mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 01:05:08 +07:00
45d0ba527b
No need to have this in asm/page.h, move it into asm/hugetlb.h Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
1717 lines
46 KiB
C
1717 lines
46 KiB
C
/*
|
|
* Firmware Assisted dump: A robust mechanism to get reliable kernel crash
|
|
* dump with assistance from firmware. This approach does not use kexec,
|
|
* instead firmware assists in booting the kdump kernel while preserving
|
|
* memory contents. The most of the code implementation has been adapted
|
|
* from phyp assisted dump implementation written by Linas Vepstas and
|
|
* Manish Ahuja
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* Copyright 2011 IBM Corporation
|
|
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#undef DEBUG
|
|
#define pr_fmt(fmt) "fadump: " fmt
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/debugfs.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/rtas.h>
|
|
#include <asm/fadump.h>
|
|
#include <asm/setup.h>
|
|
|
|
static struct fw_dump fw_dump;
|
|
static struct fadump_mem_struct fdm;
|
|
static const struct fadump_mem_struct *fdm_active;
|
|
#ifdef CONFIG_CMA
|
|
static struct cma *fadump_cma;
|
|
#endif
|
|
|
|
static DEFINE_MUTEX(fadump_mutex);
|
|
struct fad_crash_memory_ranges *crash_memory_ranges;
|
|
int crash_memory_ranges_size;
|
|
int crash_mem_ranges;
|
|
int max_crash_mem_ranges;
|
|
|
|
#ifdef CONFIG_CMA
|
|
/*
|
|
* fadump_cma_init() - Initialize CMA area from a fadump reserved memory
|
|
*
|
|
* This function initializes CMA area from fadump reserved memory.
|
|
* The total size of fadump reserved memory covers for boot memory size
|
|
* + cpu data size + hpte size and metadata.
|
|
* Initialize only the area equivalent to boot memory size for CMA use.
|
|
* The reamining portion of fadump reserved memory will be not given
|
|
* to CMA and pages for thoes will stay reserved. boot memory size is
|
|
* aligned per CMA requirement to satisy cma_init_reserved_mem() call.
|
|
* But for some reason even if it fails we still have the memory reservation
|
|
* with us and we can still continue doing fadump.
|
|
*/
|
|
int __init fadump_cma_init(void)
|
|
{
|
|
unsigned long long base, size;
|
|
int rc;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* Do not use CMA if user has provided fadump=nocma kernel parameter.
|
|
* Return 1 to continue with fadump old behaviour.
|
|
*/
|
|
if (fw_dump.nocma)
|
|
return 1;
|
|
|
|
base = fw_dump.reserve_dump_area_start;
|
|
size = fw_dump.boot_memory_size;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
|
|
if (rc) {
|
|
pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
|
|
/*
|
|
* Though the CMA init has failed we still have memory
|
|
* reservation with us. The reserved memory will be
|
|
* blocked from production system usage. Hence return 1,
|
|
* so that we can continue with fadump.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* So we now have successfully initialized cma area for fadump.
|
|
*/
|
|
pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
|
|
"bytes of memory reserved for firmware-assisted dump\n",
|
|
cma_get_size(fadump_cma),
|
|
(unsigned long)cma_get_base(fadump_cma) >> 20,
|
|
fw_dump.reserve_dump_area_size);
|
|
return 1;
|
|
}
|
|
#else
|
|
static int __init fadump_cma_init(void) { return 1; }
|
|
#endif /* CONFIG_CMA */
|
|
|
|
/* Scan the Firmware Assisted dump configuration details. */
|
|
int __init early_init_dt_scan_fw_dump(unsigned long node,
|
|
const char *uname, int depth, void *data)
|
|
{
|
|
const __be32 *sections;
|
|
int i, num_sections;
|
|
int size;
|
|
const __be32 *token;
|
|
|
|
if (depth != 1 || strcmp(uname, "rtas") != 0)
|
|
return 0;
|
|
|
|
/*
|
|
* Check if Firmware Assisted dump is supported. if yes, check
|
|
* if dump has been initiated on last reboot.
|
|
*/
|
|
token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
|
|
if (!token)
|
|
return 1;
|
|
|
|
fw_dump.fadump_supported = 1;
|
|
fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
|
|
|
|
/*
|
|
* The 'ibm,kernel-dump' rtas node is present only if there is
|
|
* dump data waiting for us.
|
|
*/
|
|
fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
|
|
if (fdm_active)
|
|
fw_dump.dump_active = 1;
|
|
|
|
/* Get the sizes required to store dump data for the firmware provided
|
|
* dump sections.
|
|
* For each dump section type supported, a 32bit cell which defines
|
|
* the ID of a supported section followed by two 32 bit cells which
|
|
* gives teh size of the section in bytes.
|
|
*/
|
|
sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
|
|
&size);
|
|
|
|
if (!sections)
|
|
return 1;
|
|
|
|
num_sections = size / (3 * sizeof(u32));
|
|
|
|
for (i = 0; i < num_sections; i++, sections += 3) {
|
|
u32 type = (u32)of_read_number(sections, 1);
|
|
|
|
switch (type) {
|
|
case FADUMP_CPU_STATE_DATA:
|
|
fw_dump.cpu_state_data_size =
|
|
of_read_ulong(§ions[1], 2);
|
|
break;
|
|
case FADUMP_HPTE_REGION:
|
|
fw_dump.hpte_region_size =
|
|
of_read_ulong(§ions[1], 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If fadump is registered, check if the memory provided
|
|
* falls within boot memory area and reserved memory area.
|
|
*/
|
|
int is_fadump_memory_area(u64 addr, ulong size)
|
|
{
|
|
u64 d_start = fw_dump.reserve_dump_area_start;
|
|
u64 d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
|
|
if (!fw_dump.dump_registered)
|
|
return 0;
|
|
|
|
if (((addr + size) > d_start) && (addr <= d_end))
|
|
return 1;
|
|
|
|
return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
|
|
}
|
|
|
|
int should_fadump_crash(void)
|
|
{
|
|
if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int is_fadump_active(void)
|
|
{
|
|
return fw_dump.dump_active;
|
|
}
|
|
|
|
/*
|
|
* Returns 1, if there are no holes in boot memory area,
|
|
* 0 otherwise.
