mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 19:55:28 +07:00
766cc6b1f7
The hardware has a single block for applying a CTM prior to gamma lut. It can be fed with pixels from one of our CRTC at a time and uses a matrix with S0.9 scalars. Use private atomic state to reject attempts from userland to apply CTM for more than one CRTC at a time and reject matrices with scalars that we can't approximate without integer bits. Signed-off-by: Stefan Schake <stschake@gmail.com> Signed-off-by: Eric Anholt <eric@anholt.net> Reviewed-by: Eric Anholt <eric@anholt.net> Link: https://patchwork.freedesktop.org/patch/218067/
1124 lines
32 KiB
C
1124 lines
32 KiB
C
/*
|
|
* Copyright (C) 2015 Broadcom
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 CRTC module
|
|
*
|
|
* In VC4, the Pixel Valve is what most closely corresponds to the
|
|
* DRM's concept of a CRTC. The PV generates video timings from the
|
|
* encoder's clock plus its configuration. It pulls scaled pixels from
|
|
* the HVS at that timing, and feeds it to the encoder.
|
|
*
|
|
* However, the DRM CRTC also collects the configuration of all the
|
|
* DRM planes attached to it. As a result, the CRTC is also
|
|
* responsible for writing the display list for the HVS channel that
|
|
* the CRTC will use.
|
|
*
|
|
* The 2835 has 3 different pixel valves. pv0 in the audio power
|
|
* domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
|
|
* image domain can feed either HDMI or the SDTV controller. The
|
|
* pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
|
|
* SDTV, etc.) according to which output type is chosen in the mux.
|
|
*
|
|
* For power management, the pixel valve's registers are all clocked
|
|
* by the AXI clock, while the timings and FIFOs make use of the
|
|
* output-specific clock. Since the encoders also directly consume
|
|
* the CPRMAN clocks, and know what timings they need, they are the
|
|
* ones that set the clock.
|
|
*/
|
|
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc_helper.h>
|
|
#include <linux/clk.h>
|
|
#include <drm/drm_fb_cma_helper.h>
|
|
#include <linux/component.h>
|
|
#include <linux/of_device.h>
|
|
#include "vc4_drv.h"
|
|
#include "vc4_regs.h"
|
|
|
|
struct vc4_crtc_state {
|
|
struct drm_crtc_state base;
|
|
/* Dlist area for this CRTC configuration. */
|
|
struct drm_mm_node mm;
|
|
};
|
|
|
|
static inline struct vc4_crtc_state *
|
|
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
|
|
{
|
|
return (struct vc4_crtc_state *)crtc_state;
|
|
}
|
|
|
|
#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
|
|
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
|
|
|
|
#define CRTC_REG(reg) { reg, #reg }
|
|
static const struct {
|
|
u32 reg;
|
|
const char *name;
|
|
} crtc_regs[] = {
|
|
CRTC_REG(PV_CONTROL),
|
|
CRTC_REG(PV_V_CONTROL),
|
|
CRTC_REG(PV_VSYNCD_EVEN),
|
|
CRTC_REG(PV_HORZA),
|
|
CRTC_REG(PV_HORZB),
|
|
CRTC_REG(PV_VERTA),
|
|
CRTC_REG(PV_VERTB),
|
|
CRTC_REG(PV_VERTA_EVEN),
|
|
CRTC_REG(PV_VERTB_EVEN),
|
|
CRTC_REG(PV_INTEN),
|
|
CRTC_REG(PV_INTSTAT),
|
|
CRTC_REG(PV_STAT),
|
|
CRTC_REG(PV_HACT_ACT),
|
|
};
|
|
|
|
static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
|
|
DRM_INFO("0x%04x (%s): 0x%08x\n",
|
|
crtc_regs[i].reg, crtc_regs[i].name,
|
|
CRTC_READ(crtc_regs[i].reg));
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
|
|
{
|
|
struct drm_info_node *node = (struct drm_info_node *)m->private;
|
|
struct drm_device *dev = node->minor->dev;
|
|
int crtc_index = (uintptr_t)node->info_ent->data;
|
|
struct drm_crtc *crtc;
|
|
struct vc4_crtc *vc4_crtc;
|
|
int i;
|
|
|
|
i = 0;
|
|
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
|
|
if (i == crtc_index)
|
|
break;
|
|
i++;
|
|
}
|
|
if (!crtc)
|
|
return 0;
|
|
vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
|
|
seq_printf(m, "%s (0x%04x): 0x%08x\n",
|
|
crtc_regs[i].name, crtc_regs[i].reg,
|
|
CRTC_READ(crtc_regs[i].reg));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
|
|
bool in_vblank_irq, int *vpos, int *hpos,
|
|
ktime_t *stime, ktime_t *etime,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 val;
|
|
int fifo_lines;
|
|
int vblank_lines;
|
|
bool ret = false;
|
|
|
|
/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
|
|
|
|
/* Get optional system timestamp before query. */
|
|
if (stime)
|
|
*stime = ktime_get();
|
|
|
|
/*
|
|
* Read vertical scanline which is currently composed for our
|
|
* pixelvalve by the HVS, and also the scaler status.
