mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 04:46:12 +07:00
a685557fbb
Discards issued to a DM thin device can complete to userspace (via fstrim) _before_ the metadata changes associated with the discards is reflected in the thinp superblock (e.g. free blocks). As such, if a user constructs a test that loops repeatedly over these steps, block allocation can fail due to discards not having completed yet: 1) fill thin device via filesystem file 2) remove file 3) fstrim From initial report, here: https://www.redhat.com/archives/dm-devel/2018-April/msg00022.html "The root cause of this issue is that dm-thin will first remove mapping and increase corresponding blocks' reference count to prevent them from being reused before DISCARD bios get processed by the underlying layers. However. increasing blocks' reference count could also increase the nr_allocated_this_transaction in struct sm_disk which makes smd->old_ll.nr_allocated + smd->nr_allocated_this_transaction bigger than smd->old_ll.nr_blocks. In this case, alloc_data_block() will never commit metadata to reset the begin pointer of struct sm_disk, because sm_disk_get_nr_free() always return an underflow value." While there is room for improvement to the space-map accounting that thinp is making use of: the reality is this test is inherently racey and will result in the previous iteration's fstrim's discard(s) completing vs concurrent block allocation, via dd, in the next iteration of the loop. No amount of space map accounting improvements will be able to allow user's to use a block before a discard of that block has completed. So the best we can really do is allow DM thinp to gracefully handle such aggressive use of all the pool's data by degrading the pool into out-of-data-space (OODS) mode. We _should_ get that behaviour already (if space map accounting didn't falsely cause alloc_data_block() to believe free space was available).. but short of that we handle the current reality that dm_pool_alloc_data_block() can return -ENOSPC. Reported-by: Dennis Yang <dennisyang@qnap.com> Cc: stable@vger.kernel.org Signed-off-by: Mike Snitzer <snitzer@redhat.com>
4419 lines
110 KiB
C
4419 lines
110 KiB
C
/*
|
|
* Copyright (C) 2011-2012 Red Hat UK.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-thin-metadata.h"
|
|
#include "dm-bio-prison-v1.h"
|
|
#include "dm.h"
|
|
|
|
#include <linux/device-mapper.h>
|
|
#include <linux/dm-io.h>
|
|
#include <linux/dm-kcopyd.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/list.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rbtree.h>
|
|
|
|
#define DM_MSG_PREFIX "thin"
|
|
|
|
/*
|
|
* Tunable constants
|
|
*/
|
|
#define ENDIO_HOOK_POOL_SIZE 1024
|
|
#define MAPPING_POOL_SIZE 1024
|
|
#define COMMIT_PERIOD HZ
|
|
#define NO_SPACE_TIMEOUT_SECS 60
|
|
|
|
static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
|
|
|
|
DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
|
|
"A percentage of time allocated for copy on write");
|
|
|
|
/*
|
|
* The block size of the device holding pool data must be
|
|
* between 64KB and 1GB.
|
|
*/
|
|
#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
|
|
#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
|
|
|
|
/*
|
|
* Device id is restricted to 24 bits.
|
|
*/
|
|
#define MAX_DEV_ID ((1 << 24) - 1)
|
|
|
|
/*
|
|
* How do we handle breaking sharing of data blocks?
|
|
* =================================================
|
|
*
|
|
* We use a standard copy-on-write btree to store the mappings for the
|
|
* devices (note I'm talking about copy-on-write of the metadata here, not
|
|
* the data). When you take an internal snapshot you clone the root node
|
|
* of the origin btree. After this there is no concept of an origin or a
|
|
* snapshot. They are just two device trees that happen to point to the
|
|
* same data blocks.
|
|
*
|
|
* When we get a write in we decide if it's to a shared data block using
|
|
* some timestamp magic. If it is, we have to break sharing.
|
|
*
|
|
* Let's say we write to a shared block in what was the origin. The
|
|
* steps are:
|
|
*
|
|
* i) plug io further to this physical block. (see bio_prison code).
|
|
*
|
|
* ii) quiesce any read io to that shared data block. Obviously
|
|
* including all devices that share this block. (see dm_deferred_set code)
|
|
*
|
|
* iii) copy the data block to a newly allocate block. This step can be
|
|
* missed out if the io covers the block. (schedule_copy).
|
|
*
|
|
* iv) insert the new mapping into the origin's btree
|
|
* (process_prepared_mapping). This act of inserting breaks some
|
|
* sharing of btree nodes between the two devices. Breaking sharing only
|
|
* effects the btree of that specific device. Btrees for the other
|
|
* devices that share the block never change. The btree for the origin
|
|
* device as it was after the last commit is untouched, ie. we're using
|
|
* persistent data structures in the functional programming sense.
|
|
*
|
|
* v) unplug io to this physical block, including the io that triggered
|
|
* the breaking of sharing.
|
|
*
|
|
* Steps (ii) and (iii) occur in parallel.
|
|
*
|
|
* The metadata _doesn't_ need to be committed before the io continues. We
|
|
* get away with this because the io is always written to a _new_ block.
|
|
* If there's a crash, then:
|
|
*
|
|
* - The origin mapping will point to the old origin block (the shared
|
|
* one). This will contain the data as it was before the io that triggered
|
|
* the breaking of sharing came in.
|
|
*
|
|
* - The snap mapping still points to the old block. As it would after
|
|
* the commit.
|
|
*
|
|
* The downside of this scheme is the timestamp magic isn't perfect, and
|
|
* will continue to think that data block in the snapshot device is shared
|
|
* even after the write to the origin has broken sharing. I suspect data
|
|
* blocks will typically be shared by many different devices, so we're
|
|
* breaking sharing n + 1 times, rather than n, where n is the number of
|
|
* devices that reference this data block. At the moment I think the
|
|
* benefits far, far outweigh the disadvantages.
|
|
*/
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Key building.
|
|
*/
|
|
enum lock_space {
|
|
VIRTUAL,
|
|
PHYSICAL
|
|
};
|
|
|
|
static void build_key(struct dm_thin_device *td, enum lock_space ls,
|
|
dm_block_t b, dm_block_t e, struct dm_cell_key *key)
|
|
{
|
|
key->virtual = (ls == VIRTUAL);
|
|
key->dev = dm_thin_dev_id(td);
|
|
key->block_begin = b;
|
|
key->block_end = e;
|
|
}
|
|
|
|
static void build_data_key(struct dm_thin_device *td, dm_block_t b,
|
|
struct dm_cell_key *key)
|
|
{
|
|
build_key(td, PHYSICAL, b, b + 1llu, key);
|
|
}
|
|
|
|
static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
|
|
struct dm_cell_key *key)
|
|
{
|
|
build_key(td, VIRTUAL, b, b + 1llu, key);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
#define THROTTLE_THRESHOLD (1 * HZ)
|
|
|
|
struct throttle {
|
|
struct rw_semaphore lock;
|
|
unsigned long threshold;
|
|
bool throttle_applied;
|
|
};
|
|
|
|
static void throttle_init(struct throttle *t)
|
|
{
|
|
init_rwsem(&t->lock);
|
|
t->throttle_applied = false;
|
|
}
|
|
|
|
static void throttle_work_start(struct throttle *t)
|
|
{
|
|
t->threshold = jiffies + THROTTLE_THRESHOLD;
|
|
}
|
|
|
|
static void throttle_work_update(struct throttle *t)
|
|
{
|
|
if (!t->throttle_applied && jiffies > t->threshold) {
|
|
down_write(&t->lock);
|
|
t->throttle_applied = true;
|
|
}
|
|
}
|
|
|
|
static void throttle_work_complete(struct throttle *t)
|
|
{
|
|
if (t->throttle_applied) {
|
|
t->throttle_applied = false;
|
|
up_write(&t->lock);
|
|
}
|
|
}
|
|
|
|
static void throttle_lock(struct throttle *t)
|
|
{
|
|
down_read(&t->lock);
|
|
}
|
|
|
|
static void throttle_unlock(struct throttle *t)
|
|
{
|
|
up_read(&t->lock);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* A pool device ties together a metadata device and a data device. It
|
|
* also provides the interface for creating and destroying internal
|
|
* devices.
|
|
*/
|
|
struct dm_thin_new_mapping;
|
|
|
|
/*
|
|
* The pool runs in 4 modes. Ordered in degraded order for comparisons.
|
|
*/
|
|
enum pool_mode {
|
|
PM_WRITE, /* metadata may be changed */
|
|
PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
|
|
PM_READ_ONLY, /* metadata may not be changed */
|
|
PM_FAIL, /* all I/O fails */
|
|
};
|
|
|
|
struct pool_features {
|
|
enum pool_mode mode;
|
|
|
|
bool zero_new_blocks:1;
|
|
bool discard_enabled:1;
|
|
bool discard_passdown:1;
|
|
bool error_if_no_space:1;
|
|
};
|
|
|
|
struct thin_c;
|
|
typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
|
|
typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
|
|
typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
|
|
|
|
#define CELL_SORT_ARRAY_SIZE 8192
|
|
|
|
struct pool {
|
|
struct list_head list;
|
|
struct dm_target *ti; /* Only set if a pool target is bound */
|
|
|
|
struct mapped_device *pool_md;
|
|
struct block_device *md_dev;
|
|
struct dm_pool_metadata *pmd;
|
|
|
|
dm_block_t low_water_blocks;
|
|
uint32_t sectors_per_block;
|
|
int sectors_per_block_shift;
|
|
|
|
struct pool_features pf;
|
|
bool low_water_triggered:1; /* A dm event has been sent */
|
|
bool suspended:1;
|
|
bool out_of_data_space:1;
|
|
|
|
struct dm_bio_prison *prison;
|
|
struct dm_kcopyd_client *copier;
|
|
|
|
struct work_struct worker;
|
|
struct workqueue_struct *wq;
|
|
struct throttle throttle;
|
|
struct delayed_work waker;
|
|
struct delayed_work no_space_timeout;
|
|
|
|
unsigned long last_commit_jiffies;
|
|
unsigned ref_count;
|
|
|
|
spinlock_t lock;
|
|
struct bio_list deferred_flush_bios;
|
|
struct list_head prepared_mappings;
|
|
struct list_head prepared_discards;
|
|
struct list_head prepared_discards_pt2;
|
|
struct list_head active_thins;
|
|
|
|
struct dm_deferred_set *shared_read_ds;
|
|
struct dm_deferred_set *all_io_ds;
|
|
|
|
struct dm_thin_new_mapping *next_mapping;
|
|
|
|
process_bio_fn process_bio;
|
|
process_bio_fn process_discard;
|
|
|
|
process_cell_fn process_cell;
|
|
process_cell_fn process_discard_cell;
|
|
|
|
process_mapping_fn process_prepared_mapping;
|
|
process_mapping_fn process_prepared_discard;
|
|
process_mapping_fn process_prepared_discard_pt2;
|
|
|
|
struct dm_bio_prison_cell **cell_sort_array;
|
|
|
|
mempool_t mapping_pool;
|
|
};
|
|
|
|
static enum pool_mode get_pool_mode(struct pool *pool);
|
|
static void metadata_operation_failed(struct pool *pool, const char *op, int r);
|
|
|
|
/*
|
|
* Target context for a pool.
|
|
*/
|
|
struct pool_c {
|
|
struct dm_target *ti;
|
|
struct pool *pool;
|
|
struct dm_dev *data_dev;
|
|
struct dm_dev *metadata_dev;
|
|
struct dm_target_callbacks callbacks;
|
|
|
|
dm_block_t low_water_blocks;
|
|
struct pool_features requested_pf; /* Features requested during table load */
|
|
struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
|
|
};
|
|
|
|
/*
|
|
* Target context for a thin.
|
|
*/
|
|
struct thin_c {
|
|
struct list_head list;
|
|
struct dm_dev *pool_dev;
|
|
struct dm_dev *origin_dev;
|
|
sector_t origin_size;
|
|
dm_thin_id dev_id;
|
|
|
|
struct pool *pool;
|
|
struct dm_thin_device *td;
|
|
struct mapped_device *thin_md;
|
|
|
|
bool requeue_mode:1;
|
|
spinlock_t lock;
|
|
struct list_head deferred_cells;
|
|
struct bio_list deferred_bio_list;
|
|
struct bio_list retry_on_resume_list;
|
|
struct rb_root sort_bio_list; /* sorted list of deferred bios */
|
|
|
|
/*
|
|
* Ensures the thin is not destroyed until the worker has finished
|
|
* iterating the active_thins list.
|
|
*/
|
|
atomic_t refcount;
|
|
struct completion can_destroy;
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static bool block_size_is_power_of_two(struct pool *pool)
|
|
{
|
|
return pool->sectors_per_block_shift >= 0;
|
|
}
|
|
|
|
static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
|
|
{
|
|
return block_size_is_power_of_two(pool) ?
|
|
(b << pool->sectors_per_block_shift) :
|
|
(b * pool->sectors_per_block);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct discard_op {
|
|
struct thin_c *tc;
|
|
struct blk_plug plug;
|
|
struct bio *parent_bio;
|
|
struct bio *bio;
|
|
};
|
|
|
|
static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
|
|
{
|
|
BUG_ON(!parent);
|
|
|
|
op->tc = tc;
|
|
blk_start_plug(&op->plug);
|
|
op->parent_bio = parent;
|
|
op->bio = NULL;
|
|
}
|
|
|
|
static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
|
|
{
|
|
struct thin_c *tc = op->tc;
|
|
sector_t s = block_to_sectors(tc->pool, data_b);
|
|
sector_t len = block_to_sectors(tc->pool, data_e - data_b);
|
|
|
|
return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
|
|
GFP_NOWAIT, 0, &op->bio);
|
|
}
|
|
|
|
static void end_discard(struct discard_op *op, int r)
|
|
{
|
|
if (op->bio) {
|
|
/*
|
|
* Even if one of the calls to issue_discard failed, we
|
|
* need to wait for the chain to complete.
|
|
*/
|
|
bio_chain(op->bio, op->parent_bio);
|
|
bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
|
|
submit_bio(op->bio);
|
|
}
|
|
|
|
blk_finish_plug(&op->plug);
|
|
|
|
/*
|
|
* Even if r is set, there could be sub discards in flight that we
|
|
* need to wait for.
|
|
*/
|
|
if (r && !op->parent_bio->bi_status)
|
|
op->parent_bio->bi_status = errno_to_blk_status(r);
|
|
bio_endio(op->parent_bio);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* wake_worker() is used when new work is queued and when pool_resume is
|
|
* ready to continue deferred IO processing.
|
|
*/
|
|
static void wake_worker(struct pool *pool)
|
|
{
|
|
queue_work(pool->wq, &pool->worker);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
|
|
struct dm_bio_prison_cell **cell_result)
|
|
{
|
|
int r;
|
|
struct dm_bio_prison_cell *cell_prealloc;
|
|
|
|
/*
|
|
* Allocate a cell from the prison's mempool.
|
|
* This might block but it can't fail.
|
|
*/
|
|
cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
|
|
|
|
r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
|
|
if (r)
|
|
/*
|
|
* We reused an old cell; we can get rid of
|
|
* the new one.
|
|
*/
|
|
dm_bio_prison_free_cell(pool->prison, cell_prealloc);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void cell_release(struct pool *pool,
|
|
struct dm_bio_prison_cell *cell,
|
|
struct bio_list *bios)
|
|
{
|
|
dm_cell_release(pool->prison, cell, bios);
|
|
dm_bio_prison_free_cell(pool->prison, cell);
|
|
}
|
|
|
|
static void cell_visit_release(struct pool *pool,
|
|
void (*fn)(void *, struct dm_bio_prison_cell *),
|
|
void *context,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
dm_cell_visit_release(pool->prison, fn, context, cell);
|
|
dm_bio_prison_free_cell(pool->prison, cell);
|
|
}
|
|
|
|
static void cell_release_no_holder(struct pool *pool,
|
|
struct dm_bio_prison_cell *cell,
|
|
struct bio_list *bios)
|
|
{
|
|
dm_cell_release_no_holder(pool->prison, cell, bios);
|
|
dm_bio_prison_free_cell(pool->prison, cell);
|
|
}
|
|
|
|
static void cell_error_with_code(struct pool *pool,
|
|
struct dm_bio_prison_cell *cell, blk_status_t error_code)
|
|
{
|
|
dm_cell_error(pool->prison, cell, error_code);
|
|
dm_bio_prison_free_cell(pool->prison, cell);
|
|
}
|
|
|
|
static blk_status_t get_pool_io_error_code(struct pool *pool)
|
|
{
|
|
return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
|
|
}
|
|
|
|
static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
|
|
{
|
|
cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
|
|
}
|
|
|
|
static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
|
|
{
|
|
cell_error_with_code(pool, cell, 0);
|
|
}
|
|
|
|
static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
|
|
{
|
|
cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* A global list of pools that uses a struct mapped_device as a key.