|
|
*/
|
|
static int is_boot_memory_area_contiguous(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long tstart, tend;
|
|
unsigned long start_pfn = PHYS_PFN(RMA_START);
|
|
unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
|
|
unsigned int ret = 0;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
|
|
tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
|
|
if (tstart < tend) {
|
|
/* Memory hole from start_pfn to tstart */
|
|
if (tstart > start_pfn)
|
|
break;
|
|
|
|
if (tend == end_pfn) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
start_pfn = tend + 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in reserved memory area,
|
|
* false otherwise.
|
|
*/
|
|
static bool is_reserved_memory_area_contiguous(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long start, end;
|
|
unsigned long d_start = fw_dump.reserve_dump_area_start;
|
|
unsigned long d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start = max(d_start, (unsigned long)reg->base);
|
|
end = min(d_end, (unsigned long)(reg->base + reg->size));
|
|
if (d_start < end) {
|
|
/* Memory hole from d_start to start */
|
|
if (start > d_start)
|
|
break;
|
|
|
|
if (end == d_end)
|
|
return true;
|
|
|
|
d_start = end + 1;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Print firmware assisted dump configurations for debugging purpose. */
|
|
static void fadump_show_config(void)
|
|
{
|
|
pr_debug("Support for firmware-assisted dump (fadump): %s\n",
|
|
(fw_dump.fadump_supported ? "present" : "no support"));
|
|
|
|
if (!fw_dump.fadump_supported)
|
|
return;
|
|
|
|
pr_debug("Fadump enabled : %s\n",
|
|
(fw_dump.fadump_enabled ? "yes" : "no"));
|
|
pr_debug("Dump Active : %s\n",
|
|
(fw_dump.dump_active ? "yes" : "no"));
|
|
pr_debug("Dump section sizes:\n");
|
|
pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
|
|
pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
|
|
pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
|
|
}
|
|
|
|
static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
|
|
unsigned long addr)
|
|
{
|
|
if (!fdm)
|
|
return 0;
|
|
|
|
memset(fdm, 0, sizeof(struct fadump_mem_struct));
|
|
addr = addr & PAGE_MASK;
|
|
|
|
fdm->header.dump_format_version = cpu_to_be32(0x00000001);
|
|
fdm->header.dump_num_sections = cpu_to_be16(3);
|
|
fdm->header.dump_status_flag = 0;
|
|
fdm->header.offset_first_dump_section =
|
|
cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
|
|
|
|
/*
|
|
* Fields for disk dump option.
|
|
* We are not using disk dump option, hence set these fields to 0.
|
|
*/
|
|
fdm->header.dd_block_size = 0;
|
|
fdm->header.dd_block_offset = 0;
|
|
fdm->header.dd_num_blocks = 0;
|
|
fdm->header.dd_offset_disk_path = 0;
|
|
|
|
/* set 0 to disable an automatic dump-reboot. */
|
|
fdm->header.max_time_auto = 0;
|
|
|
|
/* Kernel dump sections */
|
|
/* cpu state data section. */
|
|
fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
|
|
fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
|
|
fdm->cpu_state_data.source_address = 0;
|
|
fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
|
|
fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
|
|
addr += fw_dump.cpu_state_data_size;
|
|
|
|
/* hpte region section */
|
|
fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
|
|
fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
|
|
fdm->hpte_region.source_address = 0;
|
|
fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
|
|
fdm->hpte_region.destination_address = cpu_to_be64(addr);
|
|
addr += fw_dump.hpte_region_size;
|
|
|
|
/* RMA region section */
|
|
fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
|
|
fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
|
|
fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
|
|
fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
|
|
fdm->rmr_region.destination_address = cpu_to_be64(addr);
|
|
addr += fw_dump.boot_memory_size;
|
|
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
|
|
*
|
|
* Function to find the largest memory size we need to reserve during early
|
|
* boot process. This will be the size of the memory that is required for a
|
|
* kernel to boot successfully.
|
|
*
|
|
* This function has been taken from phyp-assisted dump feature implementation.
|
|
*
|
|
* returns larger of 256MB or 5% rounded down to multiples of 256MB.
|
|
*
|
|
* TODO: Come up with better approach to find out more accurate memory size
|
|
* that is required for a kernel to boot successfully.
|
|
*
|
|
*/
|
|
static inline unsigned long fadump_calculate_reserve_size(void)
|
|
{
|
|
int ret;
|
|
unsigned long long base, size;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
|
|
|
|
/*
|
|
* Check if the size is specified through crashkernel= cmdline
|
|
* option. If yes, then use that but ignore base as fadump reserves
|
|
* memory at a predefined offset.
|
|
*/
|
|
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
|
&size, &base);
|
|
if (ret == 0 && size > 0) {
|
|
unsigned long max_size;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
|
|
|
|
fw_dump.reserve_bootvar = (unsigned long)size;
|
|
|
|
/*
|
|
* Adjust if the boot memory size specified is above
|
|
* the upper limit.
|
|
*/
|
|
max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
|
|
if (fw_dump.reserve_bootvar > max_size) {
|
|
fw_dump.reserve_bootvar = max_size;
|
|
pr_info("Adjusted boot memory size to %luMB\n",
|
|
(fw_dump.reserve_bootvar >> 20));
|
|
}
|
|
|
|
return fw_dump.reserve_bootvar;
|
|
} else if (fw_dump.reserve_bootvar) {
|
|
/*
|
|
* 'fadump_reserve_mem=' is being used to reserve memory
|
|
* for firmware-assisted dump.
|
|
*/
|
|
return fw_dump.reserve_bootvar;
|
|
}
|
|
|
|
/* divide by 20 to get 5% of value */
|
|
size = memblock_phys_mem_size() / 20;
|
|
|
|
/* round it down in multiples of 256 */
|
|
size = size & ~0x0FFFFFFFUL;
|
|
|
|
/* Truncate to memory_limit. We don't want to over reserve the memory.*/
|
|
if (memory_limit && size > memory_limit)
|
|
size = memory_limit;
|
|
|
|
return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total memory size required to be reserved for
|
|
* firmware-assisted dump registration.
