unsigned long)(total >> 20));
|
|
rsvd_region[*n].start =
|
|
(unsigned long)__va(base);
|
|
rsvd_region[*n].end =
|
|
(unsigned long)__va(base + size);
|
|
(*n)++;
|
|
crashk_res.start = base;
|
|
crashk_res.end = base + size - 1;
|
|
}
|
|
}
|
|
efi_memmap_res.start = ia64_boot_param->efi_memmap;
|
|
efi_memmap_res.end = efi_memmap_res.start +
|
|
ia64_boot_param->efi_memmap_size;
|
|
boot_param_res.start = __pa(ia64_boot_param);
|
|
boot_param_res.end = boot_param_res.start +
|
|
sizeof(*ia64_boot_param);
|
|
}
|
|
#else
|
|
static inline void __init setup_crashkernel(unsigned long total, int *n)
|
|
{}
|
|
#endif
|
|
|
|
/**
|
|
* reserve_memory - setup reserved memory areas
|
|
*
|
|
* Setup the reserved memory areas set aside for the boot parameters,
|
|
* initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined,
|
|
* see arch/ia64/include/asm/meminit.h if you need to define more.
|
|
*/
|
|
void __init
|
|
reserve_memory (void)
|
|
{
|
|
int n = 0;
|
|
unsigned long total_memory;
|
|
|
|
/*
|
|
* none of the entries in this table overlap
|
|
*/
|
|
rsvd_region[n].start = (unsigned long) ia64_boot_param;
|
|
rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param);
|
|
n++;
|
|
|
|
rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
|
|
rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
|
|
n++;
|
|
|
|
rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
|
|
rsvd_region[n].end = (rsvd_region[n].start
|
|
+ strlen(__va(ia64_boot_param->command_line)) + 1);
|
|
n++;
|
|
|
|
rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
|
|
rsvd_region[n].end = (unsigned long) ia64_imva(_end);
|
|
n++;
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (ia64_boot_param->initrd_start) {
|
|
rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
|
|
rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size;
|
|
n++;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
if (reserve_elfcorehdr(&rsvd_region[n].start,
|
|
&rsvd_region[n].end) == 0)
|
|
n++;
|
|
#endif
|
|
|
|
total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
|
|
n++;
|
|
|
|
setup_crashkernel(total_memory, &n);
|
|
|
|
/* end of memory marker */
|
|
rsvd_region[n].start = ~0UL;
|
|
rsvd_region[n].end = ~0UL;
|
|
n++;
|
|
|
|
num_rsvd_regions = n;
|
|
BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
|
|
|
|
sort_regions(rsvd_region, num_rsvd_regions);
|
|
num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
|
|
}
|
|
|
|
|
|
/**
|
|
* find_initrd - get initrd parameters from the boot parameter structure
|
|
*
|
|
* Grab the initrd start and end from the boot parameter struct given us by
|
|
* the boot loader.
|
|
*/
|
|
void __init
|
|
find_initrd (void)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (ia64_boot_param->initrd_start) {
|
|
initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
|
|
initrd_end = initrd_start+ia64_boot_param->initrd_size;
|
|
|
|
printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
|
|
initrd_start, ia64_boot_param->initrd_size);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void __init
|
|
io_port_init (void)
|
|
{
|
|
unsigned long phys_iobase;
|
|
|
|
/*
|
|
* Set `iobase' based on the EFI memory map or, failing that, the
|
|
* value firmware left in ar.k0.
|
|
*
|
|
* Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
|
|
* the port's virtual address, so ia32_load_state() loads it with a
|
|
* user virtual address. But in ia64 mode, glibc uses the
|
|
* *physical* address in ar.k0 to mmap the appropriate area from
|
|
* /dev/mem, and the inX()/outX() interfaces use MMIO. In both
|
|
* cases, user-mode can only use the legacy 0-64K I/O port space.
|
|
*
|
|
* ar.k0 is not involved in kernel I/O port accesses, which can use
|
|
* any of the I/O port spaces and are done via MMIO using the
|
|
* virtual mmio_base from the appropriate io_space[].