|
|
*/
|
|
val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
|
|
|
|
/* Get optional system timestamp after query. */
|
|
if (etime)
|
|
*etime = ktime_get();
|
|
|
|
/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
|
|
|
|
/* Vertical position of hvs composed scanline. */
|
|
*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
|
|
*hpos = 0;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
*vpos /= 2;
|
|
|
|
/* Use hpos to correct for field offset in interlaced mode. */
|
|
if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
|
|
*hpos += mode->crtc_htotal / 2;
|
|
}
|
|
|
|
/* This is the offset we need for translating hvs -> pv scanout pos. */
|
|
fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
|
|
|
|
if (fifo_lines > 0)
|
|
ret = true;
|
|
|
|
/* HVS more than fifo_lines into frame for compositing? */
|
|
if (*vpos > fifo_lines) {
|
|
/*
|
|
* We are in active scanout and can get some meaningful results
|
|
* from HVS. The actual PV scanout can not trail behind more
|
|
* than fifo_lines as that is the fifo's capacity. Assume that
|
|
* in active scanout the HVS and PV work in lockstep wrt. HVS
|
|
* refilling the fifo and PV consuming from the fifo, ie.
|
|
* whenever the PV consumes and frees up a scanline in the
|
|
* fifo, the HVS will immediately refill it, therefore
|
|
* incrementing vpos. Therefore we choose HVS read position -
|
|
* fifo size in scanlines as a estimate of the real scanout
|
|
* position of the PV.
|
|
*/
|
|
*vpos -= fifo_lines + 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Less: This happens when we are in vblank and the HVS, after getting
|
|
* the VSTART restart signal from the PV, just started refilling its
|
|
* fifo with new lines from the top-most lines of the new framebuffers.
|
|
* The PV does not scan out in vblank, so does not remove lines from
|
|
* the fifo, so the fifo will be full quickly and the HVS has to pause.
|
|
* We can't get meaningful readings wrt. scanline position of the PV
|
|
* and need to make things up in a approximative but consistent way.
|
|
*/
|
|
vblank_lines = mode->vtotal - mode->vdisplay;
|
|
|
|
if (in_vblank_irq) {
|
|
/*
|
|
* Assume the irq handler got called close to first
|
|
* line of vblank, so PV has about a full vblank
|
|
* scanlines to go, and as a base timestamp use the
|
|
* one taken at entry into vblank irq handler, so it
|
|
* is not affected by random delays due to lock
|
|
* contention on event_lock or vblank_time lock in
|
|
* the core.
|
|
*/
|
|
*vpos = -vblank_lines;
|
|
|
|
if (stime)
|
|
*stime = vc4_crtc->t_vblank;
|
|
if (etime)
|
|
*etime = vc4_crtc->t_vblank;
|
|
|
|
/*
|
|
* If the HVS fifo is not yet full then we know for certain
|
|
* we are at the very beginning of vblank, as the hvs just
|
|
* started refilling, and the stime and etime timestamps
|
|
* truly correspond to start of vblank.
|
|
*
|
|
* Unfortunately there's no way to report this to upper levels
|
|
* and make it more useful.