|
|
*/
|
|
static unsigned long get_fadump_area_size(void)
|
|
{
|
|
unsigned long size = 0;
|
|
|
|
size += fw_dump.cpu_state_data_size;
|
|
size += fw_dump.hpte_region_size;
|
|
size += fw_dump.boot_memory_size;
|
|
size += sizeof(struct fadump_crash_info_header);
|
|
size += sizeof(struct elfhdr); /* ELF core header.*/
|
|
size += sizeof(struct elf_phdr); /* place holder for cpu notes */
|
|
/* Program headers for crash memory regions. */
|
|
size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
|
|
|
|
size = PAGE_ALIGN(size);
|
|
return size;
|
|
}
|
|
|
|
static void __init fadump_reserve_crash_area(unsigned long base,
|
|
unsigned long size)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long mstart, mend, msize;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
mstart = max_t(unsigned long, base, reg->base);
|
|
mend = reg->base + reg->size;
|
|
mend = min(base + size, mend);
|
|
|
|
if (mstart < mend) {
|
|
msize = mend - mstart;
|
|
memblock_reserve(mstart, msize);
|
|
pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
|
|
(msize >> 20), mstart);
|
|
}
|
|
}
|
|
}
|
|
|
|
int __init fadump_reserve_mem(void)
|
|
{
|
|
unsigned long base, size, memory_boundary;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
if (!fw_dump.fadump_supported) {
|
|
printk(KERN_INFO "Firmware-assisted dump is not supported on"
|
|
" this hardware\n");
|
|
fw_dump.fadump_enabled = 0;
|
|
return 0;
|
|
}
|
|
/*
|
|
* Initialize boot memory size
|
|
* If dump is active then we have already calculated the size during
|
|
* first kernel.
|
|
*/
|
|
if (fdm_active)
|
|
fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
|
|
else {
|
|
fw_dump.boot_memory_size = fadump_calculate_reserve_size();
|
|
#ifdef CONFIG_CMA
|
|
if (!fw_dump.nocma)
|
|
fw_dump.boot_memory_size =
|
|
ALIGN(fw_dump.boot_memory_size,
|
|
FADUMP_CMA_ALIGNMENT);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Calculate the memory boundary.
|
|
* If memory_limit is less than actual memory boundary then reserve
|
|
* the memory for fadump beyond the memory_limit and adjust the
|
|
* memory_limit accordingly, so that the running kernel can run with
|
|
* specified memory_limit.
|
|
*/
|
|
if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
|
|
size = get_fadump_area_size();
|
|
if ((memory_limit + size) < memblock_end_of_DRAM())
|
|
memory_limit += size;
|
|
else
|
|
memory_limit = memblock_end_of_DRAM();
|
|
printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
|
|
" dump, now %#016llx\n", memory_limit);
|
|
}
|
|
if (memory_limit)
|
|
memory_boundary = memory_limit;
|
|
else
|
|
memory_boundary = memblock_end_of_DRAM();
|
|
|
|
if (fw_dump.dump_active) {
|
|
pr_info("Firmware-assisted dump is active.\n");
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* FADump capture kernel doesn't care much about hugepages.
|
|
* In fact, handling hugepages in capture kernel is asking for
|
|
* trouble. So, disable HugeTLB support when fadump is active.
|
|
*/
|
|
hugetlb_disabled = true;
|
|
#endif
|
|
/*
|
|
* If last boot has crashed then reserve all the memory
|
|
* above boot_memory_size so that we don't touch it until
|
|
* dump is written to disk by userspace tool. This memory
|
|
* will be released for general use once the dump is saved.
|
|
*/
|
|
base = fw_dump.boot_memory_size;
|
|
size = memory_boundary - base;
|
|
fadump_reserve_crash_area(base, size);
|
|
|
|
fw_dump.fadumphdr_addr =
|
|
be64_to_cpu(fdm_active->rmr_region.destination_address) +
|
|
be64_to_cpu(fdm_active->rmr_region.source_len);
|
|
pr_debug("fadumphdr_addr = %pa\n", &fw_dump.fadumphdr_addr);
|
|
fw_dump.reserve_dump_area_start = base;
|
|
fw_dump.reserve_dump_area_size = size;
|
|
} else {
|
|
size = get_fadump_area_size();
|
|
|
|
/*
|
|
* Reserve memory at an offset closer to bottom of the RAM to
|
|
* minimize the impact of memory hot-remove operation. We can't
|
|
* use memblock_find_in_range() here since it doesn't allocate
|
|
* from bottom to top.
|
|
*/
|
|
for (base = fw_dump.boot_memory_size;
|
|
base <= (memory_boundary - size);
|
|
base += size) {
|
|
if (memblock_is_region_memory(base, size) &&
|
|
!memblock_is_region_reserved(base, size))
|
|
break;
|
|
}
|
|
if ((base > (memory_boundary - size)) ||
|
|
memblock_reserve(base, size)) {
|
|
pr_err("Failed to reserve memory\n");
|
|
return 0;
|
|
}
|
|
|
|
pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
|
|
"assisted dump (System RAM: %ldMB)\n",
|
|
(unsigned long)(size >> 20),
|
|
(unsigned long)(base >> 20),
|
|
(unsigned long)(memblock_phys_mem_size() >> 20));
|
|
|
|
fw_dump.reserve_dump_area_start = base;
|
|
fw_dump.reserve_dump_area_size = size;
|
|
return fadump_cma_init();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
unsigned long __init arch_reserved_kernel_pages(void)
|
|
{
|
|
return memblock_reserved_size() / PAGE_SIZE;
|
|
}
|
|
|
|
/* Look for fadump= cmdline option. */
|
|
static int __init early_fadump_param(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
if (strncmp(p, "on", 2) == 0)
|
|
fw_dump.fadump_enabled = 1;
|
|
else if (strncmp(p, "off", 3) == 0)
|
|
fw_dump.fadump_enabled = 0;
|
|
else if (strncmp(p, "nocma", 5) == 0) {
|
|
fw_dump.fadump_enabled = 1;
|
|
fw_dump.nocma = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("fadump", early_fadump_param);
|
|
|
|
/*
|
|
* Look for fadump_reserve_mem= cmdline option
|
|
* TODO: Remove references to 'fadump_reserve_mem=' parameter,
|
|
* the sooner 'crashkernel=' parameter is accustomed to.