|
|
*/
|
|
phys_iobase = efi_get_iobase();
|
|
if (!phys_iobase) {
|
|
phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
|
|
printk(KERN_INFO "No I/O port range found in EFI memory map, "
|
|
"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
|
|
}
|
|
ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
|
|
ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
|
|
|
|
/* setup legacy IO port space */
|
|
io_space[0].mmio_base = ia64_iobase;
|
|
io_space[0].sparse = 1;
|
|
num_io_spaces = 1;
|
|
}
|
|
|
|
/**
|
|
* early_console_setup - setup debugging console
|
|
*
|
|
* Consoles started here require little enough setup that we can start using
|
|
* them very early in the boot process, either right after the machine
|
|
* vector initialization, or even before if the drivers can detect their hw.
|
|
*
|
|
* Returns non-zero if a console couldn't be setup.
|
|
*/
|
|
static inline int __init
|
|
early_console_setup (char *cmdline)
|
|
{
|
|
int earlycons = 0;
|
|
|
|
#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
|
|
{
|
|
extern int sn_serial_console_early_setup(void);
|
|
if (!sn_serial_console_early_setup())
|
|
earlycons++;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_EFI_PCDP
|
|
if (!efi_setup_pcdp_console(cmdline))
|
|
earlycons++;
|
|
#endif
|
|
if (!simcons_register())
|
|
earlycons++;
|
|
|
|
return (earlycons) ? 0 : -1;
|
|
}
|
|
|
|
static inline void
|
|
mark_bsp_online (void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
/* If we register an early console, allow CPU 0 to printk */
|
|
set_cpu_online(smp_processor_id(), true);
|
|
#endif
|
|
}
|
|
|
|
static __initdata int nomca;
|
|
static __init int setup_nomca(char *s)
|
|
{
|
|
nomca = 1;
|
|
return 0;
|
|
}
|
|
early_param("nomca", setup_nomca);
|
|
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
int __init reserve_elfcorehdr(u64 *start, u64 *end)
|
|
{
|
|
u64 length;
|
|
|
|
/* We get the address using the kernel command line,
|
|
* but the size is extracted from the EFI tables.
|
|
* Both address and size are required for reservation
|
|
* to work properly.
|
|
*/
|
|
|
|
if (!is_vmcore_usable())
|
|
return -EINVAL;
|
|
|
|
if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
|
|
vmcore_unusable();
|
|
return -EINVAL;
|
|
}
|
|
|
|
*start = (unsigned long)__va(elfcorehdr_addr);
|
|
*end = *start + length;
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_PROC_VMCORE */
|
|
|
|
void __init
|
|
setup_arch (char **cmdline_p)
|
|
{
|
|
unw_init();
|
|
|
|
ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
|
|
|
|
*cmdline_p = __va(ia64_boot_param->command_line);
|
|
strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
|
|
|
|
efi_init();
|
|
io_port_init();
|
|
|
|
#ifdef CONFIG_IA64_GENERIC
|
|
/* machvec needs to be parsed from the command line
|
|
* before parse_early_param() is called to ensure
|
|
* that ia64_mv is initialised before any command line
|
|
* settings may cause console setup to occur
|
|
*/
|
|
machvec_init_from_cmdline(*cmdline_p);
|
|
#endif
|
|
|
|
parse_early_param();
|
|
|
|
if (early_console_setup(*cmdline_p) == 0)
|
|
mark_bsp_online();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/* Initialize the ACPI boot-time table parser */
|
|
acpi_table_init();
|
|
early_acpi_boot_init();
|
|
# ifdef CONFIG_ACPI_NUMA
|
|
acpi_numa_init();
|
|
acpi_numa_fixup();
|
|
# ifdef CONFIG_ACPI_HOTPLUG_CPU
|
|
prefill_possible_map();
|
|
# endif
|
|
per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
|
|
32 : cpumask_weight(&early_cpu_possible_map)),
|
|
additional_cpus > 0 ? additional_cpus : 0);
|
|
# endif
|
|
#endif /* CONFIG_APCI_BOOT */
|
|
|
|
#ifdef CONFIG_SMP
|
|
smp_build_cpu_map();
|
|
#endif
|
|
find_memory();
|
|
|
|
/* process SAL system table: */
|
|
ia64_sal_init(__va(efi.sal_systab));
|
|
|
|
#ifdef CONFIG_ITANIUM
|
|
ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
|
|
#else
|
|
{
|
|
unsigned long num_phys_stacked;
|
|
|
|
if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
|
|
ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
cpu_physical_id(0) = hard_smp_processor_id();
|
|
#endif
|
|
|
|
cpu_init(); /* initialize the bootstrap CPU */
|
|
mmu_context_init(); /* initialize context_id bitmap */
|
|
|
|
#ifdef CONFIG_VT
|
|
if (!conswitchp) {
|
|
# if defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
# endif
|
|
# if defined(CONFIG_VGA_CONSOLE)
|
|
/*
|
|
* Non-legacy systems may route legacy VGA MMIO range to system
|
|
* memory. vga_con probes the MMIO hole, so memory looks like
|
|
* a VGA device to it. The EFI memory map can tell us if it's
|
|
* memory so we can avoid this problem.
