mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
d12a5e2458
This patch fixes the mapping of virtual address to physical addresses on architectures where PAGE_SIZE is bigger than 4KB. The break down to the device page size was done only for the virtual address while it should have been done for the physical address as well. As a result virtual addresses were mapped to wrong physical address. The fix is to apply the break down for the physical addresses as well in order to get correct mappings. Signed-off-by: Omer Shpigelman <oshpigelman@habana.ai> Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
975 lines
24 KiB
C
975 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include "habanalabs.h"
|
|
#include "include/hw_ip/mmu/mmu_general.h"
|
|
|
|
#include <linux/genalloc.h>
|
|
#include <linux/slab.h>
|
|
|
|
static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr);
|
|
|
|
static struct pgt_info *get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
|
|
{
|
|
struct pgt_info *pgt_info = NULL;
|
|
|
|
hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
|
|
(unsigned long) hop_addr)
|
|
if (hop_addr == pgt_info->shadow_addr)
|
|
break;
|
|
|
|
return pgt_info;
|
|
}
|
|
|
|
static void free_hop(struct hl_ctx *ctx, u64 hop_addr)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
|
|
|
|
gen_pool_free(hdev->mmu_pgt_pool, pgt_info->phys_addr,
|
|
hdev->asic_prop.mmu_hop_table_size);
|
|
hash_del(&pgt_info->node);
|
|
kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
|
|
kfree(pgt_info);
|
|
}
|
|
|
|
static u64 alloc_hop(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
struct pgt_info *pgt_info;
|
|
u64 phys_addr, shadow_addr;
|
|
|
|
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
|
|
if (!pgt_info)
|
|
return ULLONG_MAX;
|
|
|
|
phys_addr = (u64) gen_pool_alloc(hdev->mmu_pgt_pool,
|
|
prop->mmu_hop_table_size);
|
|
if (!phys_addr) {
|
|
dev_err(hdev->dev, "failed to allocate page\n");
|
|
goto pool_add_err;
|
|
}
|
|
|
|
shadow_addr = (u64) (uintptr_t) kzalloc(prop->mmu_hop_table_size,
|
|
GFP_KERNEL);
|
|
if (!shadow_addr)
|
|
goto shadow_err;
|
|
|
|
pgt_info->phys_addr = phys_addr;
|
|
pgt_info->shadow_addr = shadow_addr;
|
|
pgt_info->ctx = ctx;
|
|
pgt_info->num_of_ptes = 0;
|
|
hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
|
|
|
|
return shadow_addr;
|
|
|
|
shadow_err:
|
|
gen_pool_free(hdev->mmu_pgt_pool, phys_addr, prop->mmu_hop_table_size);
|
|
pool_add_err:
|
|
kfree(pgt_info);
|
|
|
|
return ULLONG_MAX;
|
|
}
|
|
|
|
static inline u64 get_phys_hop0_addr(struct hl_ctx *ctx)
|
|
{
|
|
return ctx->hdev->asic_prop.mmu_pgt_addr +
|
|
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
|
|
}
|
|
|
|
static inline u64 get_hop0_addr(struct hl_ctx *ctx)
|
|
{
|
|
return (u64) (uintptr_t) ctx->hdev->mmu_shadow_hop0 +
|
|
(ctx->asid * ctx->hdev->asic_prop.mmu_hop_table_size);
|
|
}
|
|
|
|
static inline void flush(struct hl_ctx *ctx)
|
|
{
|
|
/* flush all writes from all cores to reach PCI */
|
|
mb();
|
|
ctx->hdev->asic_funcs->read_pte(ctx->hdev, get_phys_hop0_addr(ctx));
|
|
}
|
|
|
|
/* transform the value to physical address when writing to H/W */
|
|
static inline void write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
|
|
{
|
|
/*
|
|
* The value to write is actually the address of the next shadow hop +
|
|
* flags at the 12 LSBs.
|
|
* Hence in order to get the value to write to the physical PTE, we
|
|
* clear the 12 LSBs and translate the shadow hop to its associated
|
|
* physical hop, and add back the original 12 LSBs.