|
|
*/
|
|
static int __init early_fadump_reserve_mem(char *p)
|
|
{
|
|
if (p)
|
|
fw_dump.reserve_bootvar = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("fadump_reserve_mem", early_fadump_reserve_mem);
|
|
|
|
static int register_fw_dump(struct fadump_mem_struct *fdm)
|
|
{
|
|
int rc, err;
|
|
unsigned int wait_time;
|
|
|
|
pr_debug("Registering for firmware-assisted kernel dump...\n");
|
|
|
|
/* TODO: Add upper time limit for the delay */
|
|
do {
|
|
rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
|
|
FADUMP_REGISTER, fdm,
|
|
sizeof(struct fadump_mem_struct));
|
|
|
|
wait_time = rtas_busy_delay_time(rc);
|
|
if (wait_time)
|
|
mdelay(wait_time);
|
|
|
|
} while (wait_time);
|
|
|
|
err = -EIO;
|
|
switch (rc) {
|
|
default:
|
|
pr_err("Failed to register. Unknown Error(%d).\n", rc);
|
|
break;
|
|
case -1:
|
|
printk(KERN_ERR "Failed to register firmware-assisted kernel"
|
|
" dump. Hardware Error(%d).\n", rc);
|
|
break;
|
|
case -3:
|
|
if (!is_boot_memory_area_contiguous())
|
|
pr_err("Can't have holes in boot memory area while registering fadump\n");
|
|
else if (!is_reserved_memory_area_contiguous())
|
|
pr_err("Can't have holes in reserved memory area while"
|
|
" registering fadump\n");
|
|
|
|
printk(KERN_ERR "Failed to register firmware-assisted kernel"
|
|
" dump. Parameter Error(%d).\n", rc);
|
|
err = -EINVAL;
|
|
break;
|
|
case -9:
|
|
printk(KERN_ERR "firmware-assisted kernel dump is already "
|
|
" registered.");
|
|
fw_dump.dump_registered = 1;
|
|
err = -EEXIST;
|
|
break;
|
|
case 0:
|
|
printk(KERN_INFO "firmware-assisted kernel dump registration"
|
|
" is successful\n");
|
|
fw_dump.dump_registered = 1;
|
|
err = 0;
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void crash_fadump(struct pt_regs *regs, const char *str)
|
|
{
|
|
struct fadump_crash_info_header *fdh = NULL;
|
|
int old_cpu, this_cpu;
|
|
|
|
if (!should_fadump_crash())
|
|
return;
|
|
|
|
/*
|
|
* old_cpu == -1 means this is the first CPU which has come here,
|
|
* go ahead and trigger fadump.
|
|
*
|
|
* old_cpu != -1 means some other CPU has already on it's way
|
|
* to trigger fadump, just keep looping here.
|
|
*/
|
|
this_cpu = smp_processor_id();
|
|
old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
|
|
|
|
if (old_cpu != -1) {
|
|
/*
|
|
* We can't loop here indefinitely. Wait as long as fadump
|
|
* is in force. If we race with fadump un-registration this
|
|
* loop will break and then we go down to normal panic path
|
|
* and reboot. If fadump is in force the first crashing
|
|
* cpu will definitely trigger fadump.
|
|
*/
|
|
while (fw_dump.dump_registered)
|
|
cpu_relax();
|
|
return;
|
|
}
|
|
|
|
fdh = __va(fw_dump.fadumphdr_addr);
|
|
fdh->crashing_cpu = crashing_cpu;
|
|
crash_save_vmcoreinfo();
|
|
|
|
if (regs)
|
|
fdh->regs = *regs;
|
|
else
|
|
ppc_save_regs(&fdh->regs);
|
|
|
|
fdh->online_mask = *cpu_online_mask;
|
|
|
|
/* Call ibm,os-term rtas call to trigger firmware assisted dump */
|
|
rtas_os_term((char *)str);
|
|
}
|
|
|
|
#define GPR_MASK 0xffffff0000000000
|
|
static inline int fadump_gpr_index(u64 id)
|
|
{
|
|
int i = -1;
|
|
char str[3];
|
|
|
|
if ((id & GPR_MASK) == REG_ID("GPR")) {
|
|
/* get the digits at the end */
|
|
id &= ~GPR_MASK;
|
|
id >>= 24;
|
|
str[2] = '\0';
|
|
str[1] = id & 0xff;
|
|
str[0] = (id >> 8) & 0xff;
|
|
sscanf(str, "%d", &i);
|
|
if (i > 31)
|
|
i = -1;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
|
|
u64 reg_val)
|
|
{
|
|
int i;
|
|
|
|
i = fadump_gpr_index(reg_id);
|
|
if (i >= 0)
|
|
regs->gpr[i] = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("NIA"))
|
|
regs->nip = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("MSR"))
|
|
regs->msr = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("CTR"))
|
|
regs->ctr = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("LR"))
|
|
regs->link = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("XER"))
|
|
regs->xer = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("CR"))
|
|
regs->ccr = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("DAR"))
|
|
regs->dar = (unsigned long)reg_val;
|
|
else if (reg_id == REG_ID("DSISR"))
|
|
regs->dsisr = (unsigned long)reg_val;
|
|
}
|
|
|
|
static struct fadump_reg_entry*
|
|
fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
|
|
{
|
|
memset(regs, 0, sizeof(struct pt_regs));
|
|
|
|
while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
|
|
fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
|
|
be64_to_cpu(reg_entry->reg_value));
|
|
reg_entry++;
|
|
}
|
|
reg_entry++;
|
|
return reg_entry;
|
|
}
|
|
|
|
static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
/*
|
|
* FIXME: How do i get PID? Do I really need it?
|
|
* prstatus.pr_pid = ????
|
|
*/
|
|
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
return buf;
|
|
}
|
|
|
|
static void fadump_update_elfcore_header(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
struct elf_phdr *phdr;
|
|
|
|
elf = (struct elfhdr *)bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/* First note is a place holder for cpu notes info. */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
|
|
if (phdr->p_type == PT_NOTE) {
|
|
phdr->p_paddr = fw_dump.cpu_notes_buf;
|
|
phdr->p_offset = phdr->p_paddr;
|
|
phdr->p_filesz = fw_dump.cpu_notes_buf_size;
|
|
phdr->p_memsz = fw_dump.cpu_notes_buf_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void *fadump_cpu_notes_buf_alloc(unsigned long size)
|
|
{
|
|
void *vaddr;
|
|
struct page *page;
|
|
unsigned long order, count, i;
|
|
|
|
order = get_order(size);
|
|
vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
|
|
if (!vaddr)
|
|
return NULL;
|
|
|
|
count = 1 << order;
|
|
page = virt_to_page(vaddr);
|
|
for (i = 0; i < count; i++)
|
|
SetPageReserved(page + i);
|
|
return vaddr;
|
|
}
|
|
|
|
static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
|
|
{
|
|
struct page *page;
|
|
unsigned long order, count, i;
|
|
|
|
order = get_order(size);
|
|
count = 1 << order;
|
|
page = virt_to_page(vaddr);
|
|
for (i = 0; i < count; i++)
|
|
ClearPageReserved(page + i);
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
/*
|
|
* Read CPU state dump data and convert it into ELF notes.