|
|
*/
|
|
if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
|
|
conswitchp = &vga_con;
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
/* enable IA-64 Machine Check Abort Handling unless disabled */
|
|
if (!nomca)
|
|
ia64_mca_init();
|
|
|
|
platform_setup(cmdline_p);
|
|
#ifndef CONFIG_IA64_HP_SIM
|
|
check_sal_cache_flush();
|
|
#endif
|
|
paging_init();
|
|
}
|
|
|
|
/*
|
|
* Display cpu info for all CPUs.
|
|
*/
|
|
static int
|
|
show_cpuinfo (struct seq_file *m, void *v)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
# define lpj c->loops_per_jiffy
|
|
# define cpunum c->cpu
|
|
#else
|
|
# define lpj loops_per_jiffy
|
|
# define cpunum 0
|
|
#endif
|
|
static struct {
|
|
unsigned long mask;
|
|
const char *feature_name;
|
|
} feature_bits[] = {
|
|
{ 1UL << 0, "branchlong" },
|
|
{ 1UL << 1, "spontaneous deferral"},
|
|
{ 1UL << 2, "16-byte atomic ops" }
|
|
};
|
|
char features[128], *cp, *sep;
|
|
struct cpuinfo_ia64 *c = v;
|
|
unsigned long mask;
|
|
unsigned long proc_freq;
|
|
int i, size;
|
|
|
|
mask = c->features;
|
|
|
|
/* build the feature string: */
|
|
memcpy(features, "standard", 9);
|
|
cp = features;
|
|
size = sizeof(features);
|
|
sep = "";
|
|
for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
|
|
if (mask & feature_bits[i].mask) {
|
|
cp += snprintf(cp, size, "%s%s", sep,
|
|
feature_bits[i].feature_name),
|
|
sep = ", ";
|
|
mask &= ~feature_bits[i].mask;
|
|
size = sizeof(features) - (cp - features);
|
|
}
|
|
}
|
|
if (mask && size > 1) {
|
|
/* print unknown features as a hex value */
|
|
snprintf(cp, size, "%s0x%lx", sep, mask);
|
|
}
|
|
|
|
proc_freq = cpufreq_quick_get(cpunum);
|
|
if (!proc_freq)
|
|
proc_freq = c->proc_freq / 1000;
|
|
|
|
seq_printf(m,
|
|
"processor : %d\n"
|
|
"vendor : %s\n"
|
|
"arch : IA-64\n"
|
|
"family : %u\n"
|
|
"model : %u\n"
|
|
"model name : %s\n"
|
|
"revision : %u\n"
|
|
"archrev : %u\n"
|
|
"features : %s\n"
|
|
"cpu number : %lu\n"
|
|
"cpu regs : %u\n"
|
|
"cpu MHz : %lu.%03lu\n"
|
|
"itc MHz : %lu.%06lu\n"
|
|
"BogoMIPS : %lu.%02lu\n",
|
|
cpunum, c->vendor, c->family, c->model,
|
|
c->model_name, c->revision, c->archrev,
|
|
features, c->ppn, c->number,
|
|
proc_freq / 1000, proc_freq % 1000,
|
|
c->itc_freq / 1000000, c->itc_freq % 1000000,
|
|
lpj*HZ/500000, (lpj*HZ/5000) % 100);
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(m, "siblings : %u\n",
|
|
cpumask_weight(&cpu_core_map[cpunum]));
|
|
if (c->socket_id != -1)
|
|
seq_printf(m, "physical id: %u\n", c->socket_id);
|
|
if (c->threads_per_core > 1 || c->cores_per_socket > 1)
|
|
seq_printf(m,
|
|
"core id : %u\n"
|
|
"thread id : %u\n",
|
|
c->core_id, c->thread_id);
|
|
#endif
|
|
seq_printf(m,"\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *
|
|
c_start (struct seq_file *m, loff_t *pos)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
while (*pos < nr_cpu_ids && !cpu_online(*pos))
|
|
++*pos;
|
|
#endif
|
|
return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
|
|
}
|
|
|
|
static void *
|
|
c_next (struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