|
|
*/
|
|
u64 phys_val = get_phys_addr(ctx, val & PTE_PHYS_ADDR_MASK) |
|
|
(val & OFFSET_MASK);
|
|
|
|
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
|
|
get_phys_addr(ctx, shadow_pte_addr),
|
|
phys_val);
|
|
|
|
*(u64 *) (uintptr_t) shadow_pte_addr = val;
|
|
}
|
|
|
|
/* do not transform the value to physical address when writing to H/W */
|
|
static inline void write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr,
|
|
u64 val)
|
|
{
|
|
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
|
|
get_phys_addr(ctx, shadow_pte_addr),
|
|
val);
|
|
*(u64 *) (uintptr_t) shadow_pte_addr = val;
|
|
}
|
|
|
|
/* clear the last and present bits */
|
|
static inline void clear_pte(struct hl_ctx *ctx, u64 pte_addr)
|
|
{
|
|
/* no need to transform the value to physical address */
|
|
write_final_pte(ctx, pte_addr, 0);
|
|
}
|
|
|
|
static inline void get_pte(struct hl_ctx *ctx, u64 hop_addr)
|
|
{
|
|
get_pgt_info(ctx, hop_addr)->num_of_ptes++;
|
|
}
|
|
|
|
/*
|
|
* put_pte - decrement the num of ptes and free the hop if possible
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
* @hop_addr: addr of the hop
|
|
*
|
|
* This function returns the number of ptes left on this hop. If the number is
|
|
* 0, it means the pte was freed.
|
|
*/
|
|
static inline int put_pte(struct hl_ctx *ctx, u64 hop_addr)
|
|
{
|
|
struct pgt_info *pgt_info = get_pgt_info(ctx, hop_addr);
|
|
int num_of_ptes_left;
|
|
|
|
pgt_info->num_of_ptes--;
|
|
|
|
/*
|
|
* Need to save the number of ptes left because free_hop might free
|
|
* the pgt_info
|
|
*/
|
|
num_of_ptes_left = pgt_info->num_of_ptes;
|
|
if (!num_of_ptes_left)
|
|
free_hop(ctx, hop_addr);
|
|
|
|
return num_of_ptes_left;
|
|
}
|
|
|
|
static inline u64 get_hopN_pte_addr(struct hl_ctx *ctx, u64 hop_addr,
|
|
u64 virt_addr, u64 mask, u64 shift)
|
|
{
|
|
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size *
|
|
((virt_addr & mask) >> shift);
|
|
}
|
|
|
|
static inline u64 get_hop0_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
|
|
{
|
|
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP0_MASK, HOP0_SHIFT);
|
|
}
|
|
|
|
static inline u64 get_hop1_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
|
|
{
|
|
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP1_MASK, HOP1_SHIFT);
|
|
}
|
|
|
|
static inline u64 get_hop2_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
|
|
{
|
|
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP2_MASK, HOP2_SHIFT);
|
|
}
|
|
|
|
static inline u64 get_hop3_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
|
|
{
|
|
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP3_MASK, HOP3_SHIFT);
|
|
}
|
|
|
|
static inline u64 get_hop4_pte_addr(struct hl_ctx *ctx, u64 hop_addr, u64 vaddr)
|
|
{
|
|
return get_hopN_pte_addr(ctx, hop_addr, vaddr, HOP4_MASK, HOP4_SHIFT);
|
|
}
|
|
|
|
static inline u64 get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
|
|
{
|
|
if (curr_pte & PAGE_PRESENT_MASK)
|
|
return curr_pte & PHYS_ADDR_MASK;
|
|
else
|
|
return ULLONG_MAX;
|
|
}
|
|
|
|
static inline u64 get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte,
|
|
bool *is_new_hop)
|
|
{
|
|
u64 hop_addr = get_next_hop_addr(ctx, curr_pte);
|
|
|
|
if (hop_addr == ULLONG_MAX) {
|
|
hop_addr = alloc_hop(ctx);
|
|
*is_new_hop = (hop_addr != ULLONG_MAX);
|
|
}
|
|
|
|
return hop_addr;
|
|
}
|
|
|
|
/* translates shadow address inside hop to a physical address */
|
|