|
|
* The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
|
|
* used to access the data to allow for additional fields to be added without
|
|
* affecting compatibility. Each list of registers for a CPU starts with
|
|
* "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
|
|
* 8 Byte ASCII identifier and 8 Byte register value. The register entry
|
|
* with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
|
|
* of register value. For more details refer to PAPR document.
|
|
*
|
|
* Only for the crashing cpu we ignore the CPU dump data and get exact
|
|
* state from fadump crash info structure populated by first kernel at the
|
|
* time of crash.
|
|
*/
|
|
static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
|
|
{
|
|
struct fadump_reg_save_area_header *reg_header;
|
|
struct fadump_reg_entry *reg_entry;
|
|
struct fadump_crash_info_header *fdh = NULL;
|
|
void *vaddr;
|
|
unsigned long addr;
|
|
u32 num_cpus, *note_buf;
|
|
struct pt_regs regs;
|
|
int i, rc = 0, cpu = 0;
|
|
|
|
if (!fdm->cpu_state_data.bytes_dumped)
|
|
return -EINVAL;
|
|
|
|
addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
|
|
vaddr = __va(addr);
|
|
|
|
reg_header = vaddr;
|
|
if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
|
|
printk(KERN_ERR "Unable to read register save area.\n");
|
|
return -ENOENT;
|
|
}
|
|
pr_debug("--------CPU State Data------------\n");
|
|
pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
|
|
pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
|
|
|
|
vaddr += be32_to_cpu(reg_header->num_cpu_offset);
|
|
num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
|
|
pr_debug("NumCpus : %u\n", num_cpus);
|
|
vaddr += sizeof(u32);
|
|
reg_entry = (struct fadump_reg_entry *)vaddr;
|
|
|
|
/* Allocate buffer to hold cpu crash notes. */
|
|
fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
|
|
fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
|
|
note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
|
|
if (!note_buf) {
|
|
printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
|
|
"cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
|
|
return -ENOMEM;
|
|
}
|
|
fw_dump.cpu_notes_buf = __pa(note_buf);
|
|
|
|
pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
|
|
(num_cpus * sizeof(note_buf_t)), note_buf);
|
|
|
|
if (fw_dump.fadumphdr_addr)
|
|
fdh = __va(fw_dump.fadumphdr_addr);
|
|
|
|
for (i = 0; i < num_cpus; i++) {
|
|
if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
|
|
printk(KERN_ERR "Unable to read CPU state data\n");
|
|
rc = -ENOENT;
|
|
goto error_out;
|
|
}
|
|
/* Lower 4 bytes of reg_value contains logical cpu id */
|
|
cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
|
|
if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
|
|
SKIP_TO_NEXT_CPU(reg_entry);
|
|
continue;
|
|
}
|
|
pr_debug("Reading register data for cpu %d...\n", cpu);
|
|
if (fdh && fdh->crashing_cpu == cpu) {
|
|
regs = fdh->regs;
|
|
note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
|
|
SKIP_TO_NEXT_CPU(reg_entry);
|
|
} else {
|
|
reg_entry++;
|
|
reg_entry = fadump_read_registers(reg_entry, ®s);
|
|
note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
|
|
}
|
|
}
|
|
final_note(note_buf);
|
|
|
|
if (fdh) {
|
|
pr_debug("Updating elfcore header (%llx) with cpu notes\n",
|
|
fdh->elfcorehdr_addr);
|
|
fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
|
|
}
|
|
return 0;
|
|
|
|
error_out:
|
|
fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
|
|
fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf = 0;
|
|
fw_dump.cpu_notes_buf_size = 0;
|
|
return rc;
|
|
|
|
}
|
|
|
|
/*
|
|
* Validate and process the dump data stored by firmware before exporting
|
|
* it through '/proc/vmcore'.
|
|
*/
|
|
static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
|
|
{
|
|
struct fadump_crash_info_header *fdh;
|
|
int rc = 0;
|
|
|
|
if (!fdm_active || !fw_dump.fadumphdr_addr)
|
|
return -EINVAL;
|
|
|
|
/* Check if the dump data is valid. */
|
|
if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
|
|
(fdm_active->cpu_state_data.error_flags != 0) ||
|
|
(fdm_active->rmr_region.error_flags != 0)) {
|
|
printk(KERN_ERR "Dump taken by platform is not valid\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((fdm_active->rmr_region.bytes_dumped !=
|
|
fdm_active->rmr_region.source_len) ||
|
|
!fdm_active->cpu_state_data.bytes_dumped) {
|
|
printk(KERN_ERR "Dump taken by platform is incomplete\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Validate the fadump crash info header */
|
|
fdh = __va(fw_dump.fadumphdr_addr);
|
|
if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
|
|
printk(KERN_ERR "Crash info header is not valid.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
rc = fadump_build_cpu_notes(fdm_active);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/*
|
|
* We are done validating dump info and elfcore header is now ready
|
|
* to be exported. set elfcorehdr_addr so that vmcore module will
|
|
* export the elfcore header through '/proc/vmcore'.
|
|
*/
|
|
elfcorehdr_addr = fdh->elfcorehdr_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_crash_memory_ranges(void)
|
|
{
|
|
kfree(crash_memory_ranges);
|
|
crash_memory_ranges = NULL;
|
|
crash_memory_ranges_size = 0;
|
|
max_crash_mem_ranges = 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate or reallocate crash memory ranges array in incremental units
|
|
* of PAGE_SIZE.