++*pos;
|
|
return c_start(m, pos);
|
|
}
|
|
|
|
static void
|
|
c_stop (struct seq_file *m, void *v)
|
|
{
|
|
}
|
|
|
|
const struct seq_operations cpuinfo_op = {
|
|
.start = c_start,
|
|
.next = c_next,
|
|
.stop = c_stop,
|
|
.show = show_cpuinfo
|
|
};
|
|
|
|
#define MAX_BRANDS 8
|
|
static char brandname[MAX_BRANDS][128];
|
|
|
|
static char *
|
|
get_model_name(__u8 family, __u8 model)
|
|
{
|
|
static int overflow;
|
|
char brand[128];
|
|
int i;
|
|
|
|
memcpy(brand, "Unknown", 8);
|
|
if (ia64_pal_get_brand_info(brand)) {
|
|
if (family == 0x7)
|
|
memcpy(brand, "Merced", 7);
|
|
else if (family == 0x1f) switch (model) {
|
|
case 0: memcpy(brand, "McKinley", 9); break;
|
|
case 1: memcpy(brand, "Madison", 8); break;
|
|
case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
|
|
}
|
|
}
|
|
for (i = 0; i < MAX_BRANDS; i++)
|
|
if (strcmp(brandname[i], brand) == 0)
|
|
return brandname[i];
|
|
for (i = 0; i < MAX_BRANDS; i++)
|
|
if (brandname[i][0] == '\0')
|
|
return strcpy(brandname[i], brand);
|
|
if (overflow++ == 0)
|
|
printk(KERN_ERR
|
|
"%s: Table overflow. Some processor model information will be missing\n",
|
|
__func__);
|
|
return "Unknown";
|
|
}
|
|
|
|
static void
|
|
identify_cpu (struct cpuinfo_ia64 *c)
|
|
{
|
|
union {
|
|
unsigned long bits[5];
|
|
struct {
|
|
/* id 0 & 1: */
|
|
char vendor[16];
|
|
|
|
/* id 2 */
|
|
u64 ppn; /* processor serial number */
|
|
|
|
/* id 3: */
|
|
unsigned number : 8;
|
|
unsigned revision : 8;
|
|
unsigned model : 8;
|
|
unsigned family : 8;
|
|
unsigned archrev : 8;
|
|
unsigned reserved : 24;
|
|
|
|
/* id 4: */
|
|
u64 features;
|
|
} field;
|
|
} cpuid;
|
|
pal_vm_info_1_u_t vm1;
|
|
pal_vm_info_2_u_t vm2;
|
|
pal_status_t status;
|
|
unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */
|
|
int i;
|
|
for (i = 0; i < 5; ++i)
|
|
cpuid.bits[i] = ia64_get_cpuid(i);
|
|
|
|
memcpy(c->vendor, cpuid.field.vendor, 16);
|
|
#ifdef CONFIG_SMP
|
|
c->cpu = smp_processor_id();
|
|
|
|
/* below default values will be overwritten by identify_siblings()
|
|
* for Multi-Threading/Multi-Core capable CPUs
|
|
*/
|
|
c->threads_per_core = c->cores_per_socket = c->num_log = 1;
|
|
c->socket_id = -1;
|
|
|
|
identify_siblings(c);
|
|
|
|
if (c->threads_per_core > smp_num_siblings)
|
|
smp_num_siblings = c->threads_per_core;
|
|
#endif
|
|
c->ppn = cpuid.field.ppn;
|
|
c->number = cpuid.field.number;
|
|
c->revision = cpuid.field.revision;
|
|
c->model = cpuid.field.model;
|
|
c->family = cpuid.field.family;
|
|
c->archrev = cpuid.field.archrev;
|
|
c->features = cpuid.field.features;
|
|
c->model_name = get_model_name(c->family, c->model);
|
|
|
|
status = ia64_pal_vm_summary(&vm1, &vm2);
|
|
if (status == PAL_STATUS_SUCCESS) {
|
|
impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
|
|
phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
|
|
}
|
|
c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
|
|
c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
|
|
}
|
|
|
|
/*
|
|
* Do the following calculations:
|
|
*
|
|
* 1. the max. cache line size.