|
|
*/
|
|
} else {
|
|
/*
|
|
* No clue where we are inside vblank. Return a vpos of zero,
|
|
* which will cause calling code to just return the etime
|
|
* timestamp uncorrected. At least this is no worse than the
|
|
* standard fallback.
|
|
*/
|
|
*vpos = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_crtc_destroy(struct drm_crtc *crtc)
|
|
{
|
|
drm_crtc_cleanup(crtc);
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_lut_load(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 i;
|
|
|
|
/* The LUT memory is laid out with each HVS channel in order,
|
|
* each of which takes 256 writes for R, 256 for G, then 256
|
|
* for B.
|
|
*/
|
|
HVS_WRITE(SCALER_GAMADDR,
|
|
SCALER_GAMADDR_AUTOINC |
|
|
(vc4_crtc->channel * 3 * crtc->gamma_size));
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
|
|
for (i = 0; i < crtc->gamma_size; i++)
|
|
HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_color_lut *lut = crtc->state->gamma_lut->data;
|
|
u32 length = drm_color_lut_size(crtc->state->gamma_lut);
|
|
u32 i;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
|
|
vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
|
|
vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
|
|
}
|
|
|
|
vc4_crtc_lut_load(crtc);
|
|
}
|
|
|
|
static u32 vc4_get_fifo_full_level(u32 format)
|
|
{
|
|
static const u32 fifo_len_bytes = 64;
|
|
static const u32 hvs_latency_pix = 6;
|
|
|
|
switch (format) {
|
|
case PV_CONTROL_FORMAT_DSIV_16:
|
|
case PV_CONTROL_FORMAT_DSIC_16:
|
|
return fifo_len_bytes - 2 * hvs_latency_pix;
|
|
case PV_CONTROL_FORMAT_DSIV_18:
|
|
return fifo_len_bytes - 14;
|
|
case PV_CONTROL_FORMAT_24:
|
|
case PV_CONTROL_FORMAT_DSIV_24:
|
|
default:
|
|
return fifo_len_bytes - 3 * hvs_latency_pix;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns the encoder attached to the CRTC.
|
|
*
|
|
* VC4 can only scan out to one encoder at a time, while the DRM core
|
|
* allows drivers to push pixels to more than one encoder from the
|
|
* same CRTC.
|
|
*/
|
|
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_connector *connector;
|
|
struct drm_connector_list_iter conn_iter;
|
|
|
|
drm_connector_list_iter_begin(crtc->dev, &conn_iter);
|
|
drm_for_each_connector_iter(connector, &conn_iter) {
|
|
if (connector->state->crtc == crtc) {
|
|
drm_connector_list_iter_end(&conn_iter);
|
|
return connector->encoder;
|
|
}
|
|
}
|
|
drm_connector_list_iter_end(&conn_iter);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
|
|
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_crtc_state *state = crtc->state;
|
|
struct drm_display_mode *mode = &state->adjusted_mode;
|
|
bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
|
|
bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
|
|
vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
|
|
u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
|
|
bool debug_dump_regs = false;
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
|
|
vc4_crtc_dump_regs(vc4_crtc);
|
|
}
|
|
|
|
/* Reset the PV fifo. */
|
|
CRTC_WRITE(PV_CONTROL, 0);
|
|
CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
|
|
CRTC_WRITE(PV_CONTROL, 0);
|
|
|
|
CRTC_WRITE(PV_HORZA,
|
|
VC4_SET_FIELD((mode->htotal -
|
|
mode->hsync_end) * pixel_rep,
|
|
PV_HORZA_HBP) |
|
|
VC4_SET_FIELD((mode->hsync_end -
|
|
mode->hsync_start) * pixel_rep,
|
|
PV_HORZA_HSYNC));
|
|
CRTC_WRITE(PV_HORZB,
|
|
VC4_SET_FIELD((mode->hsync_start -
|
|
mode->hdisplay) * pixel_rep,
|
|
PV_HORZB_HFP) |
|
|
VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
|
|
|
|
CRTC_WRITE(PV_VERTA,
|
|
VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
|
|
PV_VERTA_VBP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
|
|
PV_VERTA_VSYNC));
|
|
CRTC_WRITE(PV_VERTB,
|
|
VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
|
|
PV_VERTB_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
|
|
|
|
if (interlace) {
|
|
CRTC_WRITE(PV_VERTA_EVEN,
|
|
VC4_SET_FIELD(mode->crtc_vtotal -
|
|
mode->crtc_vsync_end - 1,
|
|
PV_VERTA_VBP) |
|
|
VC4_SET_FIELD(mode->crtc_vsync_end -
|
|
mode->crtc_vsync_start,
|
|
PV_VERTA_VSYNC));
|
|
CRTC_WRITE(PV_VERTB_EVEN,
|
|
VC4_SET_FIELD(mode->crtc_vsync_start -
|
|
mode->crtc_vdisplay,
|
|
PV_VERTB_VFP) |
|
|
VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
|
|
|
|
/* We set up first field even mode for HDMI. VEC's
|
|
* NTSC mode would want first field odd instead, once
|
|
* we support it (to do so, set ODD_FIRST and put the
|
|
* delay in VSYNCD_EVEN instead).