|
|
*/
|
|
static struct dm_thin_pool_table {
|
|
struct mutex mutex;
|
|
struct list_head pools;
|
|
} dm_thin_pool_table;
|
|
|
|
static void pool_table_init(void)
|
|
{
|
|
mutex_init(&dm_thin_pool_table.mutex);
|
|
INIT_LIST_HEAD(&dm_thin_pool_table.pools);
|
|
}
|
|
|
|
static void pool_table_exit(void)
|
|
{
|
|
mutex_destroy(&dm_thin_pool_table.mutex);
|
|
}
|
|
|
|
static void __pool_table_insert(struct pool *pool)
|
|
{
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
list_add(&pool->list, &dm_thin_pool_table.pools);
|
|
}
|
|
|
|
static void __pool_table_remove(struct pool *pool)
|
|
{
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
list_del(&pool->list);
|
|
}
|
|
|
|
static struct pool *__pool_table_lookup(struct mapped_device *md)
|
|
{
|
|
struct pool *pool = NULL, *tmp;
|
|
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
|
|
list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
|
|
if (tmp->pool_md == md) {
|
|
pool = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
|
|
static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
|
|
{
|
|
struct pool *pool = NULL, *tmp;
|
|
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
|
|
list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
|
|
if (tmp->md_dev == md_dev) {
|
|
pool = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct dm_thin_endio_hook {
|
|
struct thin_c *tc;
|
|
struct dm_deferred_entry *shared_read_entry;
|
|
struct dm_deferred_entry *all_io_entry;
|
|
struct dm_thin_new_mapping *overwrite_mapping;
|
|
struct rb_node rb_node;
|
|
struct dm_bio_prison_cell *cell;
|
|
};
|
|
|
|
static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
|
|
{
|
|
bio_list_merge(bios, master);
|
|
bio_list_init(master);
|
|
}
|
|
|
|
static void error_bio_list(struct bio_list *bios, blk_status_t error)
|
|
{
|
|
struct bio *bio;
|
|
|
|
while ((bio = bio_list_pop(bios))) {
|
|
bio->bi_status = error;
|
|
bio_endio(bio);
|
|
}
|
|
}
|
|
|
|
static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
|
|
blk_status_t error)
|
|
{
|
|
struct bio_list bios;
|
|
unsigned long flags;
|
|
|
|
bio_list_init(&bios);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
__merge_bio_list(&bios, master);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
error_bio_list(&bios, error);
|
|
}
|
|
|
|
static void requeue_deferred_cells(struct thin_c *tc)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
unsigned long flags;
|
|
struct list_head cells;
|
|
struct dm_bio_prison_cell *cell, *tmp;
|
|
|
|
INIT_LIST_HEAD(&cells);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
list_splice_init(&tc->deferred_cells, &cells);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
list_for_each_entry_safe(cell, tmp, &cells, user_list)
|
|
cell_requeue(pool, cell);
|
|
}
|
|
|
|
static void requeue_io(struct thin_c *tc)
|
|
{
|
|
struct bio_list bios;
|
|
unsigned long flags;
|
|
|
|
bio_list_init(&bios);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
__merge_bio_list(&bios, &tc->deferred_bio_list);
|
|
__merge_bio_list(&bios, &tc->retry_on_resume_list);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
error_bio_list(&bios, BLK_STS_DM_REQUEUE);
|
|
requeue_deferred_cells(tc);
|
|
}
|
|
|
|
static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
|
|
{
|
|
struct thin_c *tc;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(tc, &pool->active_thins, list)
|
|
error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void error_retry_list(struct pool *pool)
|
|
{
|
|
error_retry_list_with_code(pool, get_pool_io_error_code(pool));
|
|
}
|
|
|
|
/*
|
|
* This section of code contains the logic for processing a thin device's IO.
|
|
* Much of the code depends on pool object resources (lists, workqueues, etc)
|
|
* but most is exclusively called from the thin target rather than the thin-pool
|
|
* target.
|
|
*/
|
|
|
|
static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
sector_t block_nr = bio->bi_iter.bi_sector;
|
|
|
|
if (block_size_is_power_of_two(pool))
|
|
block_nr >>= pool->sectors_per_block_shift;
|
|
else
|
|
(void) sector_div(block_nr, pool->sectors_per_block);
|
|
|
|
return block_nr;
|
|
}
|
|
|
|
/*
|
|
* Returns the _complete_ blocks that this bio covers.
|
|
*/
|
|
static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
|
|
dm_block_t *begin, dm_block_t *end)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
sector_t b = bio->bi_iter.bi_sector;
|
|
sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
|
|
|
|
b += pool->sectors_per_block - 1ull; /* so we round up */
|
|
|
|
if (block_size_is_power_of_two(pool)) {
|
|
b >>= pool->sectors_per_block_shift;
|
|
e >>= pool->sectors_per_block_shift;
|
|
} else {
|
|
(void) sector_div(b, pool->sectors_per_block);
|
|
(void) sector_div(e, pool->sectors_per_block);
|
|
}
|
|
|
|
if (e < b)
|
|
/* Can happen if the bio is within a single block. */
|
|
e = b;
|
|
|
|
*begin = b;
|
|
*end = e;
|
|
}
|
|
|
|
static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
sector_t bi_sector = bio->bi_iter.bi_sector;
|
|
|
|
bio_set_dev(bio, tc->pool_dev->bdev);
|
|
if (block_size_is_power_of_two(pool))
|
|
bio->bi_iter.bi_sector =
|
|
(block << pool->sectors_per_block_shift) |
|
|
(bi_sector & (pool->sectors_per_block - 1));
|
|
else
|
|
bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
|
|
sector_div(bi_sector, pool->sectors_per_block);
|
|
}
|
|
|
|
static void remap_to_origin(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
bio_set_dev(bio, tc->origin_dev->bdev);
|
|
}
|
|
|
|
static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
return op_is_flush(bio->bi_opf) &&
|
|
dm_thin_changed_this_transaction(tc->td);
|
|
}
|
|
|
|
static void inc_all_io_entry(struct pool *pool, struct bio *bio)
|
|
{
|
|
struct dm_thin_endio_hook *h;
|
|
|
|
if (bio_op(bio) == REQ_OP_DISCARD)
|
|
return;
|
|
|
|
h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
|
|
}
|
|
|
|
static void issue(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
unsigned long flags;
|
|
|
|
if (!bio_triggers_commit(tc, bio)) {
|
|
generic_make_request(bio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Complete bio with an error if earlier I/O caused changes to
|
|
* the metadata that can't be committed e.g, due to I/O errors
|
|
* on the metadata device.
|
|
*/
|
|
if (dm_thin_aborted_changes(tc->td)) {
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Batch together any bios that trigger commits and then issue a
|
|
* single commit for them in process_deferred_bios().
|
|
*/
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
bio_list_add(&pool->deferred_flush_bios, bio);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
remap_to_origin(tc, bio);
|
|
issue(tc, bio);
|
|
}
|
|
|
|
static void remap_and_issue(struct thin_c *tc, struct bio *bio,
|
|
dm_block_t block)
|
|
{
|
|
remap(tc, bio, block);
|
|
issue(tc, bio);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Bio endio functions.
|
|
*/
|
|
struct dm_thin_new_mapping {
|
|
struct list_head list;
|
|
|
|
bool pass_discard:1;
|
|
bool maybe_shared:1;
|
|
|
|
/*
|
|
* Track quiescing, copying and zeroing preparation actions. When this
|
|
* counter hits zero the block is prepared and can be inserted into the
|
|
* btree.
|
|
*/
|
|
atomic_t prepare_actions;
|
|
|
|
blk_status_t status;
|
|
struct thin_c *tc;
|
|
dm_block_t virt_begin, virt_end;
|
|
dm_block_t data_block;
|
|
struct dm_bio_prison_cell *cell;
|
|
|
|
/*
|
|
* If the bio covers the whole area of a block then we can avoid
|
|
* zeroing or copying. Instead this bio is hooked. The bio will
|
|
* still be in the cell, so care has to be taken to avoid issuing
|
|
* the bio twice.
|
|
*/
|
|
struct bio *bio;
|
|
bio_end_io_t *saved_bi_end_io;
|
|
};
|
|
|
|
static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
|
|
{
|
|
struct pool *pool = m->tc->pool;
|
|
|
|
if (atomic_dec_and_test(&m->prepare_actions)) {
|
|
list_add_tail(&m->list, &pool->prepared_mappings);
|
|
wake_worker(pool);
|
|
}
|
|
}
|
|
|
|
static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
|
|
{
|
|
unsigned long flags;
|
|
struct pool *pool = m->tc->pool;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
__complete_mapping_preparation(m);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
static void copy_complete(int read_err, unsigned long write_err, void *context)
|
|
{
|
|
struct dm_thin_new_mapping *m = context;
|
|
|
|
m->status = read_err || write_err ? BLK_STS_IOERR : 0;
|
|
complete_mapping_preparation(m);
|
|
}
|
|
|
|
static void overwrite_endio(struct bio *bio)
|
|
{
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
struct dm_thin_new_mapping *m = h->overwrite_mapping;
|
|
|
|
bio->bi_end_io = m->saved_bi_end_io;
|
|
|
|
m->status = bio->bi_status;
|
|
complete_mapping_preparation(m);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Workqueue.
|
|
*/
|
|
|
|
/*
|
|
* Prepared mapping jobs.
|
|
*/
|
|
|
|
/*
|
|
* This sends the bios in the cell, except the original holder, back
|
|
* to the deferred_bios list.
|
|
*/
|
|
static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
wake_worker(pool);
|
|
}
|
|
|
|
static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
|
|
|
|
struct remap_info {
|
|
struct thin_c *tc;
|
|
struct bio_list defer_bios;
|
|
struct bio_list issue_bios;
|
|
};
|
|
|
|
static void __inc_remap_and_issue_cell(void *context,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
struct remap_info *info = context;
|
|
struct bio *bio;
|
|
|
|
while ((bio = bio_list_pop(&cell->bios))) {
|
|
if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
|
|
bio_list_add(&info->defer_bios, bio);
|
|
else {
|
|
inc_all_io_entry(info->tc->pool, bio);
|
|
|
|
/*
|
|
* We can't issue the bios with the bio prison lock
|
|
* held, so we add them to a list to issue on
|
|
* return from this function.
|
|
*/
|
|
bio_list_add(&info->issue_bios, bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void inc_remap_and_issue_cell(struct thin_c *tc,
|
|
struct dm_bio_prison_cell *cell,
|
|
dm_block_t block)
|
|
{
|
|
struct bio *bio;
|
|
struct remap_info info;
|
|
|
|
info.tc = tc;
|
|
bio_list_init(&info.defer_bios);
|
|
bio_list_init(&info.issue_bios);
|
|
|
|
/*
|
|
* We have to be careful to inc any bios we're about to issue
|
|
* before the cell is released, and avoid a race with new bios
|
|
* being added to the cell.
|
|
*/
|
|
cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
|
|
&info, cell);
|
|
|
|
while ((bio = bio_list_pop(&info.defer_bios)))
|
|
thin_defer_bio(tc, bio);
|
|
|
|
while ((bio = bio_list_pop(&info.issue_bios)))
|
|
remap_and_issue(info.tc, bio, block);
|
|
}
|
|
|
|
static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
|
|
{
|
|
cell_error(m->tc->pool, m->cell);
|
|
list_del(&m->list);
|
|
mempool_free(m, &m->tc->pool->mapping_pool);
|
|
}
|
|
|
|
static void process_prepared_mapping(struct dm_thin_new_mapping *m)
|
|
{
|
|
struct thin_c *tc = m->tc;
|
|
struct pool *pool = tc->pool;
|
|
struct bio *bio = m->bio;
|
|
int r;
|
|
|
|
if (m->status) {
|
|
cell_error(pool, m->cell);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Commit the prepared block into the mapping btree.
|
|
* Any I/O for this block arriving after this point will get
|
|
* remapped to it directly.
|
|
*/
|
|
r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_thin_insert_block", r);
|
|
cell_error(pool, m->cell);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Release any bios held while the block was being provisioned.
|
|
* If we are processing a write bio that completely covers the block,
|
|
* we already processed it so can ignore it now when processing
|
|
* the bios in the cell.
|
|
*/
|
|
if (bio) {
|
|
inc_remap_and_issue_cell(tc, m->cell, m->data_block);
|
|
bio_endio(bio);
|
|
} else {
|
|
inc_all_io_entry(tc->pool, m->cell->holder);
|
|
remap_and_issue(tc, m->cell->holder, m->data_block);
|
|
inc_remap_and_issue_cell(tc, m->cell, m->data_block);
|
|
}
|
|
|
|
out:
|
|
list_del(&m->list);
|
|
mempool_free(m, &pool->mapping_pool);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static void free_discard_mapping(struct dm_thin_new_mapping *m)
|
|
{
|
|
struct thin_c *tc = m->tc;
|
|
if (m->cell)
|
|
cell_defer_no_holder(tc, m->cell);
|
|
mempool_free(m, &tc->pool->mapping_pool);
|
|
}
|
|
|
|
static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
|
|
{
|
|
bio_io_error(m->bio);
|
|
free_discard_mapping(m);
|
|
}
|
|
|
|
static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
|
|
{
|
|
bio_endio(m->bio);
|
|
free_discard_mapping(m);
|
|
}
|
|
|
|
static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
|
|
{
|
|
int r;
|
|
struct thin_c *tc = m->tc;
|
|
|
|
r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
|
|
if (r) {
|
|
metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
|
|
bio_io_error(m->bio);
|
|
} else
|
|
bio_endio(m->bio);
|
|
|
|
cell_defer_no_holder(tc, m->cell);
|
|
mempool_free(m, &tc->pool->mapping_pool);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
|
|
struct bio *discard_parent)
|
|
{
|
|
/*
|
|
* We've already unmapped this range of blocks, but before we
|
|
* passdown we have to check that these blocks are now unused.
|
|
*/
|
|
int r = 0;
|
|
bool used = true;
|
|
struct thin_c *tc = m->tc;
|
|
struct pool *pool = tc->pool;
|
|
dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
|
|
struct discard_op op;
|
|
|
|
begin_discard(&op, tc, discard_parent);
|
|
while (b != end) {
|
|
/* find start of unmapped run */
|
|
for (; b < end; b++) {
|
|
r = dm_pool_block_is_used(pool->pmd, b, &used);
|
|
if (r)
|
|
goto out;
|
|
|
|
if (!used)
|
|
break;
|
|
}
|
|
|
|
if (b == end)
|
|
break;
|
|
|
|
/* find end of run */
|
|
for (e = b + 1; e != end; e++) {
|
|
r = dm_pool_block_is_used(pool->pmd, e, &used);
|
|
if (r)
|
|
goto out;
|
|
|
|
if (used)
|
|
break;
|
|
}
|
|
|
|
r = issue_discard(&op, b, e);
|
|
if (r)
|
|
goto out;
|
|
|
|
b = e;
|
|
}
|
|
out:
|
|
end_discard(&op, r);
|
|
}
|
|
|
|
static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
|
|
{
|
|
unsigned long flags;
|
|
struct pool *pool = m->tc->pool;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
list_add_tail(&m->list, &pool->prepared_discards_pt2);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
wake_worker(pool);
|
|
}
|
|
|
|
static void passdown_endio(struct bio *bio)
|
|
{
|
|
/*
|
|
* It doesn't matter if the passdown discard failed, we still want
|
|
* to unmap (we ignore err).