static inline u64 get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
|
|
{
|
|
u64 page_mask = (ctx->hdev->asic_prop.mmu_hop_table_size - 1);
|
|
u64 shadow_hop_addr = shadow_addr & ~page_mask;
|
|
u64 pte_offset = shadow_addr & page_mask;
|
|
u64 phys_hop_addr;
|
|
|
|
if (shadow_hop_addr != get_hop0_addr(ctx))
|
|
phys_hop_addr = get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
|
|
else
|
|
phys_hop_addr = get_phys_hop0_addr(ctx);
|
|
|
|
return phys_hop_addr + pte_offset;
|
|
}
|
|
|
|
static int dram_default_mapping_init(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
|
|
hop2_pte_addr, hop3_pte_addr, pte_val;
|
|
int rc, i, j, hop3_allocated = 0;
|
|
|
|
if (!hdev->dram_supports_virtual_memory ||
|
|
!hdev->dram_default_page_mapping)
|
|
return 0;
|
|
|
|
num_of_hop3 = prop->dram_size_for_default_page_mapping;
|
|
do_div(num_of_hop3, prop->dram_page_size);
|
|
do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
|
|
|
|
/* add hop1 and hop2 */
|
|
total_hops = num_of_hop3 + 2;
|
|
|
|
ctx->dram_default_hops = kzalloc(HL_PTE_SIZE * total_hops, GFP_KERNEL);
|
|
if (!ctx->dram_default_hops)
|
|
return -ENOMEM;
|
|
|
|
hop0_addr = get_hop0_addr(ctx);
|
|
|
|
hop1_addr = alloc_hop(ctx);
|
|
if (hop1_addr == ULLONG_MAX) {
|
|
dev_err(hdev->dev, "failed to alloc hop 1\n");
|
|
rc = -ENOMEM;
|
|
goto hop1_err;
|
|
}
|
|
|
|
ctx->dram_default_hops[total_hops - 1] = hop1_addr;
|
|
|
|
hop2_addr = alloc_hop(ctx);
|
|
if (hop2_addr == ULLONG_MAX) {
|
|
dev_err(hdev->dev, "failed to alloc hop 2\n");
|
|
rc = -ENOMEM;
|
|
goto hop2_err;
|
|
}
|
|
|
|
ctx->dram_default_hops[total_hops - 2] = hop2_addr;
|
|
|
|
for (i = 0 ; i < num_of_hop3 ; i++) {
|
|
ctx->dram_default_hops[i] = alloc_hop(ctx);
|
|
if (ctx->dram_default_hops[i] == ULLONG_MAX) {
|
|
dev_err(hdev->dev, "failed to alloc hop 3, i: %d\n", i);
|
|
rc = -ENOMEM;
|
|
goto hop3_err;
|
|
}
|
|
hop3_allocated++;
|
|
}
|
|
|
|
/* need only pte 0 in hops 0 and 1 */
|
|
pte_val = (hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop0_addr, pte_val);
|
|
|
|
pte_val = (hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop1_addr, pte_val);
|
|
get_pte(ctx, hop1_addr);
|
|
|
|
hop2_pte_addr = hop2_addr;
|
|
for (i = 0 ; i < num_of_hop3 ; i++) {
|
|
pte_val = (ctx->dram_default_hops[i] & PTE_PHYS_ADDR_MASK) |
|
|
PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop2_pte_addr, pte_val);
|
|
get_pte(ctx, hop2_addr);
|
|
hop2_pte_addr += HL_PTE_SIZE;
|
|
}
|
|
|
|
pte_val = (prop->mmu_dram_default_page_addr & PTE_PHYS_ADDR_MASK) |
|
|
LAST_MASK | PAGE_PRESENT_MASK;
|
|
|
|
for (i = 0 ; i < num_of_hop3 ; i++) {
|
|
hop3_pte_addr = ctx->dram_default_hops[i];
|
|
for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
|
|
write_final_pte(ctx, hop3_pte_addr, pte_val);
|
|
get_pte(ctx, ctx->dram_default_hops[i]);
|
|
hop3_pte_addr += HL_PTE_SIZE;
|
|
}
|
|
}
|
|
|
|
flush(ctx);
|
|
|
|
return 0;
|
|
|
|
hop3_err:
|
|
for (i = 0 ; i < hop3_allocated ; i++)
|
|
free_hop(ctx, ctx->dram_default_hops[i]);
|
|
|
|
free_hop(ctx, hop2_addr);
|
|
hop2_err:
|
|
free_hop(ctx, hop1_addr);
|
|
hop1_err:
|
|
kfree(ctx->dram_default_hops);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void dram_default_mapping_fini(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 num_of_hop3, total_hops, hop0_addr, hop1_addr, hop2_addr,
|
|
hop2_pte_addr, hop3_pte_addr;
|
|
int i, j;
|
|
|
|
if (!hdev->dram_supports_virtual_memory ||
|
|
!hdev->dram_default_page_mapping)