|
|
* 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
|
|
* 3. the minimum of the cache stride sizes for "clflush_cache_range()".
|
|
*/
|
|
static void
|
|
get_cache_info(void)
|
|
{
|
|
unsigned long line_size, max = 1;
|
|
unsigned long l, levels, unique_caches;
|
|
pal_cache_config_info_t cci;
|
|
long status;
|
|
|
|
status = ia64_pal_cache_summary(&levels, &unique_caches);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
|
|
__func__, status);
|
|
max = SMP_CACHE_BYTES;
|
|
/* Safest setup for "flush_icache_range()" */
|
|
ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
|
|
/* Safest setup for "clflush_cache_range()" */
|
|
ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
|
|
goto out;
|
|
}
|
|
|
|
for (l = 0; l < levels; ++l) {
|
|
/* cache_type (data_or_unified)=2 */
|
|
status = ia64_pal_cache_config_info(l, 2, &cci);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "%s: ia64_pal_cache_config_info"
|
|
"(l=%lu, 2) failed (status=%ld)\n",
|
|
__func__, l, status);
|
|
max = SMP_CACHE_BYTES;
|
|
/* The safest setup for "flush_icache_range()" */
|
|
cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
|
|
/* The safest setup for "clflush_cache_range()" */
|
|
ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
|
|
cci.pcci_unified = 1;
|
|
} else {
|
|
if (cci.pcci_stride < ia64_cache_stride_shift)
|
|
ia64_cache_stride_shift = cci.pcci_stride;
|
|
|
|
line_size = 1 << cci.pcci_line_size;
|
|
if (line_size > max)
|
|
max = line_size;
|
|
}
|
|
|
|
if (!cci.pcci_unified) {
|
|
/* cache_type (instruction)=1*/
|
|
status = ia64_pal_cache_config_info(l, 1, &cci);
|
|
if (status != 0) {
|
|
printk(KERN_ERR "%s: ia64_pal_cache_config_info"
|
|
"(l=%lu, 1) failed (status=%ld)\n",
|
|
__func__, l, status);
|
|
/* The safest setup for flush_icache_range() */
|
|
cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
|
|
}
|
|
}
|
|
if (cci.pcci_stride < ia64_i_cache_stride_shift)
|
|
ia64_i_cache_stride_shift = cci.pcci_stride;
|
|
}
|
|
out:
|
|
if (max > ia64_max_cacheline_size)
|
|
ia64_max_cacheline_size = max;
|
|
}
|
|
|
|
/*
|
|
* cpu_init() initializes state that is per-CPU. This function acts
|
|
* as a 'CPU state barrier', nothing should get across.
|
|
*/
|
|
void
|
|
cpu_init (void)
|
|
{
|
|
extern void ia64_mmu_init(void *);
|
|
static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
|
|
unsigned long num_phys_stacked;
|
|
pal_vm_info_2_u_t vmi;
|
|
unsigned int max_ctx;
|
|
struct cpuinfo_ia64 *cpu_info;
|
|
void *cpu_data;
|
|
|
|
cpu_data = per_cpu_init();
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* insert boot cpu into sibling and core mapes
|
|
* (must be done after per_cpu area is setup)
|
|
*/
|
|
if (smp_processor_id() == 0) {
|
|
cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
|
|
cpumask_set_cpu(0, &cpu_core_map[0]);
|
|
} else {
|
|
/*
|
|
* Set ar.k3 so that assembly code in MCA handler can compute
|
|
* physical addresses of per cpu variables with a simple:
|
|
* phys = ar.k3 + &per_cpu_var
|
|
* and the alt-dtlb-miss handler can set per-cpu mapping into
|
|
* the TLB when needed. head.S already did this for cpu0.