|
|
*/
|
|
queue_passdown_pt2(bio->bi_private);
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
|
|
{
|
|
int r;
|
|
struct thin_c *tc = m->tc;
|
|
struct pool *pool = tc->pool;
|
|
struct bio *discard_parent;
|
|
dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
|
|
|
|
/*
|
|
* Only this thread allocates blocks, so we can be sure that the
|
|
* newly unmapped blocks will not be allocated before the end of
|
|
* the function.
|
|
*/
|
|
r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_thin_remove_range", r);
|
|
bio_io_error(m->bio);
|
|
cell_defer_no_holder(tc, m->cell);
|
|
mempool_free(m, &pool->mapping_pool);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Increment the unmapped blocks. This prevents a race between the
|
|
* passdown io and reallocation of freed blocks.
|
|
*/
|
|
r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
|
|
bio_io_error(m->bio);
|
|
cell_defer_no_holder(tc, m->cell);
|
|
mempool_free(m, &pool->mapping_pool);
|
|
return;
|
|
}
|
|
|
|
discard_parent = bio_alloc(GFP_NOIO, 1);
|
|
if (!discard_parent) {
|
|
DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
|
|
dm_device_name(tc->pool->pool_md));
|
|
queue_passdown_pt2(m);
|
|
|
|
} else {
|
|
discard_parent->bi_end_io = passdown_endio;
|
|
discard_parent->bi_private = m;
|
|
|
|
if (m->maybe_shared)
|
|
passdown_double_checking_shared_status(m, discard_parent);
|
|
else {
|
|
struct discard_op op;
|
|
|
|
begin_discard(&op, tc, discard_parent);
|
|
r = issue_discard(&op, m->data_block, data_end);
|
|
end_discard(&op, r);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
|
|
{
|
|
int r;
|
|
struct thin_c *tc = m->tc;
|
|
struct pool *pool = tc->pool;
|
|
|
|
/*
|
|
* The passdown has completed, so now we can decrement all those
|
|
* unmapped blocks.
|
|
*/
|
|
r = dm_pool_dec_data_range(pool->pmd, m->data_block,
|
|
m->data_block + (m->virt_end - m->virt_begin));
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
|
|
bio_io_error(m->bio);
|
|
} else
|
|
bio_endio(m->bio);
|
|
|
|
cell_defer_no_holder(tc, m->cell);
|
|
mempool_free(m, &pool->mapping_pool);
|
|
}
|
|
|
|
static void process_prepared(struct pool *pool, struct list_head *head,
|
|
process_mapping_fn *fn)
|
|
{
|
|
unsigned long flags;
|
|
struct list_head maps;
|
|
struct dm_thin_new_mapping *m, *tmp;
|
|
|
|
INIT_LIST_HEAD(&maps);
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
list_splice_init(head, &maps);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
list_for_each_entry_safe(m, tmp, &maps, list)
|
|
(*fn)(m);
|
|
}
|
|
|
|
/*
|
|
* Deferred bio jobs.
|
|
*/
|
|
static int io_overlaps_block(struct pool *pool, struct bio *bio)
|
|
{
|
|
return bio->bi_iter.bi_size ==
|
|
(pool->sectors_per_block << SECTOR_SHIFT);
|
|
}
|
|
|
|
static int io_overwrites_block(struct pool *pool, struct bio *bio)
|
|
{
|
|
return (bio_data_dir(bio) == WRITE) &&
|
|
io_overlaps_block(pool, bio);
|
|
}
|
|
|
|
static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
|
|
bio_end_io_t *fn)
|
|
{
|
|
*save = bio->bi_end_io;
|
|
bio->bi_end_io = fn;
|
|
}
|
|
|
|
static int ensure_next_mapping(struct pool *pool)
|
|
{
|
|
if (pool->next_mapping)
|
|
return 0;
|
|
|
|
pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
|
|
|
|
return pool->next_mapping ? 0 : -ENOMEM;
|
|
}
|
|
|
|
static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
|
|
{
|
|
struct dm_thin_new_mapping *m = pool->next_mapping;
|
|
|
|
BUG_ON(!pool->next_mapping);
|
|
|
|
memset(m, 0, sizeof(struct dm_thin_new_mapping));
|
|
INIT_LIST_HEAD(&m->list);
|
|
m->bio = NULL;
|
|
|
|
pool->next_mapping = NULL;
|
|
|
|
return m;
|
|
}
|
|
|
|
static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
|
|
sector_t begin, sector_t end)
|
|
{
|
|
int r;
|
|
struct dm_io_region to;
|
|
|
|
to.bdev = tc->pool_dev->bdev;
|
|
to.sector = begin;
|
|
to.count = end - begin;
|
|
|
|
r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
|
|
if (r < 0) {
|
|
DMERR_LIMIT("dm_kcopyd_zero() failed");
|
|
copy_complete(1, 1, m);
|
|
}
|
|
}
|
|
|
|
static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
|
|
dm_block_t data_begin,
|
|
struct dm_thin_new_mapping *m)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
|
|
h->overwrite_mapping = m;
|
|
m->bio = bio;
|
|
save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
|
|
inc_all_io_entry(pool, bio);
|
|
remap_and_issue(tc, bio, data_begin);
|
|
}
|
|
|
|
/*
|
|
* A partial copy also needs to zero the uncopied region.
|
|
*/
|
|
static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
|
|
struct dm_dev *origin, dm_block_t data_origin,
|
|
dm_block_t data_dest,
|
|
struct dm_bio_prison_cell *cell, struct bio *bio,
|
|
sector_t len)
|
|
{
|
|
int r;
|
|
struct pool *pool = tc->pool;
|
|
struct dm_thin_new_mapping *m = get_next_mapping(pool);
|
|
|
|
m->tc = tc;
|
|
m->virt_begin = virt_block;
|
|
m->virt_end = virt_block + 1u;
|
|
m->data_block = data_dest;
|
|
m->cell = cell;
|
|
|
|
/*
|
|
* quiesce action + copy action + an extra reference held for the
|
|
* duration of this function (we may need to inc later for a
|
|
* partial zero).
|
|
*/
|
|
atomic_set(&m->prepare_actions, 3);
|
|
|
|
if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
|
|
complete_mapping_preparation(m); /* already quiesced */
|
|
|
|
/*
|
|
* IO to pool_dev remaps to the pool target's data_dev.
|
|
*
|
|
* If the whole block of data is being overwritten, we can issue the
|
|
* bio immediately. Otherwise we use kcopyd to clone the data first.
|
|
*/
|
|
if (io_overwrites_block(pool, bio))
|
|
remap_and_issue_overwrite(tc, bio, data_dest, m);
|
|
else {
|
|
struct dm_io_region from, to;
|
|
|
|
from.bdev = origin->bdev;
|
|
from.sector = data_origin * pool->sectors_per_block;
|
|
from.count = len;
|
|
|
|
to.bdev = tc->pool_dev->bdev;
|
|
to.sector = data_dest * pool->sectors_per_block;
|
|
to.count = len;
|
|
|
|
r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
|
|
0, copy_complete, m);
|
|
if (r < 0) {
|
|
DMERR_LIMIT("dm_kcopyd_copy() failed");
|
|
copy_complete(1, 1, m);
|
|
|
|
/*
|
|
* We allow the zero to be issued, to simplify the
|
|
* error path. Otherwise we'd need to start
|
|
* worrying about decrementing the prepare_actions
|
|
* counter.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Do we need to zero a tail region?
|
|
*/
|
|
if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
|
|
atomic_inc(&m->prepare_actions);
|
|
ll_zero(tc, m,
|
|
data_dest * pool->sectors_per_block + len,
|
|
(data_dest + 1) * pool->sectors_per_block);
|
|
}
|
|
}
|
|
|
|
complete_mapping_preparation(m); /* drop our ref */
|
|
}
|
|
|
|
static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
|
|
dm_block_t data_origin, dm_block_t data_dest,
|
|
struct dm_bio_prison_cell *cell, struct bio *bio)
|
|
{
|
|
schedule_copy(tc, virt_block, tc->pool_dev,
|
|
data_origin, data_dest, cell, bio,
|
|
tc->pool->sectors_per_block);
|
|
}
|
|
|
|
static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
|
|
dm_block_t data_block, struct dm_bio_prison_cell *cell,
|
|
struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
struct dm_thin_new_mapping *m = get_next_mapping(pool);
|
|
|
|
atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
|
|
m->tc = tc;
|
|
m->virt_begin = virt_block;
|
|
m->virt_end = virt_block + 1u;
|
|
m->data_block = data_block;
|
|
m->cell = cell;
|
|
|
|
/*
|
|
* If the whole block of data is being overwritten or we are not
|
|
* zeroing pre-existing data, we can issue the bio immediately.
|
|
* Otherwise we use kcopyd to zero the data first.
|
|
*/
|
|
if (pool->pf.zero_new_blocks) {
|
|
if (io_overwrites_block(pool, bio))
|
|
remap_and_issue_overwrite(tc, bio, data_block, m);
|
|
else
|
|
ll_zero(tc, m, data_block * pool->sectors_per_block,
|
|
(data_block + 1) * pool->sectors_per_block);
|
|
} else
|
|
process_prepared_mapping(m);
|
|
}
|
|
|
|
static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
|
|
dm_block_t data_dest,
|
|
struct dm_bio_prison_cell *cell, struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
sector_t virt_block_begin = virt_block * pool->sectors_per_block;
|
|
sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
|
|
|
|
if (virt_block_end <= tc->origin_size)
|
|
schedule_copy(tc, virt_block, tc->origin_dev,
|
|
virt_block, data_dest, cell, bio,
|
|
pool->sectors_per_block);
|
|
|
|
else if (virt_block_begin < tc->origin_size)
|
|
schedule_copy(tc, virt_block, tc->origin_dev,
|
|
virt_block, data_dest, cell, bio,
|
|
tc->origin_size - virt_block_begin);
|
|
|
|
else
|
|
schedule_zero(tc, virt_block, data_dest, cell, bio);
|
|
}
|
|
|
|
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
|
|
|
|
static void requeue_bios(struct pool *pool);
|
|
|
|
static void check_for_space(struct pool *pool)
|
|
{
|
|
int r;
|
|
dm_block_t nr_free;
|
|
|
|
if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
|
|
return;
|
|
|
|
r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
|
|
if (r)
|
|
return;
|
|
|
|
if (nr_free) {
|
|
set_pool_mode(pool, PM_WRITE);
|
|
requeue_bios(pool);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A non-zero return indicates read_only or fail_io mode.
|
|
* Many callers don't care about the return value.
|
|
*/
|
|
static int commit(struct pool *pool)
|
|
{
|
|
int r;
|
|
|
|
if (get_pool_mode(pool) >= PM_READ_ONLY)
|
|
return -EINVAL;
|
|
|
|
r = dm_pool_commit_metadata(pool->pmd);
|
|
if (r)
|
|
metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
|
|
else
|
|
check_for_space(pool);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
|
|
DMWARN("%s: reached low water mark for data device: sending event.",
|
|
dm_device_name(pool->pool_md));
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
pool->low_water_triggered = true;
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
dm_table_event(pool->ti->table);
|
|
}
|
|
}
|
|
|
|
static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
|
|
{
|
|
int r;
|
|
dm_block_t free_blocks;
|
|
struct pool *pool = tc->pool;
|
|
|
|
if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
|
|
return -EINVAL;
|
|
|
|
r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
|
|
return r;
|
|
}
|
|
|
|
check_low_water_mark(pool, free_blocks);
|
|
|
|
if (!free_blocks) {
|
|
/*
|
|
* Try to commit to see if that will free up some
|
|
* more space.
|
|
*/
|
|
r = commit(pool);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
|
|
return r;
|
|
}
|
|
|
|
if (!free_blocks) {
|
|
set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
|
|
return -ENOSPC;
|
|
}
|
|
}
|
|
|
|
r = dm_pool_alloc_data_block(pool->pmd, result);
|
|
if (r) {
|
|
if (r == -ENOSPC)
|
|
set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
|
|
else
|
|
metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we have run out of space, queue bios until the device is
|
|
* resumed, presumably after having been reloaded with more space.
|
|
*/
|
|
static void retry_on_resume(struct bio *bio)
|
|
{
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
struct thin_c *tc = h->tc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
bio_list_add(&tc->retry_on_resume_list, bio);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
}
|
|
|
|
static blk_status_t should_error_unserviceable_bio(struct pool *pool)
|
|
{
|
|
enum pool_mode m = get_pool_mode(pool);
|
|
|
|
switch (m) {
|
|
case PM_WRITE:
|
|
/* Shouldn't get here */
|
|
DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
|
|
return BLK_STS_IOERR;
|
|
|
|
case PM_OUT_OF_DATA_SPACE:
|
|
return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
|
|
|
|
case PM_READ_ONLY:
|
|
case PM_FAIL:
|
|
return BLK_STS_IOERR;
|
|
default:
|
|
/* Shouldn't get here */
|
|
DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
|
|
return BLK_STS_IOERR;
|
|
}
|
|
}
|
|
|
|
static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
|
|
{
|
|
blk_status_t error = should_error_unserviceable_bio(pool);
|
|
|
|
if (error) {
|
|
bio->bi_status = error;
|
|
bio_endio(bio);
|
|
} else
|
|
retry_on_resume(bio);
|
|
}
|
|
|
|
static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
|
|
{
|
|
struct bio *bio;
|
|
struct bio_list bios;
|
|
blk_status_t error;
|
|
|
|
error = should_error_unserviceable_bio(pool);
|
|
if (error) {
|
|
cell_error_with_code(pool, cell, error);
|
|
return;
|
|
}
|
|
|
|
bio_list_init(&bios);
|
|
cell_release(pool, cell, &bios);
|
|
|
|
while ((bio = bio_list_pop(&bios)))
|
|
retry_on_resume(bio);
|
|
}
|
|
|
|
static void process_discard_cell_no_passdown(struct thin_c *tc,
|
|
struct dm_bio_prison_cell *virt_cell)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
struct dm_thin_new_mapping *m = get_next_mapping(pool);
|
|
|
|
/*
|
|
* We don't need to lock the data blocks, since there's no
|
|
* passdown. We only lock data blocks for allocation and breaking sharing.
|
|
*/
|
|
m->tc = tc;
|
|
m->virt_begin = virt_cell->key.block_begin;
|
|
m->virt_end = virt_cell->key.block_end;
|
|
m->cell = virt_cell;
|
|
m->bio = virt_cell->holder;
|
|
|
|
if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
|
|
pool->process_prepared_discard(m);
|
|
}
|
|
|
|
static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
|
|
struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
|
|
int r;
|
|
bool maybe_shared;
|
|
struct dm_cell_key data_key;
|
|
struct dm_bio_prison_cell *data_cell;
|
|
struct dm_thin_new_mapping *m;
|
|
dm_block_t virt_begin, virt_end, data_begin;
|
|
|
|
while (begin != end) {
|
|
r = ensure_next_mapping(pool);
|
|
if (r)
|
|
/* we did our best */
|
|
return;
|
|
|
|
r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
|
|
&data_begin, &maybe_shared);
|
|
if (r)
|
|
/*
|
|
* Silently fail, letting any mappings we've
|
|
* created complete.
|
|
*/
|
|
break;
|
|
|
|
build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
|
|
if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
|
|
/* contention, we'll give up with this range */
|
|
begin = virt_end;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* IO may still be going to the destination block. We must
|
|
* quiesce before we can do the removal.
|
|
*/
|
|
m = get_next_mapping(pool);
|
|
m->tc = tc;
|
|
m->maybe_shared = maybe_shared;
|
|
m->virt_begin = virt_begin;
|
|
m->virt_end = virt_end;
|
|
m->data_block = data_begin;
|
|
m->cell = data_cell;
|
|
m->bio = bio;
|
|
|
|
/*
|
|
* The parent bio must not complete before sub discard bios are
|
|
* chained to it (see end_discard's bio_chain)!
|
|
*
|
|
* This per-mapping bi_remaining increment is paired with
|
|
* the implicit decrement that occurs via bio_endio() in
|
|
* end_discard().