|
|
*/
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
PV_VCONTROL_CONTINUOUS |
|
|
(is_dsi ? PV_VCONTROL_DSI : 0) |
|
|
PV_VCONTROL_INTERLACE |
|
|
VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
|
|
PV_VCONTROL_ODD_DELAY));
|
|
CRTC_WRITE(PV_VSYNCD_EVEN, 0);
|
|
} else {
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
PV_VCONTROL_CONTINUOUS |
|
|
(is_dsi ? PV_VCONTROL_DSI : 0));
|
|
}
|
|
|
|
CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
|
|
|
|
CRTC_WRITE(PV_CONTROL,
|
|
VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
|
|
VC4_SET_FIELD(vc4_get_fifo_full_level(format),
|
|
PV_CONTROL_FIFO_LEVEL) |
|
|
VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
|
|
PV_CONTROL_CLR_AT_START |
|
|
PV_CONTROL_TRIGGER_UNDERFLOW |
|
|
PV_CONTROL_WAIT_HSTART |
|
|
VC4_SET_FIELD(vc4_encoder->clock_select,
|
|
PV_CONTROL_CLK_SELECT) |
|
|
PV_CONTROL_FIFO_CLR |
|
|
PV_CONTROL_EN);
|
|
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
|
|
SCALER_DISPBKGND_AUTOHS |
|
|
SCALER_DISPBKGND_GAMMA |
|
|
(interlace ? SCALER_DISPBKGND_INTERLACE : 0));
|
|
|
|
/* Reload the LUT, since the SRAMs would have been disabled if
|
|
* all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
|
|
*/
|
|
vc4_crtc_lut_load(crtc);
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
|
|
vc4_crtc_dump_regs(vc4_crtc);
|
|
}
|
|
}
|
|
|
|
static void require_hvs_enabled(struct drm_device *dev)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
|
|
SCALER_DISPCTRL_ENABLE);
|
|
}
|
|
|
|
static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
u32 chan = vc4_crtc->channel;
|
|
int ret;
|
|
require_hvs_enabled(dev);
|
|
|
|
/* Disable vblank irq handling before crtc is disabled. */
|
|
drm_crtc_vblank_off(crtc);
|
|
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
|
|
ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
|
|
WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
|
|
|
|
if (HVS_READ(SCALER_DISPCTRLX(chan)) &
|
|
SCALER_DISPCTRLX_ENABLE) {
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan),
|
|
SCALER_DISPCTRLX_RESET);
|
|
|
|
/* While the docs say that reset is self-clearing, it
|
|
* seems it doesn't actually.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
|
|
}
|
|
|
|
/* Once we leave, the scaler should be disabled and its fifo empty. */
|
|
|
|
WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
|
|
|
|
WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
|
|
SCALER_DISPSTATX_MODE) !=
|
|
SCALER_DISPSTATX_MODE_DISABLED);
|
|
|
|
WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
|
|
(SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
|
|
SCALER_DISPSTATX_EMPTY);
|
|
|
|
/*
|
|
* Make sure we issue a vblank event after disabling the CRTC if
|
|
* someone was waiting it.