|
|
*/
|
|
static int allocate_crash_memory_ranges(void)
|
|
{
|
|
struct fad_crash_memory_ranges *new_array;
|
|
u64 new_size;
|
|
|
|
new_size = crash_memory_ranges_size + PAGE_SIZE;
|
|
pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
|
|
new_size);
|
|
|
|
new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
|
|
if (new_array == NULL) {
|
|
pr_err("Insufficient memory for setting up crash memory ranges\n");
|
|
free_crash_memory_ranges();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
crash_memory_ranges = new_array;
|
|
crash_memory_ranges_size = new_size;
|
|
max_crash_mem_ranges = (new_size /
|
|
sizeof(struct fad_crash_memory_ranges));
|
|
return 0;
|
|
}
|
|
|
|
static inline int fadump_add_crash_memory(unsigned long long base,
|
|
unsigned long long end)
|
|
{
|
|
u64 start, size;
|
|
bool is_adjacent = false;
|
|
|
|
if (base == end)
|
|
return 0;
|
|
|
|
/*
|
|
* Fold adjacent memory ranges to bring down the memory ranges/
|
|
* PT_LOAD segments count.
|
|
*/
|
|
if (crash_mem_ranges) {
|
|
start = crash_memory_ranges[crash_mem_ranges - 1].base;
|
|
size = crash_memory_ranges[crash_mem_ranges - 1].size;
|
|
|
|
if ((start + size) == base)
|
|
is_adjacent = true;
|
|
}
|
|
if (!is_adjacent) {
|
|
/* resize the array on reaching the limit */
|
|
if (crash_mem_ranges == max_crash_mem_ranges) {
|
|
int ret;
|
|
|
|
ret = allocate_crash_memory_ranges();
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
start = base;
|
|
crash_memory_ranges[crash_mem_ranges].base = start;
|
|
crash_mem_ranges++;
|
|
}
|
|
|
|
crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
|
|
pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
|
|
(crash_mem_ranges - 1), start, end - 1, (end - start));
|
|
return 0;
|
|
}
|
|
|
|
static int fadump_exclude_reserved_area(unsigned long long start,
|
|
unsigned long long end)
|
|
{
|
|
unsigned long long ra_start, ra_end;
|
|
int ret = 0;
|
|
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_end = ra_start + fw_dump.reserve_dump_area_size;
|
|
|
|
if ((ra_start < end) && (ra_end > start)) {
|
|
if ((start < ra_start) && (end > ra_end)) {
|
|
ret = fadump_add_crash_memory(start, ra_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fadump_add_crash_memory(ra_end, end);
|
|
} else if (start < ra_start) {
|
|
ret = fadump_add_crash_memory(start, ra_start);
|
|
} else if (ra_end < end) {
|
|
ret = fadump_add_crash_memory(ra_end, end);
|
|
}
|
|
} else
|
|
ret = fadump_add_crash_memory(start, end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fadump_init_elfcore_header(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
|
|
elf = (struct elfhdr *) bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = ELF_ARCH;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_entry = 0;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_shoff = 0;
|
|
#if defined(_CALL_ELF)
|
|
elf->e_flags = _CALL_ELF;
|
|
#else
|
|
elf->e_flags = 0;
|
|
#endif
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = 0;
|
|
elf->e_shentsize = 0;
|
|
elf->e_shnum = 0;
|
|
elf->e_shstrndx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Traverse through memblock structure and setup crash memory ranges. These
|
|
* ranges will be used create PT_LOAD program headers in elfcore header.
|
|
*/
|
|
static int fadump_setup_crash_memory_ranges(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long long start, end;
|
|
int ret;
|
|
|
|
pr_debug("Setup crash memory ranges.\n");
|
|
crash_mem_ranges = 0;
|
|
|
|
/*
|
|
* add the first memory chunk (RMA_START through boot_memory_size) as
|
|
* a separate memory chunk. The reason is, at the time crash firmware
|
|
* will move the content of this memory chunk to different location
|
|
* specified during fadump registration. We need to create a separate
|
|
* program header for this chunk with the correct offset.
|
|
*/
|
|
ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start = (unsigned long long)reg->base;
|
|
end = start + (unsigned long long)reg->size;
|
|
|
|
/*
|
|
* skip the first memory chunk that is already added (RMA_START
|
|
* through boot_memory_size). This logic needs a relook if and
|
|
* when RMA_START changes to a non-zero value.
|
|
*/
|
|
BUILD_BUG_ON(RMA_START != 0);
|
|
if (start < fw_dump.boot_memory_size) {
|
|
if (end > fw_dump.boot_memory_size)
|
|
start = fw_dump.boot_memory_size;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* add this range excluding the reserved dump area. */
|
|
ret = fadump_exclude_reserved_area(start, end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the given physical address falls within the boot memory region then
|
|
* return the relocated address that points to the dump region reserved
|
|
* for saving initial boot memory contents.
|
|
*/
|
|
static inline unsigned long fadump_relocate(unsigned long paddr)
|
|
{
|
|
if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
|
|
return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
|
|
else
|
|
return paddr;
|
|
}
|
|
|
|
static int fadump_create_elfcore_headers(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
struct elf_phdr *phdr;
|
|
int i;
|
|
|
|
fadump_init_elfcore_header(bufp);
|
|
elf = (struct elfhdr *)bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/*
|
|
* setup ELF PT_NOTE, place holder for cpu notes info. The notes info
|
|
* will be populated during second kernel boot after crash. Hence
|
|
* this PT_NOTE will always be the first elf note.
|
|
*
|
|
* NOTE: Any new ELF note addition should be placed after this note.
|
|
*/
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
|
|
phdr->p_offset = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = 0;
|
|
phdr->p_memsz = 0;
|
|
|
|
(elf->e_phnum)++;
|
|
|
|
/* setup ELF PT_NOTE for vmcoreinfo */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
|
|
phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
|
|
phdr->p_offset = phdr->p_paddr;
|
|
phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
|
|
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
|
|
/* setup PT_LOAD sections. */
|
|
|
|
for (i = 0; i < crash_mem_ranges; i++) {
|
|
unsigned long long mbase, msize;
|
|
mbase = crash_memory_ranges[i].base;
|
|
msize = crash_memory_ranges[i].size;
|
|
|
|
if (!msize)
|
|
continue;
|
|
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_offset = mbase;
|
|
|
|
if (mbase == RMA_START) {
|
|
/*
|
|
* The entire RMA region will be moved by firmware
|
|
* to the specified destination_address. Hence set
|
|
* the correct offset.