|
|
*/
|
|
bio_inc_remaining(bio);
|
|
if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
|
|
pool->process_prepared_discard(m);
|
|
|
|
begin = virt_end;
|
|
}
|
|
}
|
|
|
|
static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
|
|
{
|
|
struct bio *bio = virt_cell->holder;
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
|
|
/*
|
|
* The virt_cell will only get freed once the origin bio completes.
|
|
* This means it will remain locked while all the individual
|
|
* passdown bios are in flight.
|
|
*/
|
|
h->cell = virt_cell;
|
|
break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
|
|
|
|
/*
|
|
* We complete the bio now, knowing that the bi_remaining field
|
|
* will prevent completion until the sub range discards have
|
|
* completed.
|
|
*/
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void process_discard_bio(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
dm_block_t begin, end;
|
|
struct dm_cell_key virt_key;
|
|
struct dm_bio_prison_cell *virt_cell;
|
|
|
|
get_bio_block_range(tc, bio, &begin, &end);
|
|
if (begin == end) {
|
|
/*
|
|
* The discard covers less than a block.
|
|
*/
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
build_key(tc->td, VIRTUAL, begin, end, &virt_key);
|
|
if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
|
|
/*
|
|
* Potential starvation issue: We're relying on the
|
|
* fs/application being well behaved, and not trying to
|
|
* send IO to a region at the same time as discarding it.
|
|
* If they do this persistently then it's possible this
|
|
* cell will never be granted.
|
|
*/
|
|
return;
|
|
|
|
tc->pool->process_discard_cell(tc, virt_cell);
|
|
}
|
|
|
|
static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
|
|
struct dm_cell_key *key,
|
|
struct dm_thin_lookup_result *lookup_result,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
int r;
|
|
dm_block_t data_block;
|
|
struct pool *pool = tc->pool;
|
|
|
|
r = alloc_data_block(tc, &data_block);
|
|
switch (r) {
|
|
case 0:
|
|
schedule_internal_copy(tc, block, lookup_result->block,
|
|
data_block, cell, bio);
|
|
break;
|
|
|
|
case -ENOSPC:
|
|
retry_bios_on_resume(pool, cell);
|
|
break;
|
|
|
|
default:
|
|
DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
|
|
__func__, r);
|
|
cell_error(pool, cell);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void __remap_and_issue_shared_cell(void *context,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
struct remap_info *info = context;
|
|
struct bio *bio;
|
|
|
|
while ((bio = bio_list_pop(&cell->bios))) {
|
|
if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
|
|
bio_op(bio) == REQ_OP_DISCARD)
|
|
bio_list_add(&info->defer_bios, bio);
|
|
else {
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
|
|
h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
|
|
inc_all_io_entry(info->tc->pool, bio);
|
|
bio_list_add(&info->issue_bios, bio);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void remap_and_issue_shared_cell(struct thin_c *tc,
|
|
struct dm_bio_prison_cell *cell,
|
|
dm_block_t block)
|
|
{
|
|
struct bio *bio;
|
|
struct remap_info info;
|
|
|
|
info.tc = tc;
|
|
bio_list_init(&info.defer_bios);
|
|
bio_list_init(&info.issue_bios);
|
|
|
|
cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
|
|
&info, cell);
|
|
|
|
while ((bio = bio_list_pop(&info.defer_bios)))
|
|
thin_defer_bio(tc, bio);
|
|
|
|
while ((bio = bio_list_pop(&info.issue_bios)))
|
|
remap_and_issue(tc, bio, block);
|
|
}
|
|
|
|
static void process_shared_bio(struct thin_c *tc, struct bio *bio,
|
|
dm_block_t block,
|
|
struct dm_thin_lookup_result *lookup_result,
|
|
struct dm_bio_prison_cell *virt_cell)
|
|
{
|
|
struct dm_bio_prison_cell *data_cell;
|
|
struct pool *pool = tc->pool;
|
|
struct dm_cell_key key;
|
|
|
|
/*
|
|
* If cell is already occupied, then sharing is already in the process
|
|
* of being broken so we have nothing further to do here.
|
|
*/
|
|
build_data_key(tc->td, lookup_result->block, &key);
|
|
if (bio_detain(pool, &key, bio, &data_cell)) {
|
|
cell_defer_no_holder(tc, virt_cell);
|
|
return;
|
|
}
|
|
|
|
if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
|
|
break_sharing(tc, bio, block, &key, lookup_result, data_cell);
|
|
cell_defer_no_holder(tc, virt_cell);
|
|
} else {
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
|
|
h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
|
|
inc_all_io_entry(pool, bio);
|
|
remap_and_issue(tc, bio, lookup_result->block);
|
|
|
|
remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
|
|
remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
|
|
}
|
|
}
|
|
|
|
static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
int r;
|
|
dm_block_t data_block;
|
|
struct pool *pool = tc->pool;
|
|
|
|
/*
|
|
* Remap empty bios (flushes) immediately, without provisioning.
|
|
*/
|
|
if (!bio->bi_iter.bi_size) {
|
|
inc_all_io_entry(pool, bio);
|
|
cell_defer_no_holder(tc, cell);
|
|
|
|
remap_and_issue(tc, bio, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fill read bios with zeroes and complete them immediately.
|
|
*/
|
|
if (bio_data_dir(bio) == READ) {
|
|
zero_fill_bio(bio);
|
|
cell_defer_no_holder(tc, cell);
|
|
bio_endio(bio);
|
|
return;
|
|
}
|
|
|
|
r = alloc_data_block(tc, &data_block);
|
|
switch (r) {
|
|
case 0:
|
|
if (tc->origin_dev)
|
|
schedule_external_copy(tc, block, data_block, cell, bio);
|
|
else
|
|
schedule_zero(tc, block, data_block, cell, bio);
|
|
break;
|
|
|
|
case -ENOSPC:
|
|
retry_bios_on_resume(pool, cell);
|
|
break;
|
|
|
|
default:
|
|
DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
|
|
__func__, r);
|
|
cell_error(pool, cell);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
int r;
|
|
struct pool *pool = tc->pool;
|
|
struct bio *bio = cell->holder;
|
|
dm_block_t block = get_bio_block(tc, bio);
|
|
struct dm_thin_lookup_result lookup_result;
|
|
|
|
if (tc->requeue_mode) {
|
|
cell_requeue(pool, cell);
|
|
return;
|
|
}
|
|
|
|
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
|
|
switch (r) {
|
|
case 0:
|
|
if (lookup_result.shared)
|
|
process_shared_bio(tc, bio, block, &lookup_result, cell);
|
|
else {
|
|
inc_all_io_entry(pool, bio);
|
|
remap_and_issue(tc, bio, lookup_result.block);
|
|
inc_remap_and_issue_cell(tc, cell, lookup_result.block);
|
|
}
|
|
break;
|
|
|
|
case -ENODATA:
|
|
if (bio_data_dir(bio) == READ && tc->origin_dev) {
|
|
inc_all_io_entry(pool, bio);
|
|
cell_defer_no_holder(tc, cell);
|
|
|
|
if (bio_end_sector(bio) <= tc->origin_size)
|
|
remap_to_origin_and_issue(tc, bio);
|
|
|
|
else if (bio->bi_iter.bi_sector < tc->origin_size) {
|
|
zero_fill_bio(bio);
|
|
bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
|
|
remap_to_origin_and_issue(tc, bio);
|
|
|
|
} else {
|
|
zero_fill_bio(bio);
|
|
bio_endio(bio);
|
|
}
|
|
} else
|
|
provision_block(tc, bio, block, cell);
|
|
break;
|
|
|
|
default:
|
|
DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
|
|
__func__, r);
|
|
cell_defer_no_holder(tc, cell);
|
|
bio_io_error(bio);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void process_bio(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
dm_block_t block = get_bio_block(tc, bio);
|
|
struct dm_bio_prison_cell *cell;
|
|
struct dm_cell_key key;
|
|
|
|
/*
|
|
* If cell is already occupied, then the block is already
|
|
* being provisioned so we have nothing further to do here.
|
|
*/
|
|
build_virtual_key(tc->td, block, &key);
|
|
if (bio_detain(pool, &key, bio, &cell))
|
|
return;
|
|
|
|
process_cell(tc, cell);
|
|
}
|
|
|
|
static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
|
|
struct dm_bio_prison_cell *cell)
|
|
{
|
|
int r;
|
|
int rw = bio_data_dir(bio);
|
|
dm_block_t block = get_bio_block(tc, bio);
|
|
struct dm_thin_lookup_result lookup_result;
|
|
|
|
r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
|
|
switch (r) {
|
|
case 0:
|
|
if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
|
|
handle_unserviceable_bio(tc->pool, bio);
|
|
if (cell)
|
|
cell_defer_no_holder(tc, cell);
|
|
} else {
|
|
inc_all_io_entry(tc->pool, bio);
|
|
remap_and_issue(tc, bio, lookup_result.block);
|
|
if (cell)
|
|
inc_remap_and_issue_cell(tc, cell, lookup_result.block);
|
|
}
|
|
break;
|
|
|
|
case -ENODATA:
|
|
if (cell)
|
|
cell_defer_no_holder(tc, cell);
|
|
if (rw != READ) {
|
|
handle_unserviceable_bio(tc->pool, bio);
|
|
break;
|
|
}
|
|
|
|
if (tc->origin_dev) {
|
|
inc_all_io_entry(tc->pool, bio);
|
|
remap_to_origin_and_issue(tc, bio);
|
|
break;
|
|
}
|
|
|
|
zero_fill_bio(bio);
|
|
bio_endio(bio);
|
|
break;
|
|
|
|
default:
|
|
DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
|
|
__func__, r);
|
|
if (cell)
|
|
cell_defer_no_holder(tc, cell);
|
|
bio_io_error(bio);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
__process_bio_read_only(tc, bio, NULL);
|
|
}
|
|
|
|
static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
__process_bio_read_only(tc, cell->holder, cell);
|
|
}
|
|
|
|
static void process_bio_success(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
bio_endio(bio);
|
|
}
|
|
|
|
static void process_bio_fail(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
bio_io_error(bio);
|
|
}
|
|
|
|
static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
cell_success(tc->pool, cell);
|
|
}
|
|
|
|
static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
cell_error(tc->pool, cell);
|
|
}
|
|
|
|
/*
|
|
* FIXME: should we also commit due to size of transaction, measured in
|
|
* metadata blocks?
|
|
*/
|
|
static int need_commit_due_to_time(struct pool *pool)
|
|
{
|
|
return !time_in_range(jiffies, pool->last_commit_jiffies,
|
|
pool->last_commit_jiffies + COMMIT_PERIOD);
|
|
}
|
|
|
|
#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
|
|
#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
|
|
|
|
static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct rb_node **rbp, *parent;
|
|
struct dm_thin_endio_hook *pbd;
|
|
sector_t bi_sector = bio->bi_iter.bi_sector;
|
|
|
|
rbp = &tc->sort_bio_list.rb_node;
|
|
parent = NULL;
|
|
while (*rbp) {
|
|
parent = *rbp;
|
|
pbd = thin_pbd(parent);
|
|
|
|
if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
|
|
rbp = &(*rbp)->rb_left;
|
|
else
|
|
rbp = &(*rbp)->rb_right;
|
|
}
|
|
|
|
pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
rb_link_node(&pbd->rb_node, parent, rbp);
|
|
rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
|
|
}
|
|
|
|
static void __extract_sorted_bios(struct thin_c *tc)
|
|
{
|
|
struct rb_node *node;
|
|
struct dm_thin_endio_hook *pbd;
|
|
struct bio *bio;
|
|
|
|
for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
|
|
pbd = thin_pbd(node);
|
|
bio = thin_bio(pbd);
|
|
|
|
bio_list_add(&tc->deferred_bio_list, bio);
|
|
rb_erase(&pbd->rb_node, &tc->sort_bio_list);
|
|
}
|
|
|
|
WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
|
|
}
|
|
|
|
static void __sort_thin_deferred_bios(struct thin_c *tc)
|
|
{
|
|
struct bio *bio;
|
|
struct bio_list bios;
|
|
|
|
bio_list_init(&bios);
|
|
bio_list_merge(&bios, &tc->deferred_bio_list);
|
|
bio_list_init(&tc->deferred_bio_list);
|
|
|
|
/* Sort deferred_bio_list using rb-tree */
|
|
while ((bio = bio_list_pop(&bios)))
|
|
__thin_bio_rb_add(tc, bio);
|
|
|
|
/*
|
|
* Transfer the sorted bios in sort_bio_list back to
|
|
* deferred_bio_list to allow lockless submission of
|
|
* all bios.
|
|
*/
|
|
__extract_sorted_bios(tc);
|
|
}
|
|
|
|
static void process_thin_deferred_bios(struct thin_c *tc)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
unsigned long flags;
|
|
struct bio *bio;
|
|
struct bio_list bios;
|
|
struct blk_plug plug;
|
|
unsigned count = 0;
|
|
|
|
if (tc->requeue_mode) {
|
|
error_thin_bio_list(tc, &tc->deferred_bio_list,
|
|
BLK_STS_DM_REQUEUE);
|
|
return;
|
|
}
|
|
|
|
bio_list_init(&bios);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
|
|
if (bio_list_empty(&tc->deferred_bio_list)) {
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
return;
|
|
}
|
|
|
|
__sort_thin_deferred_bios(tc);
|
|
|
|
bio_list_merge(&bios, &tc->deferred_bio_list);
|
|
bio_list_init(&tc->deferred_bio_list);
|
|
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
blk_start_plug(&plug);
|
|
while ((bio = bio_list_pop(&bios))) {
|
|
/*
|
|
* If we've got no free new_mapping structs, and processing
|
|
* this bio might require one, we pause until there are some
|
|
* prepared mappings to process.
|
|
*/
|
|
if (ensure_next_mapping(pool)) {
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
bio_list_add(&tc->deferred_bio_list, bio);
|
|
bio_list_merge(&tc->deferred_bio_list, &bios);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
break;
|
|
}
|
|
|
|
if (bio_op(bio) == REQ_OP_DISCARD)
|
|
pool->process_discard(tc, bio);
|
|
else
|
|
pool->process_bio(tc, bio);
|
|
|
|
if ((count++ & 127) == 0) {
|
|
throttle_work_update(&pool->throttle);
|
|
dm_pool_issue_prefetches(pool->pmd);
|
|
}
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static int cmp_cells(const void *lhs, const void *rhs)
|
|
{
|
|
struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
|
|
struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
|
|
|
|
BUG_ON(!lhs_cell->holder);
|
|
BUG_ON(!rhs_cell->holder);
|
|
|
|
if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
|
|
return -1;
|
|
|
|
if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned sort_cells(struct pool *pool, struct list_head *cells)
|
|
{
|
|
unsigned count = 0;
|
|
struct dm_bio_prison_cell *cell, *tmp;
|
|
|
|
list_for_each_entry_safe(cell, tmp, cells, user_list) {
|
|
if (count >= CELL_SORT_ARRAY_SIZE)
|
|
break;
|
|
|
|
pool->cell_sort_array[count++] = cell;
|
|
list_del(&cell->user_list);
|
|
}
|
|
|
|
sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
|
|
|
|
return count;
|
|
}
|
|
|
|
static void process_thin_deferred_cells(struct thin_c *tc)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
unsigned long flags;
|
|
struct list_head cells;
|
|
struct dm_bio_prison_cell *cell;
|
|
unsigned i, j, count;
|
|
|
|
INIT_LIST_HEAD(&cells);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
list_splice_init(&tc->deferred_cells, &cells);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
if (list_empty(&cells))
|
|
return;
|
|
|
|
do {
|
|
count = sort_cells(tc->pool, &cells);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
cell = pool->cell_sort_array[i];
|
|
BUG_ON(!cell->holder);
|
|
|
|
/*
|
|
* If we've got no free new_mapping structs, and processing
|
|
* this bio might require one, we pause until there are some
|
|
* prepared mappings to process.