|
|
return;
|
|
|
|
num_of_hop3 = prop->dram_size_for_default_page_mapping;
|
|
do_div(num_of_hop3, prop->dram_page_size);
|
|
do_div(num_of_hop3, PTE_ENTRIES_IN_HOP);
|
|
|
|
hop0_addr = get_hop0_addr(ctx);
|
|
/* add hop1 and hop2 */
|
|
total_hops = num_of_hop3 + 2;
|
|
hop1_addr = ctx->dram_default_hops[total_hops - 1];
|
|
hop2_addr = ctx->dram_default_hops[total_hops - 2];
|
|
|
|
for (i = 0 ; i < num_of_hop3 ; i++) {
|
|
hop3_pte_addr = ctx->dram_default_hops[i];
|
|
for (j = 0 ; j < PTE_ENTRIES_IN_HOP ; j++) {
|
|
clear_pte(ctx, hop3_pte_addr);
|
|
put_pte(ctx, ctx->dram_default_hops[i]);
|
|
hop3_pte_addr += HL_PTE_SIZE;
|
|
}
|
|
}
|
|
|
|
hop2_pte_addr = hop2_addr;
|
|
hop2_pte_addr = hop2_addr;
|
|
for (i = 0 ; i < num_of_hop3 ; i++) {
|
|
clear_pte(ctx, hop2_pte_addr);
|
|
put_pte(ctx, hop2_addr);
|
|
hop2_pte_addr += HL_PTE_SIZE;
|
|
}
|
|
|
|
clear_pte(ctx, hop1_addr);
|
|
put_pte(ctx, hop1_addr);
|
|
clear_pte(ctx, hop0_addr);
|
|
|
|
kfree(ctx->dram_default_hops);
|
|
|
|
flush(ctx);
|
|
}
|
|
|
|
/**
|
|
* hl_mmu_init() - initialize the MMU module.
|
|
* @hdev: habanalabs device structure.
|
|
*
|
|
* This function does the following:
|
|
* - Allocate max_asid zeroed hop0 pgts so no mapping is available.
|
|
* - Enable MMU in H/W.
|
|
* - Invalidate the MMU cache.
|
|
* - Create a pool of pages for pgt_infos.
|
|
*
|
|
* This function depends on DMA QMAN to be working!
|
|
*
|
|
* Return: 0 for success, non-zero for failure.
|
|
*/
|
|
int hl_mmu_init(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
int rc;
|
|
|
|
if (!hdev->mmu_enable)
|
|
return 0;
|
|
|
|
/* MMU H/W init was already done in device hw_init() */
|
|
|
|
mutex_init(&hdev->mmu_cache_lock);
|
|
|
|
hdev->mmu_pgt_pool =
|
|
gen_pool_create(__ffs(prop->mmu_hop_table_size), -1);
|
|
|
|
if (!hdev->mmu_pgt_pool) {
|
|
dev_err(hdev->dev, "Failed to create page gen pool\n");
|
|
rc = -ENOMEM;
|
|
goto err_pool_create;
|
|
}
|
|
|
|
rc = gen_pool_add(hdev->mmu_pgt_pool, prop->mmu_pgt_addr +
|
|
prop->mmu_hop0_tables_total_size,
|
|
prop->mmu_pgt_size - prop->mmu_hop0_tables_total_size,
|
|
-1);
|
|
if (rc) {
|
|
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
|
|
goto err_pool_add;
|
|
}
|
|
|
|
hdev->mmu_shadow_hop0 = kvmalloc_array(prop->max_asid,
|
|
prop->mmu_hop_table_size,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!hdev->mmu_shadow_hop0) {
|
|
rc = -ENOMEM;
|
|
goto err_pool_add;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_pool_add:
|
|
gen_pool_destroy(hdev->mmu_pgt_pool);
|
|
err_pool_create:
|
|
mutex_destroy(&hdev->mmu_cache_lock);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* hl_mmu_fini() - release the MMU module.
|
|
* @hdev: habanalabs device structure.
|
|
*
|
|
* This function does the following:
|
|
* - Disable MMU in H/W.
|
|
* - Free the pgt_infos pool.
|
|
*
|
|
* All contexts should be freed before calling this function.
|
|
*/
|
|
void hl_mmu_fini(struct hl_device *hdev)
|
|
{
|
|
if (!hdev->mmu_enable)
|
|
return;
|
|
|
|
kvfree(hdev->mmu_shadow_hop0);
|
|
gen_pool_destroy(hdev->mmu_pgt_pool);
|
|
mutex_destroy(&hdev->mmu_cache_lock);
|
|
|
|
/* MMU H/W fini will be done in device hw_fini() */
|
|
}
|
|
|
|
/**
|
|
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
|
|
* @ctx: pointer to the context structure to initialize.
|
|
*
|
|
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
|
|
* page tables hops related to this context.