|
|
*/
|
|
phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
|
|
}
|
|
|
|
phdr->p_paddr = mbase;
|
|
phdr->p_vaddr = (unsigned long)__va(mbase);
|
|
phdr->p_filesz = msize;
|
|
phdr->p_memsz = msize;
|
|
phdr->p_align = 0;
|
|
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long init_fadump_header(unsigned long addr)
|
|
{
|
|
struct fadump_crash_info_header *fdh;
|
|
|
|
if (!addr)
|
|
return 0;
|
|
|
|
fw_dump.fadumphdr_addr = addr;
|
|
fdh = __va(addr);
|
|
addr += sizeof(struct fadump_crash_info_header);
|
|
|
|
memset(fdh, 0, sizeof(struct fadump_crash_info_header));
|
|
fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
|
|
fdh->elfcorehdr_addr = addr;
|
|
/* We will set the crashing cpu id in crash_fadump() during crash. */
|
|
fdh->crashing_cpu = CPU_UNKNOWN;
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int register_fadump(void)
|
|
{
|
|
unsigned long addr;
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
/*
|
|
* If no memory is reserved then we can not register for firmware-
|
|
* assisted dump.
|
|
*/
|
|
if (!fw_dump.reserve_dump_area_size)
|
|
return -ENODEV;
|
|
|
|
ret = fadump_setup_crash_memory_ranges();
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
|
|
/* Initialize fadump crash info header. */
|
|
addr = init_fadump_header(addr);
|
|
vaddr = __va(addr);
|
|
|
|
pr_debug("Creating ELF core headers at %#016lx\n", addr);
|
|
fadump_create_elfcore_headers(vaddr);
|
|
|
|
/* register the future kernel dump with firmware. */
|
|
return register_fw_dump(&fdm);
|
|
}
|
|
|
|
static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
|
|
{
|
|
int rc = 0;
|
|
unsigned int wait_time;
|
|
|
|
pr_debug("Un-register firmware-assisted dump\n");
|
|
|
|
/* TODO: Add upper time limit for the delay */
|
|
do {
|
|
rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
|
|
FADUMP_UNREGISTER, fdm,
|
|
sizeof(struct fadump_mem_struct));
|
|
|
|
wait_time = rtas_busy_delay_time(rc);
|
|
if (wait_time)
|
|
mdelay(wait_time);
|
|
} while (wait_time);
|
|
|
|
if (rc) {
|
|
printk(KERN_ERR "Failed to un-register firmware-assisted dump."
|
|
" unexpected error(%d).\n", rc);
|
|
return rc;
|
|
}
|
|
fw_dump.dump_registered = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int fadump_invalidate_dump(const struct fadump_mem_struct *fdm)
|
|
{
|
|
int rc = 0;
|
|
unsigned int wait_time;
|
|
|
|
pr_debug("Invalidating firmware-assisted dump registration\n");
|
|
|
|
/* TODO: Add upper time limit for the delay */
|
|
do {
|
|
rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
|
|
FADUMP_INVALIDATE, fdm,
|
|
sizeof(struct fadump_mem_struct));
|
|
|
|
wait_time = rtas_busy_delay_time(rc);
|
|
if (wait_time)
|
|
mdelay(wait_time);
|
|
} while (wait_time);
|
|
|
|
if (rc) {
|
|
pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
|
|
return rc;
|
|
}
|
|
fw_dump.dump_active = 0;
|
|
fdm_active = NULL;
|
|
return 0;
|
|
}
|
|
|
|
void fadump_cleanup(void)
|
|
{
|
|
/* Invalidate the registration only if dump is active. */
|
|
if (fw_dump.dump_active) {
|
|
/* pass the same memory dump structure provided by platform */
|
|
fadump_invalidate_dump(fdm_active);
|
|
} else if (fw_dump.dump_registered) {
|
|
/* Un-register Firmware-assisted dump if it was registered. */
|
|
fadump_unregister_dump(&fdm);
|
|
free_crash_memory_ranges();
|
|
}
|
|
}
|
|
|
|
static void fadump_free_reserved_memory(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long time_limit = jiffies + HZ;
|
|
|
|
pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
|
|
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
free_reserved_page(pfn_to_page(pfn));
|
|
|
|
if (time_after(jiffies, time_limit)) {
|
|
cond_resched();
|
|
time_limit = jiffies + HZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip memory holes and free memory that was actually reserved.
|
|
*/
|
|
static void fadump_release_reserved_area(unsigned long start, unsigned long end)
|
|
{
|
|
struct memblock_region *reg;
|
|
unsigned long tstart, tend;
|
|
unsigned long start_pfn = PHYS_PFN(start);
|
|
unsigned long end_pfn = PHYS_PFN(end);
|
|
|
|
for_each_memblock(memory, reg) {
|
|
tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
|
|
tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
|
|
if (tstart < tend) {
|
|
fadump_free_reserved_memory(tstart, tend);
|
|
|
|
if (tend == end_pfn)
|
|
break;
|
|
|
|
start_pfn = tend + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Release the memory that was reserved in early boot to preserve the memory
|
|
* contents. The released memory will be available for general use.
|
|
*/
|
|
static void fadump_release_memory(unsigned long begin, unsigned long end)
|
|
{
|
|
unsigned long ra_start, ra_end;
|
|
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_end = ra_start + fw_dump.reserve_dump_area_size;
|
|
|
|
/*
|
|
* exclude the dump reserve area. Will reuse it for next
|
|
* fadump registration.
|
|
*/
|
|
if (begin < ra_end && end > ra_start) {
|
|
if (begin < ra_start)
|
|
fadump_release_reserved_area(begin, ra_start);
|
|
if (end > ra_end)
|
|
fadump_release_reserved_area(ra_end, end);
|
|
} else
|
|
fadump_release_reserved_area(begin, end);
|
|
}
|
|
|
|
static void fadump_invalidate_release_mem(void)
|
|
{
|
|
unsigned long reserved_area_start, reserved_area_end;
|
|
unsigned long destination_address;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
if (!fw_dump.dump_active) {
|
|
mutex_unlock(&fadump_mutex);
|
|
return;
|
|
}
|
|
|
|
destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
|
|
fadump_cleanup();
|
|
mutex_unlock(&fadump_mutex);
|
|
|
|
/*
|
|
* Save the current reserved memory bounds we will require them
|
|
* later for releasing the memory for general use.
|
|
*/
|
|
reserved_area_start = fw_dump.reserve_dump_area_start;
|
|
reserved_area_end = reserved_area_start +
|
|
fw_dump.reserve_dump_area_size;
|
|
/*
|
|
* Setup reserve_dump_area_start and its size so that we can
|
|
* reuse this reserved memory for Re-registration.