|
|
*/
|
|
if (crtc->state->event) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
drm_crtc_send_vblank_event(crtc, crtc->state->event);
|
|
crtc->state->event = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
}
|
|
|
|
static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
|
|
if (crtc->state->event) {
|
|
unsigned long flags;
|
|
|
|
crtc->state->event->pipe = drm_crtc_index(crtc);
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
vc4_crtc->event = crtc->state->event;
|
|
crtc->state->event = NULL;
|
|
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
vc4_state->mm.start);
|
|
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
} else {
|
|
HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
|
|
vc4_state->mm.start);
|
|
}
|
|
}
|
|
|
|
static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct drm_crtc_state *state = crtc->state;
|
|
struct drm_display_mode *mode = &state->adjusted_mode;
|
|
|
|
require_hvs_enabled(dev);
|
|
|
|
/* Enable vblank irq handling before crtc is started otherwise
|
|
* drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
|
|
*/
|
|
drm_crtc_vblank_on(crtc);
|
|
vc4_crtc_update_dlist(crtc);
|
|
|
|
/* Turn on the scaler, which will wait for vstart to start
|
|
* compositing.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
|
|
VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
|
|
VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
|
|
SCALER_DISPCTRLX_ENABLE);
|
|
|
|
/* Turn on the pixel valve, which will emit the vstart signal. */
|
|
CRTC_WRITE(PV_V_CONTROL,
|
|
CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
|
|
}
|
|
|
|
static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
/* Do not allow doublescan modes from user space */
|
|
if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
|
|
DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
|
|
crtc->base.id);
|
|
return MODE_NO_DBLESCAN;
|
|
}
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane;
|
|
unsigned long flags;
|
|
const struct drm_plane_state *plane_state;
|
|
u32 dlist_count = 0;
|
|
int ret;
|
|
|
|
/* The pixelvalve can only feed one encoder (and encoders are
|
|
* 1:1 with connectors.)
|
|
*/
|
|
if (hweight32(state->connector_mask) > 1)
|
|
return -EINVAL;
|
|
|
|
drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
|
|
dlist_count += vc4_plane_dlist_size(plane_state);
|
|
|
|
dlist_count++; /* Account for SCALER_CTL0_END. */
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
|
|
ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
|
|
dlist_count);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
struct drm_plane *plane;
|
|
struct vc4_plane_state *vc4_plane_state;
|
|
bool debug_dump_regs = false;
|
|
bool enable_bg_fill = false;
|
|
u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
|
|
u32 __iomem *dlist_next = dlist_start;
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(dev);
|
|
}
|
|
|
|
/* Copy all the active planes' dlist contents to the hardware dlist. */
|
|
drm_atomic_crtc_for_each_plane(plane, crtc) {
|
|
/* Is this the first active plane? */
|
|
if (dlist_next == dlist_start) {
|
|
/* We need to enable background fill when a plane
|
|
* could be alpha blending from the background, i.e.
|
|
* where no other plane is underneath. It suffices to
|
|
* consider the first active plane here since we set
|
|
* needs_bg_fill such that either the first plane
|
|
* already needs it or all planes on top blend from
|
|
* the first or a lower plane.
|
|
*/
|
|
vc4_plane_state = to_vc4_plane_state(plane->state);
|
|
enable_bg_fill = vc4_plane_state->needs_bg_fill;
|
|
}
|
|
|
|
dlist_next += vc4_plane_write_dlist(plane, dlist_next);
|
|
}
|
|
|
|
writel(SCALER_CTL0_END, dlist_next);
|
|
dlist_next++;
|
|
|
|
WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
|
|
|
|
if (enable_bg_fill)
|
|
/* This sets a black background color fill, as is the case
|
|
* with other DRM drivers.
|
|
*/
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
|
|
HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
|
|
SCALER_DISPBKGND_FILL);
|
|
|
|
/* Only update DISPLIST if the CRTC was already running and is not
|
|
* being disabled.
|
|
* vc4_crtc_enable() takes care of updating the dlist just after
|
|
* re-enabling VBLANK interrupts and before enabling the engine.
|
|
* If the CRTC is being disabled, there's no point in updating this
|
|
* information.