|
|
*/
|
|
if (ensure_next_mapping(pool)) {
|
|
for (j = i; j < count; j++)
|
|
list_add(&pool->cell_sort_array[j]->user_list, &cells);
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
list_splice(&cells, &tc->deferred_cells);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
return;
|
|
}
|
|
|
|
if (bio_op(cell->holder) == REQ_OP_DISCARD)
|
|
pool->process_discard_cell(tc, cell);
|
|
else
|
|
pool->process_cell(tc, cell);
|
|
}
|
|
} while (!list_empty(&cells));
|
|
}
|
|
|
|
static void thin_get(struct thin_c *tc);
|
|
static void thin_put(struct thin_c *tc);
|
|
|
|
/*
|
|
* We can't hold rcu_read_lock() around code that can block. So we
|
|
* find a thin with the rcu lock held; bump a refcount; then drop
|
|
* the lock.
|
|
*/
|
|
static struct thin_c *get_first_thin(struct pool *pool)
|
|
{
|
|
struct thin_c *tc = NULL;
|
|
|
|
rcu_read_lock();
|
|
if (!list_empty(&pool->active_thins)) {
|
|
tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
|
|
thin_get(tc);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return tc;
|
|
}
|
|
|
|
static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
|
|
{
|
|
struct thin_c *old_tc = tc;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
|
|
thin_get(tc);
|
|
thin_put(old_tc);
|
|
rcu_read_unlock();
|
|
return tc;
|
|
}
|
|
thin_put(old_tc);
|
|
rcu_read_unlock();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void process_deferred_bios(struct pool *pool)
|
|
{
|
|
unsigned long flags;
|
|
struct bio *bio;
|
|
struct bio_list bios;
|
|
struct thin_c *tc;
|
|
|
|
tc = get_first_thin(pool);
|
|
while (tc) {
|
|
process_thin_deferred_cells(tc);
|
|
process_thin_deferred_bios(tc);
|
|
tc = get_next_thin(pool, tc);
|
|
}
|
|
|
|
/*
|
|
* If there are any deferred flush bios, we must commit
|
|
* the metadata before issuing them.
|
|
*/
|
|
bio_list_init(&bios);
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
bio_list_merge(&bios, &pool->deferred_flush_bios);
|
|
bio_list_init(&pool->deferred_flush_bios);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
if (bio_list_empty(&bios) &&
|
|
!(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
|
|
return;
|
|
|
|
if (commit(pool)) {
|
|
while ((bio = bio_list_pop(&bios)))
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
pool->last_commit_jiffies = jiffies;
|
|
|
|
while ((bio = bio_list_pop(&bios)))
|
|
generic_make_request(bio);
|
|
}
|
|
|
|
static void do_worker(struct work_struct *ws)
|
|
{
|
|
struct pool *pool = container_of(ws, struct pool, worker);
|
|
|
|
throttle_work_start(&pool->throttle);
|
|
dm_pool_issue_prefetches(pool->pmd);
|
|
throttle_work_update(&pool->throttle);
|
|
process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
|
|
throttle_work_update(&pool->throttle);
|
|
process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
|
|
throttle_work_update(&pool->throttle);
|
|
process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
|
|
throttle_work_update(&pool->throttle);
|
|
process_deferred_bios(pool);
|
|
throttle_work_complete(&pool->throttle);
|
|
}
|
|
|
|
/*
|
|
* We want to commit periodically so that not too much
|
|
* unwritten data builds up.
|
|
*/
|
|
static void do_waker(struct work_struct *ws)
|
|
{
|
|
struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
|
|
wake_worker(pool);
|
|
queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
|
|
}
|
|
|
|
static void notify_of_pool_mode_change_to_oods(struct pool *pool);
|
|
|
|
/*
|
|
* We're holding onto IO to allow userland time to react. After the
|
|
* timeout either the pool will have been resized (and thus back in
|
|
* PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
|
|
*/
|
|
static void do_no_space_timeout(struct work_struct *ws)
|
|
{
|
|
struct pool *pool = container_of(to_delayed_work(ws), struct pool,
|
|
no_space_timeout);
|
|
|
|
if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
|
|
pool->pf.error_if_no_space = true;
|
|
notify_of_pool_mode_change_to_oods(pool);
|
|
error_retry_list_with_code(pool, BLK_STS_NOSPC);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct pool_work {
|
|
struct work_struct worker;
|
|
struct completion complete;
|
|
};
|
|
|
|
static struct pool_work *to_pool_work(struct work_struct *ws)
|
|
{
|
|
return container_of(ws, struct pool_work, worker);
|
|
}
|
|
|
|
static void pool_work_complete(struct pool_work *pw)
|
|
{
|
|
complete(&pw->complete);
|
|
}
|
|
|
|
static void pool_work_wait(struct pool_work *pw, struct pool *pool,
|
|
void (*fn)(struct work_struct *))
|
|
{
|
|
INIT_WORK_ONSTACK(&pw->worker, fn);
|
|
init_completion(&pw->complete);
|
|
queue_work(pool->wq, &pw->worker);
|
|
wait_for_completion(&pw->complete);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
struct noflush_work {
|
|
struct pool_work pw;
|
|
struct thin_c *tc;
|
|
};
|
|
|
|
static struct noflush_work *to_noflush(struct work_struct *ws)
|
|
{
|
|
return container_of(to_pool_work(ws), struct noflush_work, pw);
|
|
}
|
|
|
|
static void do_noflush_start(struct work_struct *ws)
|
|
{
|
|
struct noflush_work *w = to_noflush(ws);
|
|
w->tc->requeue_mode = true;
|
|
requeue_io(w->tc);
|
|
pool_work_complete(&w->pw);
|
|
}
|
|
|
|
static void do_noflush_stop(struct work_struct *ws)
|
|
{
|
|
struct noflush_work *w = to_noflush(ws);
|
|
w->tc->requeue_mode = false;
|
|
pool_work_complete(&w->pw);
|
|
}
|
|
|
|
static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
|
|
{
|
|
struct noflush_work w;
|
|
|
|
w.tc = tc;
|
|
pool_work_wait(&w.pw, tc->pool, fn);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static enum pool_mode get_pool_mode(struct pool *pool)
|
|
{
|
|
return pool->pf.mode;
|
|
}
|
|
|
|
static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
|
|
{
|
|
dm_table_event(pool->ti->table);
|
|
DMINFO("%s: switching pool to %s mode",
|
|
dm_device_name(pool->pool_md), new_mode);
|
|
}
|
|
|
|
static void notify_of_pool_mode_change_to_oods(struct pool *pool)
|
|
{
|
|
if (!pool->pf.error_if_no_space)
|
|
notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
|
|
else
|
|
notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
|
|
}
|
|
|
|
static bool passdown_enabled(struct pool_c *pt)
|
|
{
|
|
return pt->adjusted_pf.discard_passdown;
|
|
}
|
|
|
|
static void set_discard_callbacks(struct pool *pool)
|
|
{
|
|
struct pool_c *pt = pool->ti->private;
|
|
|
|
if (passdown_enabled(pt)) {
|
|
pool->process_discard_cell = process_discard_cell_passdown;
|
|
pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
|
|
pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
|
|
} else {
|
|
pool->process_discard_cell = process_discard_cell_no_passdown;
|
|
pool->process_prepared_discard = process_prepared_discard_no_passdown;
|
|
}
|
|
}
|
|
|
|
static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
|
|
{
|
|
struct pool_c *pt = pool->ti->private;
|
|
bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
|
|
enum pool_mode old_mode = get_pool_mode(pool);
|
|
unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
|
|
|
|
/*
|
|
* Never allow the pool to transition to PM_WRITE mode if user
|
|
* intervention is required to verify metadata and data consistency.
|
|
*/
|
|
if (new_mode == PM_WRITE && needs_check) {
|
|
DMERR("%s: unable to switch pool to write mode until repaired.",
|
|
dm_device_name(pool->pool_md));
|
|
if (old_mode != new_mode)
|
|
new_mode = old_mode;
|
|
else
|
|
new_mode = PM_READ_ONLY;
|
|
}
|
|
/*
|
|
* If we were in PM_FAIL mode, rollback of metadata failed. We're
|
|
* not going to recover without a thin_repair. So we never let the
|
|
* pool move out of the old mode.
|
|
*/
|
|
if (old_mode == PM_FAIL)
|
|
new_mode = old_mode;
|
|
|
|
switch (new_mode) {
|
|
case PM_FAIL:
|
|
if (old_mode != new_mode)
|
|
notify_of_pool_mode_change(pool, "failure");
|
|
dm_pool_metadata_read_only(pool->pmd);
|
|
pool->process_bio = process_bio_fail;
|
|
pool->process_discard = process_bio_fail;
|
|
pool->process_cell = process_cell_fail;
|
|
pool->process_discard_cell = process_cell_fail;
|
|
pool->process_prepared_mapping = process_prepared_mapping_fail;
|
|
pool->process_prepared_discard = process_prepared_discard_fail;
|
|
|
|
error_retry_list(pool);
|
|
break;
|
|
|
|
case PM_READ_ONLY:
|
|
if (old_mode != new_mode)
|
|
notify_of_pool_mode_change(pool, "read-only");
|
|
dm_pool_metadata_read_only(pool->pmd);
|
|
pool->process_bio = process_bio_read_only;
|
|
pool->process_discard = process_bio_success;
|
|
pool->process_cell = process_cell_read_only;
|
|
pool->process_discard_cell = process_cell_success;
|
|
pool->process_prepared_mapping = process_prepared_mapping_fail;
|
|
pool->process_prepared_discard = process_prepared_discard_success;
|
|
|
|
error_retry_list(pool);
|
|
break;
|
|
|
|
case PM_OUT_OF_DATA_SPACE:
|
|
/*
|
|
* Ideally we'd never hit this state; the low water mark
|
|
* would trigger userland to extend the pool before we
|
|
* completely run out of data space. However, many small
|
|
* IOs to unprovisioned space can consume data space at an
|
|
* alarming rate. Adjust your low water mark if you're
|
|
* frequently seeing this mode.
|
|
*/
|
|
if (old_mode != new_mode)
|
|
notify_of_pool_mode_change_to_oods(pool);
|
|
pool->out_of_data_space = true;
|
|
pool->process_bio = process_bio_read_only;
|
|
pool->process_discard = process_discard_bio;
|
|
pool->process_cell = process_cell_read_only;
|
|
pool->process_prepared_mapping = process_prepared_mapping;
|
|
set_discard_callbacks(pool);
|
|
|
|
if (!pool->pf.error_if_no_space && no_space_timeout)
|
|
queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
|
|
break;
|
|
|
|
case PM_WRITE:
|
|
if (old_mode != new_mode)
|
|
notify_of_pool_mode_change(pool, "write");
|
|
pool->out_of_data_space = false;
|
|
pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
|
|
dm_pool_metadata_read_write(pool->pmd);
|
|
pool->process_bio = process_bio;
|
|
pool->process_discard = process_discard_bio;
|
|
pool->process_cell = process_cell;
|
|
pool->process_prepared_mapping = process_prepared_mapping;
|
|
set_discard_callbacks(pool);
|
|
break;
|
|
}
|
|
|
|
pool->pf.mode = new_mode;
|
|
/*
|
|
* The pool mode may have changed, sync it so bind_control_target()
|
|
* doesn't cause an unexpected mode transition on resume.
|
|
*/
|
|
pt->adjusted_pf.mode = new_mode;
|
|
}
|
|
|
|
static void abort_transaction(struct pool *pool)
|
|
{
|
|
const char *dev_name = dm_device_name(pool->pool_md);
|
|
|
|
DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
|
|
if (dm_pool_abort_metadata(pool->pmd)) {
|
|
DMERR("%s: failed to abort metadata transaction", dev_name);
|
|
set_pool_mode(pool, PM_FAIL);
|
|
}
|
|
|
|
if (dm_pool_metadata_set_needs_check(pool->pmd)) {
|
|
DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
|
|
set_pool_mode(pool, PM_FAIL);
|
|
}
|
|
}
|
|
|
|
static void metadata_operation_failed(struct pool *pool, const char *op, int r)
|
|
{
|
|
DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
|
|
dm_device_name(pool->pool_md), op, r);
|
|
|
|
abort_transaction(pool);
|
|
set_pool_mode(pool, PM_READ_ONLY);
|
|
}
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Mapping functions.
|
|
*/
|
|
|
|
/*
|
|
* Called only while mapping a thin bio to hand it over to the workqueue.
|
|
*/
|
|
static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
unsigned long flags;
|
|
struct pool *pool = tc->pool;
|
|
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
bio_list_add(&tc->deferred_bio_list, bio);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
|
|
wake_worker(pool);
|
|
}
|
|
|
|
static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct pool *pool = tc->pool;
|
|
|
|
throttle_lock(&pool->throttle);
|
|
thin_defer_bio(tc, bio);
|
|
throttle_unlock(&pool->throttle);
|
|
}
|
|
|
|
static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
|
|
{
|
|
unsigned long flags;
|
|
struct pool *pool = tc->pool;
|
|
|
|
throttle_lock(&pool->throttle);
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
list_add_tail(&cell->user_list, &tc->deferred_cells);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
throttle_unlock(&pool->throttle);
|
|
|
|
wake_worker(pool);
|
|
}
|
|
|
|
static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
|
|
{
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
|
|
h->tc = tc;
|
|
h->shared_read_entry = NULL;
|
|
h->all_io_entry = NULL;
|
|
h->overwrite_mapping = NULL;
|
|
h->cell = NULL;
|
|
}
|
|
|
|
/*
|
|
* Non-blocking function called from the thin target's map function.
|
|
*/
|
|
static int thin_bio_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
int r;
|
|
struct thin_c *tc = ti->private;
|
|
dm_block_t block = get_bio_block(tc, bio);
|
|
struct dm_thin_device *td = tc->td;
|
|
struct dm_thin_lookup_result result;
|
|
struct dm_bio_prison_cell *virt_cell, *data_cell;
|
|
struct dm_cell_key key;
|
|
|
|
thin_hook_bio(tc, bio);
|
|
|
|
if (tc->requeue_mode) {
|
|
bio->bi_status = BLK_STS_DM_REQUEUE;
|
|
bio_endio(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
if (get_pool_mode(tc->pool) == PM_FAIL) {
|
|
bio_io_error(bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
|
|
thin_defer_bio_with_throttle(tc, bio);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
/*
|
|
* We must hold the virtual cell before doing the lookup, otherwise
|
|
* there's a race with discard.
|
|
*/
|
|
build_virtual_key(tc->td, block, &key);
|
|
if (bio_detain(tc->pool, &key, bio, &virt_cell))
|
|
return DM_MAPIO_SUBMITTED;
|
|
|
|
r = dm_thin_find_block(td, block, 0, &result);
|
|
|
|
/*
|
|
* Note that we defer readahead too.
|
|
*/
|
|
switch (r) {
|
|
case 0:
|
|
if (unlikely(result.shared)) {
|
|
/*
|
|
* We have a race condition here between the
|
|
* result.shared value returned by the lookup and
|
|
* snapshot creation, which may cause new
|
|
* sharing.
|
|
*
|
|
* To avoid this always quiesce the origin before
|
|
* taking the snap. You want to do this anyway to
|
|
* ensure a consistent application view
|
|
* (i.e. lockfs).
|
|
*
|
|
* More distant ancestors are irrelevant. The
|
|
* shared flag will be set in their case.
|
|
*/
|
|
thin_defer_cell(tc, virt_cell);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
build_data_key(tc->td, result.block, &key);
|
|
if (bio_detain(tc->pool, &key, bio, &data_cell)) {
|
|
cell_defer_no_holder(tc, virt_cell);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
|
|
inc_all_io_entry(tc->pool, bio);
|
|
cell_defer_no_holder(tc, data_cell);
|
|
cell_defer_no_holder(tc, virt_cell);
|
|
|
|
remap(tc, bio, result.block);
|
|
return DM_MAPIO_REMAPPED;
|
|
|
|
case -ENODATA:
|
|
case -EWOULDBLOCK:
|
|
thin_defer_cell(tc, virt_cell);
|
|
return DM_MAPIO_SUBMITTED;
|
|
|
|
default:
|
|
/*
|
|
* Must always call bio_io_error on failure.
|
|
* dm_thin_find_block can fail with -EINVAL if the
|
|
* pool is switched to fail-io mode.