|
|
* Return: 0 on success, non-zero otherwise.
|
|
*/
|
|
int hl_mmu_ctx_init(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
|
|
if (!hdev->mmu_enable)
|
|
return 0;
|
|
|
|
mutex_init(&ctx->mmu_lock);
|
|
hash_init(ctx->mmu_phys_hash);
|
|
hash_init(ctx->mmu_shadow_hash);
|
|
|
|
return dram_default_mapping_init(ctx);
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
*
|
|
* This function does the following:
|
|
* - Free any pgts which were not freed yet
|
|
* - Free the mutex
|
|
* - Free DRAM default page mapping hops
|
|
*/
|
|
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct pgt_info *pgt_info;
|
|
struct hlist_node *tmp;
|
|
int i;
|
|
|
|
if (!hdev->mmu_enable)
|
|
return;
|
|
|
|
dram_default_mapping_fini(ctx);
|
|
|
|
if (!hash_empty(ctx->mmu_shadow_hash))
|
|
dev_err(hdev->dev, "ctx is freed while it has pgts in use\n");
|
|
|
|
hash_for_each_safe(ctx->mmu_shadow_hash, i, tmp, pgt_info, node) {
|
|
dev_err(hdev->dev,
|
|
"pgt_info of addr 0x%llx of asid %d was not destroyed, num_ptes: %d\n",
|
|
pgt_info->phys_addr, ctx->asid, pgt_info->num_of_ptes);
|
|
free_hop(ctx, pgt_info->shadow_addr);
|
|
}
|
|
|
|
mutex_destroy(&ctx->mmu_lock);
|
|
}
|
|
|
|
static int _hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 hop0_addr = 0, hop0_pte_addr = 0,
|
|
hop1_addr = 0, hop1_pte_addr = 0,
|
|
hop2_addr = 0, hop2_pte_addr = 0,
|
|
hop3_addr = 0, hop3_pte_addr = 0,
|
|
hop4_addr = 0, hop4_pte_addr = 0,
|
|
curr_pte;
|
|
bool is_dram_addr, is_huge, clear_hop3 = true;
|
|
|
|
is_dram_addr = hl_mem_area_inside_range(virt_addr, PAGE_SIZE_2MB,
|
|
prop->va_space_dram_start_address,
|
|
prop->va_space_dram_end_address);
|
|
|
|
hop0_addr = get_hop0_addr(ctx);
|
|
hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr);
|
|
|
|
curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
|
|
|
|
hop1_addr = get_next_hop_addr(ctx, curr_pte);
|
|
|
|
if (hop1_addr == ULLONG_MAX)
|
|
goto not_mapped;
|
|
|
|
hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr);
|
|
|
|
curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
|
|
|
|
hop2_addr = get_next_hop_addr(ctx, curr_pte);
|
|
|
|
if (hop2_addr == ULLONG_MAX)
|
|
goto not_mapped;
|
|
|
|
hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr);
|
|
|
|
curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
|
|
|
|
hop3_addr = get_next_hop_addr(ctx, curr_pte);
|
|
|
|
if (hop3_addr == ULLONG_MAX)
|
|
goto not_mapped;
|
|
|
|
hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr);
|
|
|
|
curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
|
|
|
|
is_huge = curr_pte & LAST_MASK;
|
|
|
|
if (is_dram_addr && !is_huge) {
|
|
dev_err(hdev->dev,
|
|
"DRAM unmapping should use huge pages only\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (!is_huge) {
|
|
hop4_addr = get_next_hop_addr(ctx, curr_pte);
|
|
|
|
if (hop4_addr == ULLONG_MAX)
|
|
goto not_mapped;
|
|
|
|
hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr);
|
|
|
|
curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
|
|
|
|
clear_hop3 = false;
|
|
}
|
|
|
|
if (hdev->dram_default_page_mapping && is_dram_addr) {
|
|
u64 default_pte = (prop->mmu_dram_default_page_addr &
|
|
PTE_PHYS_ADDR_MASK) | LAST_MASK |
|
|
PAGE_PRESENT_MASK;
|
|
if (curr_pte == default_pte) {
|
|
dev_err(hdev->dev,
|
|
"DRAM: hop3 PTE points to zero page, can't unmap, va: 0x%llx\n",
|
|
virt_addr);
|
|
goto not_mapped;
|
|
}
|
|
|
|
if (!(curr_pte & PAGE_PRESENT_MASK)) {
|
|