|
|
*/
|
|
fw_dump.reserve_dump_area_start = destination_address;
|
|
fw_dump.reserve_dump_area_size = get_fadump_area_size();
|
|
|
|
fadump_release_memory(reserved_area_start, reserved_area_end);
|
|
if (fw_dump.cpu_notes_buf) {
|
|
fadump_cpu_notes_buf_free(
|
|
(unsigned long)__va(fw_dump.cpu_notes_buf),
|
|
fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf = 0;
|
|
fw_dump.cpu_notes_buf_size = 0;
|
|
}
|
|
/* Initialize the kernel dump memory structure for FAD registration. */
|
|
init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
|
|
}
|
|
|
|
static ssize_t fadump_release_memory_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int input = -1;
|
|
|
|
if (!fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
if (input == 1) {
|
|
/*
|
|
* Take away the '/proc/vmcore'. We are releasing the dump
|
|
* memory, hence it will not be valid anymore.
|
|
*/
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
vmcore_cleanup();
|
|
#endif
|
|
fadump_invalidate_release_mem();
|
|
|
|
} else
|
|
return -EINVAL;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t fadump_enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
|
|
}
|
|
|
|
static ssize_t fadump_register_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.dump_registered);
|
|
}
|
|
|
|
static ssize_t fadump_register_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int input = -1;
|
|
|
|
if (!fw_dump.fadump_enabled || fdm_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
|
|
switch (input) {
|
|
case 0:
|
|
if (fw_dump.dump_registered == 0) {
|
|
goto unlock_out;
|
|
}
|
|
/* Un-register Firmware-assisted dump */
|
|
fadump_unregister_dump(&fdm);
|
|
break;
|
|
case 1:
|
|
if (fw_dump.dump_registered == 1) {
|
|
/* Un-register Firmware-assisted dump */
|
|
fadump_unregister_dump(&fdm);
|
|
}
|
|
/* Register Firmware-assisted dump */
|
|
ret = register_fadump();
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
unlock_out:
|
|
mutex_unlock(&fadump_mutex);
|
|
return ret < 0 ? ret : count;
|
|
}
|
|
|
|
static int fadump_region_show(struct seq_file *m, void *private)
|
|
{
|
|
const struct fadump_mem_struct *fdm_ptr;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
if (fdm_active)
|
|
fdm_ptr = fdm_active;
|
|
else {
|
|
mutex_unlock(&fadump_mutex);
|
|
fdm_ptr = &fdm;
|
|
}
|
|
|
|
seq_printf(m,
|
|
"CPU : [%#016llx-%#016llx] %#llx bytes, "
|
|
"Dumped: %#llx\n",
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
|
|
seq_printf(m,
|
|
"HPTE: [%#016llx-%#016llx] %#llx bytes, "
|
|
"Dumped: %#llx\n",
|
|
be64_to_cpu(fdm_ptr->hpte_region.destination_address),
|
|
be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
|
|
be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
|
|
be64_to_cpu(fdm_ptr->hpte_region.source_len),
|
|
be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
|
|
seq_printf(m,
|
|
"DUMP: [%#016llx-%#016llx] %#llx bytes, "
|
|
"Dumped: %#llx\n",
|
|
be64_to_cpu(fdm_ptr->rmr_region.destination_address),
|
|
be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
|
|
be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
|
|
be64_to_cpu(fdm_ptr->rmr_region.source_len),
|
|
be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
|
|
|
|
if (!fdm_active ||
|
|
(fw_dump.reserve_dump_area_start ==
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
|
|
goto out;
|
|
|
|
/* Dump is active. Show reserved memory region. */
|
|
seq_printf(m,
|
|
" : [%#016llx-%#016llx] %#llx bytes, "
|
|
"Dumped: %#llx\n",
|
|
(unsigned long long)fw_dump.reserve_dump_area_start,
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
|
|
fw_dump.reserve_dump_area_start,
|
|
be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
|
|
fw_dump.reserve_dump_area_start);
|
|
out:
|
|
if (fdm_active)
|
|
mutex_unlock(&fadump_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
|
|
0200, NULL,
|
|
fadump_release_memory_store);
|
|
static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
|
|
0444, fadump_enabled_show,
|
|
NULL);
|
|
static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
|
|
0644, fadump_register_show,
|
|
fadump_register_store);
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(fadump_region);
|
|
|
|
static void fadump_init_files(void)
|
|
{
|
|
struct dentry *debugfs_file;
|
|
int rc = 0;
|
|
|
|
rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
|
|
if (rc)
|
|
printk(KERN_ERR "fadump: unable to create sysfs file"
|
|
" fadump_enabled (%d)\n", rc);
|
|
|
|
rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
|
|
if (rc)
|
|
printk(KERN_ERR "fadump: unable to create sysfs file"
|
|
" fadump_registered (%d)\n", rc);
|
|
|
|
debugfs_file = debugfs_create_file("fadump_region", 0444,
|
|
powerpc_debugfs_root, NULL,
|
|
&fadump_region_fops);
|
|
if (!debugfs_file)
|
|
printk(KERN_ERR "fadump: unable to create debugfs file"
|
|
" fadump_region\n");
|
|
|
|
if (fw_dump.dump_active) {
|
|
rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
|
|
if (rc)
|
|
printk(KERN_ERR "fadump: unable to create sysfs file"
|
|
" fadump_release_mem (%d)\n", rc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Prepare for firmware-assisted dump.
|
|
*/
|
|
int __init setup_fadump(void)
|
|
{
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
if (!fw_dump.fadump_supported) {
|
|
printk(KERN_ERR "Firmware-assisted dump is not supported on"
|
|
" this hardware\n");
|
|
return 0;
|
|
}
|
|
|
|
fadump_show_config();
|
|
/*
|
|
* If dump data is available then see if it is valid and prepare for
|
|
* saving it to the disk.
|
|
*/
|
|
if (fw_dump.dump_active) {
|
|
/*
|
|
* if dump process fails then invalidate the registration
|
|
* and release memory before proceeding for re-registration.
|
|
*/
|
|
if (process_fadump(fdm_active) < 0)
|
|
fadump_invalidate_release_mem();
|
|
}
|
|
/* Initialize the kernel dump memory structure for FAD registration. */
|
|
else if (fw_dump.reserve_dump_area_size)
|
|
init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
|
|
fadump_init_files();
|
|
|
|
return 1;
|
|
}
|
|
subsys_initcall(setup_fadump);
|