linux_dsm_epyc7002/arch/x86_64/mm/init.c
Eric W. Biederman 0b4d414714 [PATCH] sysctl: remove insert_at_head from register_sysctl
The semantic effect of insert_at_head is that it would allow new registered
sysctl entries to override existing sysctl entries of the same name.  Which is
pain for caching and the proc interface never implemented.

I have done an audit and discovered that none of the current users of
register_sysctl care as (excpet for directories) they do not register
duplicate sysctl entries.

So this patch simply removes the support for overriding existing entries in
the sys_sysctl interface since no one uses it or cares and it makes future
enhancments harder.

Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Howells <dhowells@redhat.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Corey Minyard <minyard@acm.org>
Cc: Neil Brown <neilb@suse.de>
Cc: "John W. Linville" <linville@tuxdriver.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: Jan Kara <jack@ucw.cz>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: David Chinner <dgc@sgi.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:59 -08:00

779 lines
19 KiB
C

/*
* linux/arch/x86_64/mm/init.c
*
* Copyright (C) 1995 Linus Torvalds
* Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
* Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
*/
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#ifndef Dprintk
#define Dprintk(x...)
#endif
struct dma_mapping_ops* dma_ops;
EXPORT_SYMBOL(dma_ops);
static unsigned long dma_reserve __initdata;
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
/*
* NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
* physical space so we can cache the place of the first one and move
* around without checking the pgd every time.
*/
void show_mem(void)
{
long i, total = 0, reserved = 0;
long shared = 0, cached = 0;
pg_data_t *pgdat;
struct page *page;
printk(KERN_INFO "Mem-info:\n");
show_free_areas();
printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_online_pgdat(pgdat) {
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
page = pfn_to_page(pgdat->node_start_pfn + i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (page_count(page))
shared += page_count(page) - 1;
}
}
printk(KERN_INFO "%lu pages of RAM\n", total);
printk(KERN_INFO "%lu reserved pages\n",reserved);
printk(KERN_INFO "%lu pages shared\n",shared);
printk(KERN_INFO "%lu pages swap cached\n",cached);
}
int after_bootmem;
static __init void *spp_getpage(void)
{
void *ptr;
if (after_bootmem)
ptr = (void *) get_zeroed_page(GFP_ATOMIC);
else
ptr = alloc_bootmem_pages(PAGE_SIZE);
if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))
panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
Dprintk("spp_getpage %p\n", ptr);
return ptr;
}
static __init void set_pte_phys(unsigned long vaddr,
unsigned long phys, pgprot_t prot)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte, new_pte;
Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys);
pgd = pgd_offset_k(vaddr);
if (pgd_none(*pgd)) {
printk("PGD FIXMAP MISSING, it should be setup in head.S!\n");
return;
}
pud = pud_offset(pgd, vaddr);
if (pud_none(*pud)) {
pmd = (pmd_t *) spp_getpage();
set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
if (pmd != pmd_offset(pud, 0)) {
printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
return;
}
}
pmd = pmd_offset(pud, vaddr);
if (pmd_none(*pmd)) {
pte = (pte_t *) spp_getpage();
set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER));
if (pte != pte_offset_kernel(pmd, 0)) {
printk("PAGETABLE BUG #02!\n");
return;
}
}
new_pte = pfn_pte(phys >> PAGE_SHIFT, prot);
pte = pte_offset_kernel(pmd, vaddr);
if (!pte_none(*pte) &&
pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask))
pte_ERROR(*pte);
set_pte(pte, new_pte);
/*
* It's enough to flush this one mapping.
* (PGE mappings get flushed as well)
*/
__flush_tlb_one(vaddr);
}
/* NOTE: this is meant to be run only at boot */
void __init
__set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
{
unsigned long address = __fix_to_virt(idx);
if (idx >= __end_of_fixed_addresses) {
printk("Invalid __set_fixmap\n");
return;
}
set_pte_phys(address, phys, prot);
}