|
|
*/
|
|
if (crtc->state->active && old_state->active)
|
|
vc4_crtc_update_dlist(crtc);
|
|
|
|
if (crtc->state->color_mgmt_changed) {
|
|
u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
|
|
|
|
if (crtc->state->gamma_lut) {
|
|
vc4_crtc_update_gamma_lut(crtc);
|
|
dispbkgndx |= SCALER_DISPBKGND_GAMMA;
|
|
} else {
|
|
/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
|
|
* in hardware, which is the same as a linear lut that
|
|
* DRM expects us to use in absence of a user lut.
|
|
*/
|
|
dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
|
|
}
|
|
HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
|
|
}
|
|
|
|
if (debug_dump_regs) {
|
|
DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
|
|
vc4_hvs_dump_state(dev);
|
|
}
|
|
}
|
|
|
|
static int vc4_enable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_disable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
}
|
|
|
|
static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_crtc *crtc = &vc4_crtc->base;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
|
|
u32 chan = vc4_crtc->channel;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
if (vc4_crtc->event &&
|
|
(vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
|
|
drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
|
|
vc4_crtc->event = NULL;
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = data;
|
|
u32 stat = CRTC_READ(PV_INTSTAT);
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
if (stat & PV_INT_VFP_START) {
|
|
vc4_crtc->t_vblank = ktime_get();
|
|
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
|
|
drm_crtc_handle_vblank(&vc4_crtc->base);
|
|
vc4_crtc_handle_page_flip(vc4_crtc);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct vc4_async_flip_state {
|
|
struct drm_crtc *crtc;
|
|
struct drm_framebuffer *fb;
|
|
struct drm_pending_vblank_event *event;
|
|
|
|
struct vc4_seqno_cb cb;
|
|
};
|
|
|
|
/* Called when the V3D execution for the BO being flipped to is done, so that
|
|
* we can actually update the plane's address to point to it.
|
|
*/
|
|
static void
|
|
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
|
|
{
|
|
struct vc4_async_flip_state *flip_state =
|
|
container_of(cb, struct vc4_async_flip_state, cb);
|
|
struct drm_crtc *crtc = flip_state->crtc;
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane = crtc->primary;
|
|
|
|
vc4_plane_async_set_fb(plane, flip_state->fb);
|
|
if (flip_state->event) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
drm_crtc_send_vblank_event(crtc, flip_state->event);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
drm_framebuffer_put(flip_state->fb);
|
|
kfree(flip_state);
|
|
|
|
up(&vc4->async_modeset);
|
|
}
|
|
|
|
/* Implements async (non-vblank-synced) page flips.
|
|
*
|
|
* The page flip ioctl needs to return immediately, so we grab the
|
|
* modeset semaphore on the pipe, and queue the address update for
|
|
* when V3D is done with the BO being flipped to.
|
|
*/
|
|
static int vc4_async_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t flags)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(dev);
|
|
struct drm_plane *plane = crtc->primary;
|
|
int ret = 0;
|
|
struct vc4_async_flip_state *flip_state;
|
|
struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
|
|
struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
|
|
|
|
flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
|
|
if (!flip_state)
|
|
return -ENOMEM;
|
|
|
|
drm_framebuffer_get(fb);
|
|
flip_state->fb = fb;
|
|
flip_state->crtc = crtc;
|
|
flip_state->event = event;
|
|
|
|
/* Make sure all other async modesetes have landed. */
|
|
ret = down_interruptible(&vc4->async_modeset);
|
|
if (ret) {
|
|
drm_framebuffer_put(fb);
|
|
kfree(flip_state);
|
|
return ret;
|
|
}
|
|
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
/* Immediately update the plane's legacy fb pointer, so that later
|
|
* modeset prep sees the state that will be present when the semaphore
|
|
* is released.