|
|
*/
|
|
bio_io_error(bio);
|
|
cell_defer_no_holder(tc, virt_cell);
|
|
return DM_MAPIO_SUBMITTED;
|
|
}
|
|
}
|
|
|
|
static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
|
|
{
|
|
struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
|
|
struct request_queue *q;
|
|
|
|
if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
|
|
return 1;
|
|
|
|
q = bdev_get_queue(pt->data_dev->bdev);
|
|
return bdi_congested(q->backing_dev_info, bdi_bits);
|
|
}
|
|
|
|
static void requeue_bios(struct pool *pool)
|
|
{
|
|
unsigned long flags;
|
|
struct thin_c *tc;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(tc, &pool->active_thins, list) {
|
|
spin_lock_irqsave(&tc->lock, flags);
|
|
bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
|
|
bio_list_init(&tc->retry_on_resume_list);
|
|
spin_unlock_irqrestore(&tc->lock, flags);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*----------------------------------------------------------------
|
|
* Binding of control targets to a pool object
|
|
*--------------------------------------------------------------*/
|
|
static bool data_dev_supports_discard(struct pool_c *pt)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
|
|
|
|
return q && blk_queue_discard(q);
|
|
}
|
|
|
|
static bool is_factor(sector_t block_size, uint32_t n)
|
|
{
|
|
return !sector_div(block_size, n);
|
|
}
|
|
|
|
/*
|
|
* If discard_passdown was enabled verify that the data device
|
|
* supports discards. Disable discard_passdown if not.
|
|
*/
|
|
static void disable_passdown_if_not_supported(struct pool_c *pt)
|
|
{
|
|
struct pool *pool = pt->pool;
|
|
struct block_device *data_bdev = pt->data_dev->bdev;
|
|
struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
|
|
const char *reason = NULL;
|
|
char buf[BDEVNAME_SIZE];
|
|
|
|
if (!pt->adjusted_pf.discard_passdown)
|
|
return;
|
|
|
|
if (!data_dev_supports_discard(pt))
|
|
reason = "discard unsupported";
|
|
|
|
else if (data_limits->max_discard_sectors < pool->sectors_per_block)
|
|
reason = "max discard sectors smaller than a block";
|
|
|
|
if (reason) {
|
|
DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
|
|
pt->adjusted_pf.discard_passdown = false;
|
|
}
|
|
}
|
|
|
|
static int bind_control_target(struct pool *pool, struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
|
|
/*
|
|
* We want to make sure that a pool in PM_FAIL mode is never upgraded.
|
|
*/
|
|
enum pool_mode old_mode = get_pool_mode(pool);
|
|
enum pool_mode new_mode = pt->adjusted_pf.mode;
|
|
|
|
/*
|
|
* Don't change the pool's mode until set_pool_mode() below.
|
|
* Otherwise the pool's process_* function pointers may
|
|
* not match the desired pool mode.
|
|
*/
|
|
pt->adjusted_pf.mode = old_mode;
|
|
|
|
pool->ti = ti;
|
|
pool->pf = pt->adjusted_pf;
|
|
pool->low_water_blocks = pt->low_water_blocks;
|
|
|
|
set_pool_mode(pool, new_mode);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void unbind_control_target(struct pool *pool, struct dm_target *ti)
|
|
{
|
|
if (pool->ti == ti)
|
|
pool->ti = NULL;
|
|
}
|
|
|
|
/*----------------------------------------------------------------
|
|
* Pool creation
|
|
*--------------------------------------------------------------*/
|
|
/* Initialize pool features. */
|
|
static void pool_features_init(struct pool_features *pf)
|
|
{
|
|
pf->mode = PM_WRITE;
|
|
pf->zero_new_blocks = true;
|
|
pf->discard_enabled = true;
|
|
pf->discard_passdown = true;
|
|
pf->error_if_no_space = false;
|
|
}
|
|
|
|
static void __pool_destroy(struct pool *pool)
|
|
{
|
|
__pool_table_remove(pool);
|
|
|
|
vfree(pool->cell_sort_array);
|
|
if (dm_pool_metadata_close(pool->pmd) < 0)
|
|
DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
|
|
|
|
dm_bio_prison_destroy(pool->prison);
|
|
dm_kcopyd_client_destroy(pool->copier);
|
|
|
|
if (pool->wq)
|
|
destroy_workqueue(pool->wq);
|
|
|
|
if (pool->next_mapping)
|
|
mempool_free(pool->next_mapping, &pool->mapping_pool);
|
|
mempool_exit(&pool->mapping_pool);
|
|
dm_deferred_set_destroy(pool->shared_read_ds);
|
|
dm_deferred_set_destroy(pool->all_io_ds);
|
|
kfree(pool);
|
|
}
|
|
|
|
static struct kmem_cache *_new_mapping_cache;
|
|
|
|
static struct pool *pool_create(struct mapped_device *pool_md,
|
|
struct block_device *metadata_dev,
|
|
unsigned long block_size,
|
|
int read_only, char **error)
|
|
{
|
|
int r;
|
|
void *err_p;
|
|
struct pool *pool;
|
|
struct dm_pool_metadata *pmd;
|
|
bool format_device = read_only ? false : true;
|
|
|
|
pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
|
|
if (IS_ERR(pmd)) {
|
|
*error = "Error creating metadata object";
|
|
return (struct pool *)pmd;
|
|
}
|
|
|
|
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
|
|
if (!pool) {
|
|
*error = "Error allocating memory for pool";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_pool;
|
|
}
|
|
|
|
pool->pmd = pmd;
|
|
pool->sectors_per_block = block_size;
|
|
if (block_size & (block_size - 1))
|
|
pool->sectors_per_block_shift = -1;
|
|
else
|
|
pool->sectors_per_block_shift = __ffs(block_size);
|
|
pool->low_water_blocks = 0;
|
|
pool_features_init(&pool->pf);
|
|
pool->prison = dm_bio_prison_create();
|
|
if (!pool->prison) {
|
|
*error = "Error creating pool's bio prison";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_prison;
|
|
}
|
|
|
|
pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
|
|
if (IS_ERR(pool->copier)) {
|
|
r = PTR_ERR(pool->copier);
|
|
*error = "Error creating pool's kcopyd client";
|
|
err_p = ERR_PTR(r);
|
|
goto bad_kcopyd_client;
|
|
}
|
|
|
|
/*
|
|
* Create singlethreaded workqueue that will service all devices
|
|
* that use this metadata.
|
|
*/
|
|
pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
|
|
if (!pool->wq) {
|
|
*error = "Error creating pool's workqueue";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_wq;
|
|
}
|
|
|
|
throttle_init(&pool->throttle);
|
|
INIT_WORK(&pool->worker, do_worker);
|
|
INIT_DELAYED_WORK(&pool->waker, do_waker);
|
|
INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
|
|
spin_lock_init(&pool->lock);
|
|
bio_list_init(&pool->deferred_flush_bios);
|
|
INIT_LIST_HEAD(&pool->prepared_mappings);
|
|
INIT_LIST_HEAD(&pool->prepared_discards);
|
|
INIT_LIST_HEAD(&pool->prepared_discards_pt2);
|
|
INIT_LIST_HEAD(&pool->active_thins);
|
|
pool->low_water_triggered = false;
|
|
pool->suspended = true;
|
|
pool->out_of_data_space = false;
|
|
|
|
pool->shared_read_ds = dm_deferred_set_create();
|
|
if (!pool->shared_read_ds) {
|
|
*error = "Error creating pool's shared read deferred set";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_shared_read_ds;
|
|
}
|
|
|
|
pool->all_io_ds = dm_deferred_set_create();
|
|
if (!pool->all_io_ds) {
|
|
*error = "Error creating pool's all io deferred set";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_all_io_ds;
|
|
}
|
|
|
|
pool->next_mapping = NULL;
|
|
r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
|
|
_new_mapping_cache);
|
|
if (r) {
|
|
*error = "Error creating pool's mapping mempool";
|
|
err_p = ERR_PTR(r);
|
|
goto bad_mapping_pool;
|
|
}
|
|
|
|
pool->cell_sort_array =
|
|
vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
|
|
sizeof(*pool->cell_sort_array)));
|
|
if (!pool->cell_sort_array) {
|
|
*error = "Error allocating cell sort array";
|
|
err_p = ERR_PTR(-ENOMEM);
|
|
goto bad_sort_array;
|
|
}
|
|
|
|
pool->ref_count = 1;
|
|
pool->last_commit_jiffies = jiffies;
|
|
pool->pool_md = pool_md;
|
|
pool->md_dev = metadata_dev;
|
|
__pool_table_insert(pool);
|
|
|
|
return pool;
|
|
|
|
bad_sort_array:
|
|
mempool_exit(&pool->mapping_pool);
|
|
bad_mapping_pool:
|
|
dm_deferred_set_destroy(pool->all_io_ds);
|
|
bad_all_io_ds:
|
|
dm_deferred_set_destroy(pool->shared_read_ds);
|
|
bad_shared_read_ds:
|
|
destroy_workqueue(pool->wq);
|
|
bad_wq:
|
|
dm_kcopyd_client_destroy(pool->copier);
|
|
bad_kcopyd_client:
|
|
dm_bio_prison_destroy(pool->prison);
|
|
bad_prison:
|
|
kfree(pool);
|
|
bad_pool:
|
|
if (dm_pool_metadata_close(pmd))
|
|
DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
|
|
|
|
return err_p;
|
|
}
|
|
|
|
static void __pool_inc(struct pool *pool)
|
|
{
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
pool->ref_count++;
|
|
}
|
|
|
|
static void __pool_dec(struct pool *pool)
|
|
{
|
|
BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
|
|
BUG_ON(!pool->ref_count);
|
|
if (!--pool->ref_count)
|
|
__pool_destroy(pool);
|
|
}
|
|
|
|
static struct pool *__pool_find(struct mapped_device *pool_md,
|
|
struct block_device *metadata_dev,
|
|
unsigned long block_size, int read_only,
|
|
char **error, int *created)
|
|
{
|
|
struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
|
|
|
|
if (pool) {
|
|
if (pool->pool_md != pool_md) {
|
|
*error = "metadata device already in use by a pool";
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
__pool_inc(pool);
|
|
|
|
} else {
|
|
pool = __pool_table_lookup(pool_md);
|
|
if (pool) {
|
|
if (pool->md_dev != metadata_dev) {
|
|
*error = "different pool cannot replace a pool";
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
__pool_inc(pool);
|
|
|
|
} else {
|
|
pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
|
|
*created = 1;
|
|
}
|
|
}
|
|
|
|
return pool;
|
|
}
|
|
|
|
/*----------------------------------------------------------------
|
|
* Pool target methods
|
|
*--------------------------------------------------------------*/
|
|
static void pool_dtr(struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
|
|
mutex_lock(&dm_thin_pool_table.mutex);
|
|
|
|
unbind_control_target(pt->pool, ti);
|
|
__pool_dec(pt->pool);
|
|
dm_put_device(ti, pt->metadata_dev);
|
|
dm_put_device(ti, pt->data_dev);
|
|
kfree(pt);
|
|
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
}
|
|
|
|
static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
|
|
struct dm_target *ti)
|
|
{
|
|
int r;
|
|
unsigned argc;
|
|
const char *arg_name;
|
|
|
|
static const struct dm_arg _args[] = {
|
|
{0, 4, "Invalid number of pool feature arguments"},
|
|
};
|
|
|
|
/*
|
|
* No feature arguments supplied.
|
|
*/
|
|
if (!as->argc)
|
|
return 0;
|
|
|
|
r = dm_read_arg_group(_args, as, &argc, &ti->error);
|
|
if (r)
|
|
return -EINVAL;
|
|
|
|
while (argc && !r) {
|
|
arg_name = dm_shift_arg(as);
|
|
argc--;
|
|
|
|
if (!strcasecmp(arg_name, "skip_block_zeroing"))
|
|
pf->zero_new_blocks = false;
|
|
|
|
else if (!strcasecmp(arg_name, "ignore_discard"))
|
|
pf->discard_enabled = false;
|
|
|
|
else if (!strcasecmp(arg_name, "no_discard_passdown"))
|
|
pf->discard_passdown = false;
|
|
|
|
else if (!strcasecmp(arg_name, "read_only"))
|
|
pf->mode = PM_READ_ONLY;
|
|
|
|
else if (!strcasecmp(arg_name, "error_if_no_space"))
|
|
pf->error_if_no_space = true;
|
|
|
|
else {
|
|
ti->error = "Unrecognised pool feature requested";
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static void metadata_low_callback(void *context)
|
|
{
|
|
struct pool *pool = context;
|
|
|
|
DMWARN("%s: reached low water mark for metadata device: sending event.",
|
|
dm_device_name(pool->pool_md));
|
|
|
|
dm_table_event(pool->ti->table);
|
|
}
|
|
|
|
static sector_t get_dev_size(struct block_device *bdev)
|
|
{
|
|
return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static void warn_if_metadata_device_too_big(struct block_device *bdev)
|
|
{
|
|
sector_t metadata_dev_size = get_dev_size(bdev);
|
|
char buffer[BDEVNAME_SIZE];
|
|
|
|
if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
|
|
DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
|
|
bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
|
|
}
|
|
|
|
static sector_t get_metadata_dev_size(struct block_device *bdev)
|
|
{
|
|
sector_t metadata_dev_size = get_dev_size(bdev);
|
|
|
|
if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
|
|
metadata_dev_size = THIN_METADATA_MAX_SECTORS;
|
|
|
|
return metadata_dev_size;
|
|
}
|
|
|
|
static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
|
|
{
|
|
sector_t metadata_dev_size = get_metadata_dev_size(bdev);
|
|
|
|
sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
|
|
|
|
return metadata_dev_size;
|
|
}
|
|
|
|
/*
|
|
* When a metadata threshold is crossed a dm event is triggered, and
|
|
* userland should respond by growing the metadata device. We could let
|
|
* userland set the threshold, like we do with the data threshold, but I'm
|
|
* not sure they know enough to do this well.
|
|
*/
|
|
static dm_block_t calc_metadata_threshold(struct pool_c *pt)
|
|
{
|
|
/*
|
|
* 4M is ample for all ops with the possible exception of thin
|
|
* device deletion which is harmless if it fails (just retry the
|
|
* delete after you've grown the device).
|
|
*/
|
|
dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
|
|
return min((dm_block_t)1024ULL /* 4M */, quarter);
|
|
}
|
|
|
|
/*
|
|
* thin-pool <metadata dev> <data dev>
|
|
* <data block size (sectors)>
|
|
* <low water mark (blocks)>
|
|
* [<#feature args> [<arg>]*]
|
|
*
|
|
* Optional feature arguments are:
|
|
* skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
|
|
* ignore_discard: disable discard
|
|
* no_discard_passdown: don't pass discards down to the data device
|
|
* read_only: Don't allow any changes to be made to the pool metadata.
|
|
* error_if_no_space: error IOs, instead of queueing, if no space.
|
|
*/
|
|
static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
|
|
{
|
|
int r, pool_created = 0;
|
|
struct pool_c *pt;
|
|
struct pool *pool;
|
|
struct pool_features pf;
|
|
struct dm_arg_set as;
|
|
struct dm_dev *data_dev;
|
|
unsigned long block_size;
|
|
dm_block_t low_water_blocks;
|
|
struct dm_dev *metadata_dev;
|
|
fmode_t metadata_mode;
|
|
|
|
/*
|
|
* FIXME Remove validation from scope of lock.
|
|
*/
|
|
mutex_lock(&dm_thin_pool_table.mutex);
|
|
|
|
if (argc < 4) {
|
|
ti->error = "Invalid argument count";
|
|
r = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
as.argc = argc;
|
|
as.argv = argv;
|
|
|
|
/*
|
|
* Set default pool features.