|
|
*/
|
|
ia64_set_kr(IA64_KR_PER_CPU_DATA,
|
|
ia64_tpa(cpu_data) - (long) __per_cpu_start);
|
|
}
|
|
#endif
|
|
|
|
get_cache_info();
|
|
|
|
/*
|
|
* We can't pass "local_cpu_data" to identify_cpu() because we haven't called
|
|
* ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it
|
|
* depends on the data returned by identify_cpu(). We break the dependency by
|
|
* accessing cpu_data() through the canonical per-CPU address.
|
|
*/
|
|
cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
|
|
identify_cpu(cpu_info);
|
|
|
|
#ifdef CONFIG_MCKINLEY
|
|
{
|
|
# define FEATURE_SET 16
|
|
struct ia64_pal_retval iprv;
|
|
|
|
if (cpu_info->family == 0x1f) {
|
|
PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
|
|
if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
|
|
PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
|
|
(iprv.v1 | 0x80), FEATURE_SET, 0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Clear the stack memory reserved for pt_regs: */
|
|
memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
|
|
|
|
ia64_set_kr(IA64_KR_FPU_OWNER, 0);
|
|
|
|
/*
|
|
* Initialize the page-table base register to a global
|
|
* directory with all zeroes. This ensure that we can handle
|
|
* TLB-misses to user address-space even before we created the
|
|
* first user address-space. This may happen, e.g., due to
|
|
* aggressive use of lfetch.fault.
|
|
*/
|
|
ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
|
|
|
|
/*
|
|
* Initialize default control register to defer speculative faults except
|
|
* for those arising from TLB misses, which are not deferred. The
|
|
* kernel MUST NOT depend on a particular setting of these bits (in other words,
|
|
* the kernel must have recovery code for all speculative accesses). Turn on
|
|
* dcr.lc as per recommendation by the architecture team. Most IA-32 apps
|
|
* shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
|
|
* be fine).
|
|
*/
|
|
ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
|
|
| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
BUG_ON(current->mm);
|
|
|
|
ia64_mmu_init(ia64_imva(cpu_data));
|
|
ia64_mca_cpu_init(ia64_imva(cpu_data));
|
|
|
|
/* Clear ITC to eliminate sched_clock() overflows in human time. */
|
|
ia64_set_itc(0);
|
|
|
|
/* disable all local interrupt sources: */
|
|
ia64_set_itv(1 << 16);
|
|
ia64_set_lrr0(1 << 16);
|
|
ia64_set_lrr1(1 << 16);
|
|
ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
|
|
ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
|
|
|
|
/* clear TPR & XTP to enable all interrupt classes: */
|
|
ia64_setreg(_IA64_REG_CR_TPR, 0);
|
|
|
|
/* Clear any pending interrupts left by SAL/EFI */
|
|
while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
|
|
ia64_eoi();
|
|
|
|
#ifdef CONFIG_SMP
|
|
normal_xtp();
|
|
#endif
|
|
|
|
/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
|
|
if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
|
|
max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
|
|
setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
|
|
} else {
|
|
printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
|
|
max_ctx = (1U << 15) - 1; /* use architected minimum */
|
|
}
|
|
while (max_ctx < ia64_ctx.max_ctx) {
|
|
unsigned int old = ia64_ctx.max_ctx;
|
|
if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
|
|
break;
|
|
}
|
|
|
|
if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
|
|
printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
|
|
"stacked regs\n");
|
|
num_phys_stacked = 96;
|
|
}
|
|
/* size of physical stacked register partition plus 8 bytes: */
|
|
if (num_phys_stacked > max_num_phys_stacked) {
|
|
ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
|
|
max_num_phys_stacked = num_phys_stacked;
|
|
}
|
|
platform_cpu_init();
|
|
}
|
|
|
|
void __init
|
|
check_bugs (void)
|
|
{
|
|
ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
|
|
(unsigned long) __end___mckinley_e9_bundles);
|
|
}
|
|
|
|
static int __init run_dmi_scan(void)
|
|
{
|
|
dmi_scan_machine();
|
|
dmi_memdev_walk();
|
|
dmi_set_dump_stack_arch_desc();
|
|
return 0;
|
|
}
|
|
core_initcall(run_dmi_scan);
|