|
|
*/
|
|
drm_atomic_set_fb_for_plane(plane->state, fb);
|
|
plane->fb = fb;
|
|
|
|
vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
|
|
vc4_async_page_flip_complete);
|
|
|
|
/* Driver takes ownership of state on successful async commit. */
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_page_flip(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t flags,
|
|
struct drm_modeset_acquire_ctx *ctx)
|
|
{
|
|
if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
|
|
return vc4_async_page_flip(crtc, fb, event, flags);
|
|
else
|
|
return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
|
|
}
|
|
|
|
static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc_state *vc4_state;
|
|
|
|
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
|
|
if (!vc4_state)
|
|
return NULL;
|
|
|
|
__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
|
|
return &vc4_state->base;
|
|
}
|
|
|
|
static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
|
|
struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
|
|
|
|
if (vc4_state->mm.allocated) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
|
|
drm_mm_remove_node(&vc4_state->mm);
|
|
spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
|
|
|
|
}
|
|
|
|
drm_atomic_helper_crtc_destroy_state(crtc, state);
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_reset(struct drm_crtc *crtc)
|
|
{
|
|
if (crtc->state)
|
|
__drm_atomic_helper_crtc_destroy_state(crtc->state);
|
|
|
|
crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
|
|
if (crtc->state)
|
|
crtc->state->crtc = crtc;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs vc4_crtc_funcs = {
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.destroy = vc4_crtc_destroy,
|
|
.page_flip = vc4_page_flip,
|
|
.set_property = NULL,
|
|
.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
|
|
.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
|
|
.reset = vc4_crtc_reset,
|
|
.atomic_duplicate_state = vc4_crtc_duplicate_state,
|
|
.atomic_destroy_state = vc4_crtc_destroy_state,
|
|
.gamma_set = drm_atomic_helper_legacy_gamma_set,
|
|
.enable_vblank = vc4_enable_vblank,
|
|
.disable_vblank = vc4_disable_vblank,
|
|
};
|
|
|
|
static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
|
|
.mode_set_nofb = vc4_crtc_mode_set_nofb,
|
|
.mode_valid = vc4_crtc_mode_valid,
|
|
.atomic_check = vc4_crtc_atomic_check,
|
|
.atomic_flush = vc4_crtc_atomic_flush,
|
|
.atomic_enable = vc4_crtc_atomic_enable,
|
|
.atomic_disable = vc4_crtc_atomic_disable,
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv0_data = {
|
|
.hvs_channel = 0,
|
|
.encoder_types = {
|
|
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
|
|
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
|
|
},
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv1_data = {
|
|
.hvs_channel = 2,
|
|
.encoder_types = {
|
|
[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
|
|
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
|
|
},
|
|
};
|
|
|
|
static const struct vc4_crtc_data pv2_data = {
|
|
.hvs_channel = 1,
|
|
.encoder_types = {
|
|
[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
|
|
[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
|
|
},
|
|
};
|
|
|
|
static const struct of_device_id vc4_crtc_dt_match[] = {
|
|
{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
|
|
{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
|
|
{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
|
|
{}
|
|
};
|
|
|
|
static void vc4_set_crtc_possible_masks(struct drm_device *drm,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
|
|
const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
|
|
const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
|
|
struct drm_encoder *encoder;
|
|
|
|
drm_for_each_encoder(encoder, drm) {
|
|
struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
|
|
if (vc4_encoder->type == encoder_types[i]) {
|
|
vc4_encoder->clock_select = i;
|
|
encoder->possible_crtcs |= drm_crtc_mask(crtc);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
|
|
{
|
|
struct drm_device *drm = vc4_crtc->base.dev;
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
|
|
/* Top/base are supposed to be 4-pixel aligned, but the
|
|
* Raspberry Pi firmware fills the low bits (which are
|
|
* presumably ignored).
|
|
*/
|
|
u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
|
|
u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
|
|
|
|
vc4_crtc->cob_size = top - base + 4;
|
|
}
|
|
|
|
static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_crtc *vc4_crtc;
|
|
struct drm_crtc *crtc;
|
|
struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
|
|
const struct of_device_id *match;
|
|
int ret, i;
|
|
|
|
vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
|
|
if (!vc4_crtc)
|
|
return -ENOMEM;
|
|
crtc = &vc4_crtc->base;
|
|
|
|
match = of_match_device(vc4_crtc_dt_match, dev);
|
|
if (!match)
|
|
return -ENODEV;
|
|
vc4_crtc->data = match->data;
|
|
|
|
vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
|
|
if (IS_ERR(vc4_crtc->regs))
|
|
return PTR_ERR(vc4_crtc->regs);
|
|
|
|
/* For now, we create just the primary and the legacy cursor
|
|
* planes. We should be able to stack more planes on easily,
|
|
* but to do that we would need to compute the bandwidth
|
|
* requirement of the plane configuration, and reject ones
|
|
* that will take too much.