dev_err(hdev->dev,
|
|
"DRAM: hop3 PTE is cleared! can't unmap, va: 0x%llx\n",
|
|
virt_addr);
|
|
goto not_mapped;
|
|
}
|
|
|
|
write_final_pte(ctx, hop3_pte_addr, default_pte);
|
|
put_pte(ctx, hop3_addr);
|
|
} else {
|
|
if (!(curr_pte & PAGE_PRESENT_MASK))
|
|
goto not_mapped;
|
|
|
|
if (hop4_addr)
|
|
clear_pte(ctx, hop4_pte_addr);
|
|
else
|
|
clear_pte(ctx, hop3_pte_addr);
|
|
|
|
if (hop4_addr && !put_pte(ctx, hop4_addr))
|
|
clear_hop3 = true;
|
|
|
|
if (!clear_hop3)
|
|
goto flush;
|
|
|
|
clear_pte(ctx, hop3_pte_addr);
|
|
|
|
if (put_pte(ctx, hop3_addr))
|
|
goto flush;
|
|
|
|
clear_pte(ctx, hop2_pte_addr);
|
|
|
|
if (put_pte(ctx, hop2_addr))
|
|
goto flush;
|
|
|
|
clear_pte(ctx, hop1_pte_addr);
|
|
|
|
if (put_pte(ctx, hop1_addr))
|
|
goto flush;
|
|
|
|
clear_pte(ctx, hop0_pte_addr);
|
|
}
|
|
|
|
flush:
|
|
flush(ctx);
|
|
|
|
return 0;
|
|
|
|
not_mapped:
|
|
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
|
|
virt_addr);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_unmap - unmaps a virtual addr
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
* @virt_addr: virt addr to map from
|
|
* @page_size: size of the page to unmap
|
|
*
|
|
* This function does the following:
|
|
* - Check that the virt addr is mapped
|
|
* - Unmap the virt addr and frees pgts if possible
|
|
* - Returns 0 on success, -EINVAL if the given addr is not mapped
|
|
*
|
|
* Because this function changes the page tables in the device and because it
|
|
* changes the MMU hash, it must be protected by a lock.
|
|
* However, because it maps only a single page, the lock should be implemented
|
|
* in a higher level in order to protect the entire mapping of the memory area
|
|
*/
|
|
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
u64 real_virt_addr;
|
|
u32 real_page_size, npages;
|
|
int i, rc;
|
|
|
|
if (!hdev->mmu_enable)
|
|
return 0;
|
|
|
|
/*
|
|
* The H/W handles mapping of 4KB/2MB page. Hence if the host page size
|
|
* is bigger, we break it to sub-pages and unmap them separately.
|
|
*/
|
|
if ((page_size % PAGE_SIZE_2MB) == 0) {
|
|
real_page_size = PAGE_SIZE_2MB;
|
|
} else if ((page_size % PAGE_SIZE_4KB) == 0) {
|
|
real_page_size = PAGE_SIZE_4KB;
|
|
} else {
|
|
dev_err(hdev->dev,
|
|
"page size of %u is not 4KB nor 2MB aligned, can't unmap\n",
|
|
page_size);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
npages = page_size / real_page_size;
|
|
real_virt_addr = virt_addr;
|
|
|
|
for (i = 0 ; i < npages ; i++) {
|
|
rc = _hl_mmu_unmap(ctx, real_virt_addr);
|
|
if (rc)
|
|
return rc;
|
|
|
|
real_virt_addr += real_page_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
|
|
u32 page_size)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
struct asic_fixed_properties *prop = &hdev->asic_prop;
|
|
u64 hop0_addr = 0, hop0_pte_addr = 0,
|
|
hop1_addr = 0, hop1_pte_addr = 0,
|
|
hop2_addr = 0, hop2_pte_addr = 0,
|
|
hop3_addr = 0, hop3_pte_addr = 0,
|
|
hop4_addr = 0, hop4_pte_addr = 0,
|
|
curr_pte = 0;
|
|
bool hop1_new = false, hop2_new = false, hop3_new = false,
|
|
hop4_new = false, is_huge, is_dram_addr;
|
|
int rc = -ENOMEM;
|
|
|
|
/*
|
|
* This mapping function can map a 4KB/2MB page. For 2MB page there are
|
|
* only 3 hops rather than 4. Currently the DRAM allocation uses 2MB
|
|
* pages only but user memory could have been allocated with one of the
|
|
* two page sizes. Since this is a common code for all the three cases,
|
|
* we need this hugs page check.