|
|
*/
|
|
pool_features_init(&pf);
|
|
|
|
dm_consume_args(&as, 4);
|
|
r = parse_pool_features(&as, &pf, ti);
|
|
if (r)
|
|
goto out_unlock;
|
|
|
|
metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
|
|
r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
|
|
if (r) {
|
|
ti->error = "Error opening metadata block device";
|
|
goto out_unlock;
|
|
}
|
|
warn_if_metadata_device_too_big(metadata_dev->bdev);
|
|
|
|
r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
|
|
if (r) {
|
|
ti->error = "Error getting data device";
|
|
goto out_metadata;
|
|
}
|
|
|
|
if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
|
|
block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
|
|
block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
|
|
block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
|
|
ti->error = "Invalid block size";
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
|
|
ti->error = "Invalid low water mark";
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
pt = kzalloc(sizeof(*pt), GFP_KERNEL);
|
|
if (!pt) {
|
|
r = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
|
|
block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
|
|
if (IS_ERR(pool)) {
|
|
r = PTR_ERR(pool);
|
|
goto out_free_pt;
|
|
}
|
|
|
|
/*
|
|
* 'pool_created' reflects whether this is the first table load.
|
|
* Top level discard support is not allowed to be changed after
|
|
* initial load. This would require a pool reload to trigger thin
|
|
* device changes.
|
|
*/
|
|
if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
|
|
ti->error = "Discard support cannot be disabled once enabled";
|
|
r = -EINVAL;
|
|
goto out_flags_changed;
|
|
}
|
|
|
|
pt->pool = pool;
|
|
pt->ti = ti;
|
|
pt->metadata_dev = metadata_dev;
|
|
pt->data_dev = data_dev;
|
|
pt->low_water_blocks = low_water_blocks;
|
|
pt->adjusted_pf = pt->requested_pf = pf;
|
|
ti->num_flush_bios = 1;
|
|
|
|
/*
|
|
* Only need to enable discards if the pool should pass
|
|
* them down to the data device. The thin device's discard
|
|
* processing will cause mappings to be removed from the btree.
|
|
*/
|
|
if (pf.discard_enabled && pf.discard_passdown) {
|
|
ti->num_discard_bios = 1;
|
|
|
|
/*
|
|
* Setting 'discards_supported' circumvents the normal
|
|
* stacking of discard limits (this keeps the pool and
|
|
* thin devices' discard limits consistent).
|
|
*/
|
|
ti->discards_supported = true;
|
|
}
|
|
ti->private = pt;
|
|
|
|
r = dm_pool_register_metadata_threshold(pt->pool->pmd,
|
|
calc_metadata_threshold(pt),
|
|
metadata_low_callback,
|
|
pool);
|
|
if (r)
|
|
goto out_flags_changed;
|
|
|
|
pt->callbacks.congested_fn = pool_is_congested;
|
|
dm_table_add_target_callbacks(ti->table, &pt->callbacks);
|
|
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
|
|
return 0;
|
|
|
|
out_flags_changed:
|
|
__pool_dec(pool);
|
|
out_free_pt:
|
|
kfree(pt);
|
|
out:
|
|
dm_put_device(ti, data_dev);
|
|
out_metadata:
|
|
dm_put_device(ti, metadata_dev);
|
|
out_unlock:
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int pool_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
int r;
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* As this is a singleton target, ti->begin is always zero.
|
|
*/
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
bio_set_dev(bio, pt->data_dev->bdev);
|
|
r = DM_MAPIO_REMAPPED;
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
|
|
{
|
|
int r;
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
sector_t data_size = ti->len;
|
|
dm_block_t sb_data_size;
|
|
|
|
*need_commit = false;
|
|
|
|
(void) sector_div(data_size, pool->sectors_per_block);
|
|
|
|
r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
|
|
if (r) {
|
|
DMERR("%s: failed to retrieve data device size",
|
|
dm_device_name(pool->pool_md));
|
|
return r;
|
|
}
|
|
|
|
if (data_size < sb_data_size) {
|
|
DMERR("%s: pool target (%llu blocks) too small: expected %llu",
|
|
dm_device_name(pool->pool_md),
|
|
(unsigned long long)data_size, sb_data_size);
|
|
return -EINVAL;
|
|
|
|
} else if (data_size > sb_data_size) {
|
|
if (dm_pool_metadata_needs_check(pool->pmd)) {
|
|
DMERR("%s: unable to grow the data device until repaired.",
|
|
dm_device_name(pool->pool_md));
|
|
return 0;
|
|
}
|
|
|
|
if (sb_data_size)
|
|
DMINFO("%s: growing the data device from %llu to %llu blocks",
|
|
dm_device_name(pool->pool_md),
|
|
sb_data_size, (unsigned long long)data_size);
|
|
r = dm_pool_resize_data_dev(pool->pmd, data_size);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
|
|
return r;
|
|
}
|
|
|
|
*need_commit = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
|
|
{
|
|
int r;
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
dm_block_t metadata_dev_size, sb_metadata_dev_size;
|
|
|
|
*need_commit = false;
|
|
|
|
metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
|
|
|
|
r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
|
|
if (r) {
|
|
DMERR("%s: failed to retrieve metadata device size",
|
|
dm_device_name(pool->pool_md));
|
|
return r;
|
|
}
|
|
|
|
if (metadata_dev_size < sb_metadata_dev_size) {
|
|
DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
|
|
dm_device_name(pool->pool_md),
|
|
metadata_dev_size, sb_metadata_dev_size);
|
|
return -EINVAL;
|
|
|
|
} else if (metadata_dev_size > sb_metadata_dev_size) {
|
|
if (dm_pool_metadata_needs_check(pool->pmd)) {
|
|
DMERR("%s: unable to grow the metadata device until repaired.",
|
|
dm_device_name(pool->pool_md));
|
|
return 0;
|
|
}
|
|
|
|
warn_if_metadata_device_too_big(pool->md_dev);
|
|
DMINFO("%s: growing the metadata device from %llu to %llu blocks",
|
|
dm_device_name(pool->pool_md),
|
|
sb_metadata_dev_size, metadata_dev_size);
|
|
r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
|
|
if (r) {
|
|
metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
|
|
return r;
|
|
}
|
|
|
|
*need_commit = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Retrieves the number of blocks of the data device from
|
|
* the superblock and compares it to the actual device size,
|
|
* thus resizing the data device in case it has grown.
|
|
*
|
|
* This both copes with opening preallocated data devices in the ctr
|
|
* being followed by a resume
|
|
* -and-
|
|
* calling the resume method individually after userspace has
|
|
* grown the data device in reaction to a table event.
|
|
*/
|
|
static int pool_preresume(struct dm_target *ti)
|
|
{
|
|
int r;
|
|
bool need_commit1, need_commit2;
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
|
|
/*
|
|
* Take control of the pool object.
|
|
*/
|
|
r = bind_control_target(pool, ti);
|
|
if (r)
|
|
return r;
|
|
|
|
r = maybe_resize_data_dev(ti, &need_commit1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = maybe_resize_metadata_dev(ti, &need_commit2);
|
|
if (r)
|
|
return r;
|
|
|
|
if (need_commit1 || need_commit2)
|
|
(void) commit(pool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pool_suspend_active_thins(struct pool *pool)
|
|
{
|
|
struct thin_c *tc;
|
|
|
|
/* Suspend all active thin devices */
|
|
tc = get_first_thin(pool);
|
|
while (tc) {
|
|
dm_internal_suspend_noflush(tc->thin_md);
|
|
tc = get_next_thin(pool, tc);
|
|
}
|
|
}
|
|
|
|
static void pool_resume_active_thins(struct pool *pool)
|
|
{
|
|
struct thin_c *tc;
|
|
|
|
/* Resume all active thin devices */
|
|
tc = get_first_thin(pool);
|
|
while (tc) {
|
|
dm_internal_resume(tc->thin_md);
|
|
tc = get_next_thin(pool, tc);
|
|
}
|
|
}
|
|
|
|
static void pool_resume(struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Must requeue active_thins' bios and then resume
|
|
* active_thins _before_ clearing 'suspend' flag.
|
|
*/
|
|
requeue_bios(pool);
|
|
pool_resume_active_thins(pool);
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
pool->low_water_triggered = false;
|
|
pool->suspended = false;
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
do_waker(&pool->waker.work);
|
|
}
|
|
|
|
static void pool_presuspend(struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
pool->suspended = true;
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
|
|
pool_suspend_active_thins(pool);
|
|
}
|
|
|
|
static void pool_presuspend_undo(struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
unsigned long flags;
|
|
|
|
pool_resume_active_thins(pool);
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
pool->suspended = false;
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
static void pool_postsuspend(struct dm_target *ti)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
|
|
cancel_delayed_work_sync(&pool->waker);
|
|
cancel_delayed_work_sync(&pool->no_space_timeout);
|
|
flush_workqueue(pool->wq);
|
|
(void) commit(pool);
|
|
}
|
|
|
|
static int check_arg_count(unsigned argc, unsigned args_required)
|
|
{
|
|
if (argc != args_required) {
|
|
DMWARN("Message received with %u arguments instead of %u.",
|
|
argc, args_required);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
|
|
{
|
|
if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
|
|
*dev_id <= MAX_DEV_ID)
|
|
return 0;
|
|
|
|
if (warning)
|
|
DMWARN("Message received with invalid device id: %s", arg);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
dm_thin_id dev_id;
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 2);
|
|
if (r)
|
|
return r;
|
|
|
|
r = read_dev_id(argv[1], &dev_id, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_pool_create_thin(pool->pmd, dev_id);
|
|
if (r) {
|
|
DMWARN("Creation of new thinly-provisioned device with id %s failed.",
|
|
argv[1]);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
dm_thin_id dev_id;
|
|
dm_thin_id origin_dev_id;
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 3);
|
|
if (r)
|
|
return r;
|
|
|
|
r = read_dev_id(argv[1], &dev_id, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = read_dev_id(argv[2], &origin_dev_id, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
|
|
if (r) {
|
|
DMWARN("Creation of new snapshot %s of device %s failed.",
|
|
argv[1], argv[2]);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
dm_thin_id dev_id;
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 2);
|
|
if (r)
|
|
return r;
|
|
|
|
r = read_dev_id(argv[1], &dev_id, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_pool_delete_thin_device(pool->pmd, dev_id);
|
|
if (r)
|
|
DMWARN("Deletion of thin device %s failed.", argv[1]);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
dm_thin_id old_id, new_id;
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 3);
|
|
if (r)
|
|
return r;
|
|
|
|
if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
|
|
DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
|
|
DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
|
|
if (r) {
|
|
DMWARN("Failed to change transaction id from %s to %s.",
|
|
argv[1], argv[2]);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
(void) commit(pool);
|
|
|
|
r = dm_pool_reserve_metadata_snap(pool->pmd);
|
|
if (r)
|
|
DMWARN("reserve_metadata_snap message failed.");
|
|
|
|
return r;
|
|
}
|
|
|
|
static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
|
|
{
|
|
int r;
|
|
|
|
r = check_arg_count(argc, 1);
|
|
if (r)
|
|
return r;
|
|
|
|
r = dm_pool_release_metadata_snap(pool->pmd);
|
|
if (r)
|
|
DMWARN("release_metadata_snap message failed.");
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Messages supported:
|
|
* create_thin <dev_id>
|
|
* create_snap <dev_id> <origin_id>
|
|
* delete <dev_id>
|
|
* set_transaction_id <current_trans_id> <new_trans_id>
|
|
* reserve_metadata_snap
|
|
* release_metadata_snap
|
|
*/
|
|
static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
|
|
char *result, unsigned maxlen)
|
|
{
|
|
int r = -EINVAL;
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
|
|
if (get_pool_mode(pool) >= PM_READ_ONLY) {
|
|
DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
|
|
dm_device_name(pool->pool_md));
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!strcasecmp(argv[0], "create_thin"))
|
|
r = process_create_thin_mesg(argc, argv, pool);
|
|
|
|
else if (!strcasecmp(argv[0], "create_snap"))
|
|
r = process_create_snap_mesg(argc, argv, pool);
|
|
|
|
else if (!strcasecmp(argv[0], "delete"))
|
|
r = process_delete_mesg(argc, argv, pool);
|
|
|
|
else if (!strcasecmp(argv[0], "set_transaction_id"))
|
|
r = process_set_transaction_id_mesg(argc, argv, pool);
|
|
|
|
else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
|
|
r = process_reserve_metadata_snap_mesg(argc, argv, pool);
|
|
|
|
else if (!strcasecmp(argv[0], "release_metadata_snap"))
|
|
r = process_release_metadata_snap_mesg(argc, argv, pool);
|
|
|
|
else
|
|
DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
|
|
|
|
if (!r)
|
|
(void) commit(pool);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void emit_flags(struct pool_features *pf, char *result,
|
|
unsigned sz, unsigned maxlen)
|
|
{
|
|
unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
|
|
!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
|
|
pf->error_if_no_space;
|
|
DMEMIT("%u ", count);
|
|
|
|
if (!pf->zero_new_blocks)
|
|
DMEMIT("skip_block_zeroing ");
|
|
|
|
if (!pf->discard_enabled)
|
|
DMEMIT("ignore_discard ");
|
|
|
|
if (!pf->discard_passdown)
|
|
DMEMIT("no_discard_passdown ");
|
|
|
|
if (pf->mode == PM_READ_ONLY)
|
|
DMEMIT("read_only ");
|
|
|
|
if (pf->error_if_no_space)
|
|
DMEMIT("error_if_no_space ");
|
|
}
|
|
|
|
/*
|
|
* Status line is:
|
|
* <transaction id> <used metadata sectors>/<total metadata sectors>
|
|
* <used data sectors>/<total data sectors> <held metadata root>
|
|
* <pool mode> <discard config> <no space config> <needs_check>
|
|
*/
|
|
static void pool_status(struct dm_target *ti, status_type_t type,
|
|
unsigned status_flags, char *result, unsigned maxlen)
|
|
{
|
|
int r;
|
|
unsigned sz = 0;
|
|
uint64_t transaction_id;
|
|
dm_block_t nr_free_blocks_data;
|
|
dm_block_t nr_free_blocks_metadata;
|
|
dm_block_t nr_blocks_data;
|
|
dm_block_t nr_blocks_metadata;
|
|
dm_block_t held_root;
|
|
char buf[BDEVNAME_SIZE];
|
|
char buf2[BDEVNAME_SIZE];
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
if (get_pool_mode(pool) == PM_FAIL) {
|
|
DMEMIT("Fail");
|
|
break;
|
|
}
|
|
|
|
/* Commit to ensure statistics aren't out-of-date */
|
|
if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
|
|
(void) commit(pool);
|
|
|
|
r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_free_block_count returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_data_dev_size returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
|
|
if (r) {
|
|
DMERR("%s: dm_pool_get_metadata_snap returned %d",
|
|
dm_device_name(pool->pool_md), r);
|
|
goto err;
|
|
}
|
|
|
|
DMEMIT("%llu %llu/%llu %llu/%llu ",
|
|
(unsigned long long)transaction_id,
|
|
(unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
|
|
(unsigned long long)nr_blocks_metadata,
|
|
(unsigned long long)(nr_blocks_data - nr_free_blocks_data),
|
|
(unsigned long long)nr_blocks_data);
|
|
|
|
if (held_root)
|
|
DMEMIT("%llu ", held_root);
|
|
else
|
|
DMEMIT("- ");
|
|
|
|
if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
|
|
DMEMIT("out_of_data_space ");
|
|
else if (pool->pf.mode == PM_READ_ONLY)
|
|
DMEMIT("ro ");
|
|
else
|
|
DMEMIT("rw ");
|
|
|
|
if (!pool->pf.discard_enabled)
|
|
DMEMIT("ignore_discard ");
|
|
else if (pool->pf.discard_passdown)
|
|
DMEMIT("discard_passdown ");
|
|
else
|
|
DMEMIT("no_discard_passdown ");
|
|
|
|
if (pool->pf.error_if_no_space)
|
|
DMEMIT("error_if_no_space ");
|
|
else
|
|
DMEMIT("queue_if_no_space ");
|
|
|
|
if (dm_pool_metadata_needs_check(pool->pmd))
|
|
DMEMIT("needs_check ");
|
|
else
|
|
DMEMIT("- ");
|
|
|
|
break;
|
|
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT("%s %s %lu %llu ",
|
|
format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
|
|
format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
|
|
(unsigned long)pool->sectors_per_block,
|
|
(unsigned long long)pt->low_water_blocks);
|
|
emit_flags(&pt->requested_pf, result, sz, maxlen);
|
|
break;
|
|
}
|
|
return;
|
|
|
|
err:
|
|
DMEMIT("Error");
|
|
}
|
|
|
|
static int pool_iterate_devices(struct dm_target *ti,
|
|
iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
|
|
return fn(ti, pt->data_dev, 0, ti->len, data);
|
|
}
|
|
|
|
static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct pool_c *pt = ti->private;
|
|
struct pool *pool = pt->pool;
|
|
sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
|
|
|
|
/*
|
|
* If max_sectors is smaller than pool->sectors_per_block adjust it
|
|
* to the highest possible power-of-2 factor of pool->sectors_per_block.