|
|
*/
|
|
primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
|
|
if (IS_ERR(primary_plane)) {
|
|
dev_err(dev, "failed to construct primary plane\n");
|
|
ret = PTR_ERR(primary_plane);
|
|
goto err;
|
|
}
|
|
|
|
drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
|
|
&vc4_crtc_funcs, NULL);
|
|
drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
|
|
primary_plane->crtc = crtc;
|
|
vc4_crtc->channel = vc4_crtc->data->hvs_channel;
|
|
drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
|
|
drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
|
|
|
|
/* We support CTM, but only for one CRTC at a time. It's therefore
|
|
* implemented as private driver state in vc4_kms, not here.
|
|
*/
|
|
drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
|
|
|
|
/* Set up some arbitrary number of planes. We're not limited
|
|
* by a set number of physical registers, just the space in
|
|
* the HVS (16k) and how small an plane can be (28 bytes).
|
|
* However, each plane we set up takes up some memory, and
|
|
* increases the cost of looping over planes, which atomic
|
|
* modesetting does quite a bit. As a result, we pick a
|
|
* modest number of planes to expose, that should hopefully
|
|
* still cover any sane usecase.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
struct drm_plane *plane =
|
|
vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
|
|
|
|
if (IS_ERR(plane))
|
|
continue;
|
|
|
|
plane->possible_crtcs = 1 << drm_crtc_index(crtc);
|
|
}
|
|
|
|
/* Set up the legacy cursor after overlay initialization,
|
|
* since we overlay planes on the CRTC in the order they were
|
|
* initialized.
|
|
*/
|
|
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
|
|
if (!IS_ERR(cursor_plane)) {
|
|
cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
|
|
cursor_plane->crtc = crtc;
|
|
crtc->cursor = cursor_plane;
|
|
}
|
|
|
|
vc4_crtc_get_cob_allocation(vc4_crtc);
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
|
|
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
|
|
vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
|
|
if (ret)
|
|
goto err_destroy_planes;
|
|
|
|
vc4_set_crtc_possible_masks(drm, crtc);
|
|
|
|
for (i = 0; i < crtc->gamma_size; i++) {
|
|
vc4_crtc->lut_r[i] = i;
|
|
vc4_crtc->lut_g[i] = i;
|
|
vc4_crtc->lut_b[i] = i;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, vc4_crtc);
|
|
|
|
return 0;
|
|
|
|
err_destroy_planes:
|
|
list_for_each_entry_safe(destroy_plane, temp,
|
|
&drm->mode_config.plane_list, head) {
|
|
if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
|
|
destroy_plane->funcs->destroy(destroy_plane);
|
|
}
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static void vc4_crtc_unbind(struct device *dev, struct device *master,
|
|
void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
|
|
|
|
vc4_crtc_destroy(&vc4_crtc->base);
|
|
|
|
CRTC_WRITE(PV_INTEN, 0);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
static const struct component_ops vc4_crtc_ops = {
|
|
.bind = vc4_crtc_bind,
|
|
.unbind = vc4_crtc_unbind,
|
|
};
|
|
|
|
static int vc4_crtc_dev_probe(struct platform_device *pdev)
|
|
{
|
|
return component_add(&pdev->dev, &vc4_crtc_ops);
|
|
}
|
|
|
|
static int vc4_crtc_dev_remove(struct platform_device *pdev)
|
|
{
|
|
component_del(&pdev->dev, &vc4_crtc_ops);
|
|
return 0;
|
|
}
|
|
|
|
struct platform_driver vc4_crtc_driver = {
|
|
.probe = vc4_crtc_dev_probe,
|
|
.remove = vc4_crtc_dev_remove,
|
|
.driver = {
|
|
.name = "vc4_crtc",
|
|
.of_match_table = vc4_crtc_dt_match,
|
|
},
|
|
};
|