|
|
*/
|
|
is_huge = page_size == PAGE_SIZE_2MB;
|
|
|
|
is_dram_addr = hl_mem_area_inside_range(virt_addr, page_size,
|
|
prop->va_space_dram_start_address,
|
|
prop->va_space_dram_end_address);
|
|
|
|
if (is_dram_addr && !is_huge) {
|
|
dev_err(hdev->dev, "DRAM mapping should use huge pages only\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
hop0_addr = get_hop0_addr(ctx);
|
|
hop0_pte_addr = get_hop0_pte_addr(ctx, hop0_addr, virt_addr);
|
|
curr_pte = *(u64 *) (uintptr_t) hop0_pte_addr;
|
|
|
|
hop1_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop1_new);
|
|
if (hop1_addr == ULLONG_MAX)
|
|
goto err;
|
|
|
|
hop1_pte_addr = get_hop1_pte_addr(ctx, hop1_addr, virt_addr);
|
|
curr_pte = *(u64 *) (uintptr_t) hop1_pte_addr;
|
|
|
|
hop2_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop2_new);
|
|
if (hop2_addr == ULLONG_MAX)
|
|
goto err;
|
|
|
|
hop2_pte_addr = get_hop2_pte_addr(ctx, hop2_addr, virt_addr);
|
|
curr_pte = *(u64 *) (uintptr_t) hop2_pte_addr;
|
|
|
|
hop3_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop3_new);
|
|
if (hop3_addr == ULLONG_MAX)
|
|
goto err;
|
|
|
|
hop3_pte_addr = get_hop3_pte_addr(ctx, hop3_addr, virt_addr);
|
|
curr_pte = *(u64 *) (uintptr_t) hop3_pte_addr;
|
|
|
|
if (!is_huge) {
|
|
hop4_addr = get_alloc_next_hop_addr(ctx, curr_pte, &hop4_new);
|
|
if (hop4_addr == ULLONG_MAX)
|
|
goto err;
|
|
|
|
hop4_pte_addr = get_hop4_pte_addr(ctx, hop4_addr, virt_addr);
|
|
curr_pte = *(u64 *) (uintptr_t) hop4_pte_addr;
|
|
}
|
|
|
|
if (hdev->dram_default_page_mapping && is_dram_addr) {
|
|
u64 default_pte = (prop->mmu_dram_default_page_addr &
|
|
PTE_PHYS_ADDR_MASK) | LAST_MASK |
|
|
PAGE_PRESENT_MASK;
|
|
|
|
if (curr_pte != default_pte) {
|
|
dev_err(hdev->dev,
|
|
"DRAM: mapping already exists for virt_addr 0x%llx\n",
|
|
virt_addr);
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
if (hop1_new || hop2_new || hop3_new || hop4_new) {
|
|
dev_err(hdev->dev,
|
|
"DRAM mapping should not allocate more hops\n");
|
|
rc = -EFAULT;
|
|
goto err;
|
|
}
|
|
} else if (curr_pte & PAGE_PRESENT_MASK) {
|
|
dev_err(hdev->dev,
|
|
"mapping already exists for virt_addr 0x%llx\n",
|
|
virt_addr);
|
|
|
|
dev_dbg(hdev->dev, "hop0 pte: 0x%llx (0x%llx)\n",
|
|
*(u64 *) (uintptr_t) hop0_pte_addr, hop0_pte_addr);
|
|
dev_dbg(hdev->dev, "hop1 pte: 0x%llx (0x%llx)\n",
|
|
*(u64 *) (uintptr_t) hop1_pte_addr, hop1_pte_addr);
|
|
dev_dbg(hdev->dev, "hop2 pte: 0x%llx (0x%llx)\n",
|
|
*(u64 *) (uintptr_t) hop2_pte_addr, hop2_pte_addr);
|
|
dev_dbg(hdev->dev, "hop3 pte: 0x%llx (0x%llx)\n",
|
|
*(u64 *) (uintptr_t) hop3_pte_addr, hop3_pte_addr);
|
|
|
|
if (!is_huge)
|
|
dev_dbg(hdev->dev, "hop4 pte: 0x%llx (0x%llx)\n",
|
|
*(u64 *) (uintptr_t) hop4_pte_addr,
|
|
hop4_pte_addr);
|
|
|
|
rc = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
curr_pte = (phys_addr & PTE_PHYS_ADDR_MASK) | LAST_MASK
|
|
| PAGE_PRESENT_MASK;
|
|
|
|
if (is_huge)
|
|
write_final_pte(ctx, hop3_pte_addr, curr_pte);
|
|
else
|
|
write_final_pte(ctx, hop4_pte_addr, curr_pte);
|
|
|
|
if (hop1_new) {
|
|
curr_pte =
|
|
(hop1_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop0_pte_addr, curr_pte);
|
|
}
|
|
if (hop2_new) {
|
|
curr_pte =
|
|
(hop2_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop1_pte_addr, curr_pte);