|
|
* This is especially beneficial when the pool's data device is a RAID
|
|
* device that has a full stripe width that matches pool->sectors_per_block
|
|
* -- because even though partial RAID stripe-sized IOs will be issued to a
|
|
* single RAID stripe; when aggregated they will end on a full RAID stripe
|
|
* boundary.. which avoids additional partial RAID stripe writes cascading
|
|
*/
|
|
if (limits->max_sectors < pool->sectors_per_block) {
|
|
while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
|
|
if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
|
|
limits->max_sectors--;
|
|
limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the system-determined stacked limits are compatible with the
|
|
* pool's blocksize (io_opt is a factor) do not override them.
|
|
*/
|
|
if (io_opt_sectors < pool->sectors_per_block ||
|
|
!is_factor(io_opt_sectors, pool->sectors_per_block)) {
|
|
if (is_factor(pool->sectors_per_block, limits->max_sectors))
|
|
blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
|
|
else
|
|
blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
|
|
blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* pt->adjusted_pf is a staging area for the actual features to use.
|
|
* They get transferred to the live pool in bind_control_target()
|
|
* called from pool_preresume().
|
|
*/
|
|
if (!pt->adjusted_pf.discard_enabled) {
|
|
/*
|
|
* Must explicitly disallow stacking discard limits otherwise the
|
|
* block layer will stack them if pool's data device has support.
|
|
* QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
|
|
* user to see that, so make sure to set all discard limits to 0.
|
|
*/
|
|
limits->discard_granularity = 0;
|
|
return;
|
|
}
|
|
|
|
disable_passdown_if_not_supported(pt);
|
|
|
|
/*
|
|
* The pool uses the same discard limits as the underlying data
|
|
* device. DM core has already set this up.
|
|
*/
|
|
}
|
|
|
|
static struct target_type pool_target = {
|
|
.name = "thin-pool",
|
|
.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
|
|
DM_TARGET_IMMUTABLE,
|
|
.version = {1, 19, 0},
|
|
.module = THIS_MODULE,
|
|
.ctr = pool_ctr,
|
|
.dtr = pool_dtr,
|
|
.map = pool_map,
|
|
.presuspend = pool_presuspend,
|
|
.presuspend_undo = pool_presuspend_undo,
|
|
.postsuspend = pool_postsuspend,
|
|
.preresume = pool_preresume,
|
|
.resume = pool_resume,
|
|
.message = pool_message,
|
|
.status = pool_status,
|
|
.iterate_devices = pool_iterate_devices,
|
|
.io_hints = pool_io_hints,
|
|
};
|
|
|
|
/*----------------------------------------------------------------
|
|
* Thin target methods
|
|
*--------------------------------------------------------------*/
|
|
static void thin_get(struct thin_c *tc)
|
|
{
|
|
atomic_inc(&tc->refcount);
|
|
}
|
|
|
|
static void thin_put(struct thin_c *tc)
|
|
{
|
|
if (atomic_dec_and_test(&tc->refcount))
|
|
complete(&tc->can_destroy);
|
|
}
|
|
|
|
static void thin_dtr(struct dm_target *ti)
|
|
{
|
|
struct thin_c *tc = ti->private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&tc->pool->lock, flags);
|
|
list_del_rcu(&tc->list);
|
|
spin_unlock_irqrestore(&tc->pool->lock, flags);
|
|
synchronize_rcu();
|
|
|
|
thin_put(tc);
|
|
wait_for_completion(&tc->can_destroy);
|
|
|
|
mutex_lock(&dm_thin_pool_table.mutex);
|
|
|
|
__pool_dec(tc->pool);
|
|
dm_pool_close_thin_device(tc->td);
|
|
dm_put_device(ti, tc->pool_dev);
|
|
if (tc->origin_dev)
|
|
dm_put_device(ti, tc->origin_dev);
|
|
kfree(tc);
|
|
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
}
|
|
|
|
/*
|
|
* Thin target parameters:
|
|
*
|
|
* <pool_dev> <dev_id> [origin_dev]
|
|
*
|
|
* pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
|
|
* dev_id: the internal device identifier
|
|
* origin_dev: a device external to the pool that should act as the origin
|
|
*
|
|
* If the pool device has discards disabled, they get disabled for the thin
|
|
* device as well.
|
|
*/
|
|
static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
|
|
{
|
|
int r;
|
|
struct thin_c *tc;
|
|
struct dm_dev *pool_dev, *origin_dev;
|
|
struct mapped_device *pool_md;
|
|
unsigned long flags;
|
|
|
|
mutex_lock(&dm_thin_pool_table.mutex);
|
|
|
|
if (argc != 2 && argc != 3) {
|
|
ti->error = "Invalid argument count";
|
|
r = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
|
|
if (!tc) {
|
|
ti->error = "Out of memory";
|
|
r = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
tc->thin_md = dm_table_get_md(ti->table);
|
|
spin_lock_init(&tc->lock);
|
|
INIT_LIST_HEAD(&tc->deferred_cells);
|
|
bio_list_init(&tc->deferred_bio_list);
|
|
bio_list_init(&tc->retry_on_resume_list);
|
|
tc->sort_bio_list = RB_ROOT;
|
|
|
|
if (argc == 3) {
|
|
r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
|
|
if (r) {
|
|
ti->error = "Error opening origin device";
|
|
goto bad_origin_dev;
|
|
}
|
|
tc->origin_dev = origin_dev;
|
|
}
|
|
|
|
r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
|
|
if (r) {
|
|
ti->error = "Error opening pool device";
|
|
goto bad_pool_dev;
|
|
}
|
|
tc->pool_dev = pool_dev;
|
|
|
|
if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
|
|
ti->error = "Invalid device id";
|
|
r = -EINVAL;
|
|
goto bad_common;
|
|
}
|
|
|
|
pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
|
|
if (!pool_md) {
|
|
ti->error = "Couldn't get pool mapped device";
|
|
r = -EINVAL;
|
|
goto bad_common;
|
|
}
|
|
|
|
tc->pool = __pool_table_lookup(pool_md);
|
|
if (!tc->pool) {
|
|
ti->error = "Couldn't find pool object";
|
|
r = -EINVAL;
|
|
goto bad_pool_lookup;
|
|
}
|
|
__pool_inc(tc->pool);
|
|
|
|
if (get_pool_mode(tc->pool) == PM_FAIL) {
|
|
ti->error = "Couldn't open thin device, Pool is in fail mode";
|
|
r = -EINVAL;
|
|
goto bad_pool;
|
|
}
|
|
|
|
r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
|
|
if (r) {
|
|
ti->error = "Couldn't open thin internal device";
|
|
goto bad_pool;
|
|
}
|
|
|
|
r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
|
|
if (r)
|
|
goto bad;
|
|
|
|
ti->num_flush_bios = 1;
|
|
ti->flush_supported = true;
|
|
ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
|
|
|
|
/* In case the pool supports discards, pass them on. */
|
|
if (tc->pool->pf.discard_enabled) {
|
|
ti->discards_supported = true;
|
|
ti->num_discard_bios = 1;
|
|
ti->split_discard_bios = false;
|
|
}
|
|
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
|
|
spin_lock_irqsave(&tc->pool->lock, flags);
|
|
if (tc->pool->suspended) {
|
|
spin_unlock_irqrestore(&tc->pool->lock, flags);
|
|
mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
|
|
ti->error = "Unable to activate thin device while pool is suspended";
|
|
r = -EINVAL;
|
|
goto bad;
|
|
}
|
|
atomic_set(&tc->refcount, 1);
|
|
init_completion(&tc->can_destroy);
|
|
list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
|
|
spin_unlock_irqrestore(&tc->pool->lock, flags);
|
|
/*
|
|
* This synchronize_rcu() call is needed here otherwise we risk a
|
|
* wake_worker() call finding no bios to process (because the newly
|
|
* added tc isn't yet visible). So this reduces latency since we
|
|
* aren't then dependent on the periodic commit to wake_worker().
|
|
*/
|
|
synchronize_rcu();
|
|
|
|
dm_put(pool_md);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
dm_pool_close_thin_device(tc->td);
|
|
bad_pool:
|
|
__pool_dec(tc->pool);
|
|
bad_pool_lookup:
|
|
dm_put(pool_md);
|
|
bad_common:
|
|
dm_put_device(ti, tc->pool_dev);
|
|
bad_pool_dev:
|
|
if (tc->origin_dev)
|
|
dm_put_device(ti, tc->origin_dev);
|
|
bad_origin_dev:
|
|
kfree(tc);
|
|
out_unlock:
|
|
mutex_unlock(&dm_thin_pool_table.mutex);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int thin_map(struct dm_target *ti, struct bio *bio)
|
|
{
|
|
bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
|
|
|
|
return thin_bio_map(ti, bio);
|
|
}
|
|
|
|
static int thin_endio(struct dm_target *ti, struct bio *bio,
|
|
blk_status_t *err)
|
|
{
|
|
unsigned long flags;
|
|
struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
|
|
struct list_head work;
|
|
struct dm_thin_new_mapping *m, *tmp;
|
|
struct pool *pool = h->tc->pool;
|
|
|
|
if (h->shared_read_entry) {
|
|
INIT_LIST_HEAD(&work);
|
|
dm_deferred_entry_dec(h->shared_read_entry, &work);
|
|
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
list_for_each_entry_safe(m, tmp, &work, list) {
|
|
list_del(&m->list);
|
|
__complete_mapping_preparation(m);
|
|
}
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
}
|
|
|
|
if (h->all_io_entry) {
|
|
INIT_LIST_HEAD(&work);
|
|
dm_deferred_entry_dec(h->all_io_entry, &work);
|
|
if (!list_empty(&work)) {
|
|
spin_lock_irqsave(&pool->lock, flags);
|
|
list_for_each_entry_safe(m, tmp, &work, list)
|
|
list_add_tail(&m->list, &pool->prepared_discards);
|
|
spin_unlock_irqrestore(&pool->lock, flags);
|
|
wake_worker(pool);
|
|
}
|
|
}
|
|
|
|
if (h->cell)
|
|
cell_defer_no_holder(h->tc, h->cell);
|
|
|
|
return DM_ENDIO_DONE;
|
|
}
|
|
|
|
static void thin_presuspend(struct dm_target *ti)
|
|
{
|
|
struct thin_c *tc = ti->private;
|
|
|
|
if (dm_noflush_suspending(ti))
|
|
noflush_work(tc, do_noflush_start);
|
|
}
|
|
|
|
static void thin_postsuspend(struct dm_target *ti)
|
|
{
|
|
struct thin_c *tc = ti->private;
|
|
|
|
/*
|
|
* The dm_noflush_suspending flag has been cleared by now, so
|
|
* unfortunately we must always run this.
|
|
*/
|
|
noflush_work(tc, do_noflush_stop);
|
|
}
|
|
|
|
static int thin_preresume(struct dm_target *ti)
|
|
{
|
|
struct thin_c *tc = ti->private;
|
|
|
|
if (tc->origin_dev)
|
|
tc->origin_size = get_dev_size(tc->origin_dev->bdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* <nr mapped sectors> <highest mapped sector>
|
|
*/
|
|
static void thin_status(struct dm_target *ti, status_type_t type,
|
|
unsigned status_flags, char *result, unsigned maxlen)
|
|
{
|
|
int r;
|
|
ssize_t sz = 0;
|
|
dm_block_t mapped, highest;
|
|
char buf[BDEVNAME_SIZE];
|
|
struct thin_c *tc = ti->private;
|
|
|
|
if (get_pool_mode(tc->pool) == PM_FAIL) {
|
|
DMEMIT("Fail");
|
|
return;
|
|
}
|
|
|
|
if (!tc->td)
|
|
DMEMIT("-");
|
|
else {
|
|
switch (type) {
|
|
case STATUSTYPE_INFO:
|
|
r = dm_thin_get_mapped_count(tc->td, &mapped);
|
|
if (r) {
|
|
DMERR("dm_thin_get_mapped_count returned %d", r);
|
|
goto err;
|
|
}
|
|
|
|
r = dm_thin_get_highest_mapped_block(tc->td, &highest);
|
|
if (r < 0) {
|
|
DMERR("dm_thin_get_highest_mapped_block returned %d", r);
|
|
goto err;
|
|
}
|
|
|
|
DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
|
|
if (r)
|
|
DMEMIT("%llu", ((highest + 1) *
|
|
tc->pool->sectors_per_block) - 1);
|
|
else
|
|
DMEMIT("-");
|
|
break;
|
|
|
|
case STATUSTYPE_TABLE:
|
|
DMEMIT("%s %lu",
|
|
format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
|
|
(unsigned long) tc->dev_id);
|
|
if (tc->origin_dev)
|
|
DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
|
|
err:
|
|
DMEMIT("Error");
|
|
}
|
|
|
|
static int thin_iterate_devices(struct dm_target *ti,
|
|
iterate_devices_callout_fn fn, void *data)
|
|
{
|
|
sector_t blocks;
|
|
struct thin_c *tc = ti->private;
|
|
struct pool *pool = tc->pool;
|
|
|
|
/*
|
|
* We can't call dm_pool_get_data_dev_size() since that blocks. So
|
|
* we follow a more convoluted path through to the pool's target.
|
|
*/
|
|
if (!pool->ti)
|
|
return 0; /* nothing is bound */
|
|
|
|
blocks = pool->ti->len;
|
|
(void) sector_div(blocks, pool->sectors_per_block);
|
|
if (blocks)
|
|
return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|
{
|
|
struct thin_c *tc = ti->private;
|
|
struct pool *pool = tc->pool;
|
|
|
|
if (!pool->pf.discard_enabled)
|
|
return;
|
|
|
|
limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
|
|
limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
|
|
}
|
|
|
|
static struct target_type thin_target = {
|
|
.name = "thin",
|
|
.version = {1, 19, 0},
|
|
.module = THIS_MODULE,
|
|
.ctr = thin_ctr,
|
|
.dtr = thin_dtr,
|
|
.map = thin_map,
|
|
.end_io = thin_endio,
|
|
.preresume = thin_preresume,
|
|
.presuspend = thin_presuspend,
|
|
.postsuspend = thin_postsuspend,
|
|
.status = thin_status,
|
|
.iterate_devices = thin_iterate_devices,
|
|
.io_hints = thin_io_hints,
|
|
};
|
|
|
|
/*----------------------------------------------------------------*/
|
|
|
|
static int __init dm_thin_init(void)
|
|
{
|
|
int r = -ENOMEM;
|
|
|
|
pool_table_init();
|
|
|
|
_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
|
|
if (!_new_mapping_cache)
|
|
return r;
|
|
|
|
r = dm_register_target(&thin_target);
|
|
if (r)
|
|
goto bad_new_mapping_cache;
|
|
|
|
r = dm_register_target(&pool_target);
|
|
if (r)
|
|
goto bad_thin_target;
|
|
|
|
return 0;
|
|
|
|
bad_thin_target:
|
|
dm_unregister_target(&thin_target);
|
|
bad_new_mapping_cache:
|
|
kmem_cache_destroy(_new_mapping_cache);
|
|
|
|
return r;
|
|
}
|
|
|
|
static void dm_thin_exit(void)
|
|
{
|
|
dm_unregister_target(&thin_target);
|
|
dm_unregister_target(&pool_target);
|
|
|
|
kmem_cache_destroy(_new_mapping_cache);
|
|
|
|
pool_table_exit();
|
|
}
|
|
|
|
module_init(dm_thin_init);
|
|
module_exit(dm_thin_exit);
|
|
|
|
module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
|
|
MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
|
|
|
|
MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
|
|
MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
|
|
MODULE_LICENSE("GPL");
|