|
|
get_pte(ctx, hop1_addr);
|
|
}
|
|
if (hop3_new) {
|
|
curr_pte =
|
|
(hop3_addr & PTE_PHYS_ADDR_MASK) | PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop2_pte_addr, curr_pte);
|
|
get_pte(ctx, hop2_addr);
|
|
}
|
|
|
|
if (!is_huge) {
|
|
if (hop4_new) {
|
|
curr_pte = (hop4_addr & PTE_PHYS_ADDR_MASK) |
|
|
PAGE_PRESENT_MASK;
|
|
write_pte(ctx, hop3_pte_addr, curr_pte);
|
|
get_pte(ctx, hop3_addr);
|
|
}
|
|
|
|
get_pte(ctx, hop4_addr);
|
|
} else {
|
|
get_pte(ctx, hop3_addr);
|
|
}
|
|
|
|
flush(ctx);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
if (hop4_new)
|
|
free_hop(ctx, hop4_addr);
|
|
if (hop3_new)
|
|
free_hop(ctx, hop3_addr);
|
|
if (hop2_new)
|
|
free_hop(ctx, hop2_addr);
|
|
if (hop1_new)
|
|
free_hop(ctx, hop1_addr);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_map - maps a virtual addr to physical addr
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
* @virt_addr: virt addr to map from
|
|
* @phys_addr: phys addr to map to
|
|
* @page_size: physical page size
|
|
*
|
|
* This function does the following:
|
|
* - Check that the virt addr is not mapped
|
|
* - Allocate pgts as necessary in order to map the virt addr to the phys
|
|
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
|
|
*
|
|
* Because this function changes the page tables in the device and because it
|
|
* changes the MMU hash, it must be protected by a lock.
|
|
* However, because it maps only a single page, the lock should be implemented
|
|
* in a higher level in order to protect the entire mapping of the memory area
|
|
*/
|
|
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size)
|
|
{
|
|
struct hl_device *hdev = ctx->hdev;
|
|
u64 real_virt_addr, real_phys_addr;
|
|
u32 real_page_size, npages;
|
|
int i, rc, mapped_cnt = 0;
|
|
|
|
if (!hdev->mmu_enable)
|
|
return 0;
|
|
|
|
/*
|
|
* The H/W handles mapping of 4KB/2MB page. Hence if the host page size
|
|
* is bigger, we break it to sub-pages and map them separately.
|
|
*/
|
|
if ((page_size % PAGE_SIZE_2MB) == 0) {
|
|
real_page_size = PAGE_SIZE_2MB;
|
|
} else if ((page_size % PAGE_SIZE_4KB) == 0) {
|
|
real_page_size = PAGE_SIZE_4KB;
|
|
} else {
|
|
dev_err(hdev->dev,
|
|
"page size of %u is not 4KB nor 2MB aligned, can't map\n",
|
|
page_size);
|
|
|
|
return -EFAULT;
|
|
}
|
|
|
|
npages = page_size / real_page_size;
|
|
real_virt_addr = virt_addr;
|
|
real_phys_addr = phys_addr;
|
|
|
|
for (i = 0 ; i < npages ; i++) {
|
|
rc = _hl_mmu_map(ctx, real_virt_addr, real_phys_addr,
|
|
real_page_size);
|
|
if (rc)
|
|
goto err;
|
|
|
|
real_virt_addr += real_page_size;
|
|
real_phys_addr += real_page_size;
|
|
mapped_cnt++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
real_virt_addr = virt_addr;
|
|
for (i = 0 ; i < mapped_cnt ; i++) {
|
|
if (_hl_mmu_unmap(ctx, real_virt_addr))
|
|
dev_warn_ratelimited(hdev->dev,
|
|
"failed to unmap va: 0x%llx\n", real_virt_addr);
|
|
|
|
real_virt_addr += real_page_size;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
*
|
|
*/
|
|
void hl_mmu_swap_out(struct hl_ctx *ctx)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
|
|
*
|
|
* @ctx: pointer to the context structure
|
|
*
|
|
*/
|
|
void hl_mmu_swap_in(struct hl_ctx *ctx)
|
|
{
|
|
|
|
}
|