unsigned long __initdata table_start, table_end;
extern pmd_t temp_boot_pmds[];
static struct temp_map {
pmd_t *pmd;
void *address;
int allocated;
} temp_mappings[] __initdata = {
{ &temp_boot_pmds[0], (void *)(40UL * 1024 * 1024) },
{ &temp_boot_pmds[1], (void *)(42UL * 1024 * 1024) },
{}
};
static __meminit void *alloc_low_page(int *index, unsigned long *phys)
{
struct temp_map *ti;
int i;
unsigned long pfn = table_end++, paddr;
void *adr;
if (after_bootmem) {
adr = (void *)get_zeroed_page(GFP_ATOMIC);
*phys = __pa(adr);
return adr;
}
if (pfn >= end_pfn)
panic("alloc_low_page: ran out of memory");
for (i = 0; temp_mappings[i].allocated; i++) {
if (!temp_mappings[i].pmd)
panic("alloc_low_page: ran out of temp mappings");
}
ti = &temp_mappings[i];
paddr = (pfn << PAGE_SHIFT) & PMD_MASK;
set_pmd(ti->pmd, __pmd(paddr | _KERNPG_TABLE | _PAGE_PSE));
ti->allocated = 1;
__flush_tlb();
adr = ti->address + ((pfn << PAGE_SHIFT) & ~PMD_MASK);
memset(adr, 0, PAGE_SIZE);
*index = i;
*phys = pfn * PAGE_SIZE;
return adr;
}
static __meminit void unmap_low_page(int i)
{
struct temp_map *ti;
if (after_bootmem)
return;
ti = &temp_mappings[i];
set_pmd(ti->pmd, __pmd(0));
ti->allocated = 0;
}
/* Must run before zap_low_mappings */
__init void *early_ioremap(unsigned long addr, unsigned long size)
{
unsigned long map = round_down(addr, LARGE_PAGE_SIZE);
/* actually usually some more */
if (size >= LARGE_PAGE_SIZE) {
return NULL;
}
set_pmd(temp_mappings[0].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE));
map += LARGE_PAGE_SIZE;
set_pmd(temp_mappings[1].pmd, __pmd(map | _KERNPG_TABLE | _PAGE_PSE));
__flush_tlb();
return temp_mappings[0].address + (addr & (LARGE_PAGE_SIZE-1));
}
/* To avoid virtual aliases later */
__init void early_iounmap(void *addr, unsigned long size)
{
if ((void *)round_down((unsigned long)addr, LARGE_PAGE_SIZE) != temp_mappings[0].address)
printk("early_iounmap: bad address %p\n", addr);
set_pmd(temp_mappings[0].pmd, __pmd(0));
set_pmd(temp_mappings[1].pmd, __pmd(0));
__flush_tlb();
}
static void __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
{
int i = pmd_index(address);
for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
unsigned long entry;
pmd_t *pmd = pmd_page + pmd_index(address);
if (address >= end) {
if (!after_bootmem)
for (; i < PTRS_PER_PMD; i++, pmd++)
set_pmd(pmd, __pmd(0));
break;
}
if (pmd_val(*pmd))
continue;
entry = _PAGE_NX|_PAGE_PSE|_KERNPG_TABLE|_PAGE_GLOBAL|address;
entry &= __supported_pte_mask;
set_pmd(pmd, __pmd(entry));
}
}
static void __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
{
pmd_t *pmd = pmd_offset(pud,0);
spin_lock(&init_mm.page_table_lock);
phys_pmd_init(pmd, address, end);
spin_unlock(&init_mm.page_table_lock);
__flush_tlb_all();
}
static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
int i = pud_index(addr);
for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) {
int map;
unsigned long pmd_phys;
pud_t *pud = pud_page + pud_index(addr);
pmd_t *pmd;
if (addr >= end)
break;
if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
set_pud(pud, __pud(0));
continue;
}
if (pud_val(*pud)) {
phys_pmd_update(pud, addr, end);
continue;
}
pmd = alloc_low_page(&map, &pmd_phys);
spin_lock(&init_mm.page_table_lock);
set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
phys_pmd_init(pmd, addr, end);
spin_unlock(&init_mm.page_table_lock);
unmap_low_page(map);
}
__flush_tlb();
}
static void __init find_early_table_space(unsigned long end)
{
unsigned long puds, pmds, tables, start;
puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
/* RED-PEN putting page tables only on node 0 could
cause a hotspot and fill up ZONE_DMA. The page tables
need roughly 0.5KB per GB. */
start = 0x8000;
table_start = find_e820_area(start, end, tables);
if (table_start == -1UL)
panic("Cannot find space for the kernel page tables");
table_start >>= PAGE_SHIFT;
table_end = table_start;
early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n",
end, table_start << PAGE_SHIFT,
(table_start << PAGE_SHIFT) + tables);
}
/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
This runs before bootmem is initialized and gets pages directly from the
physical memory. To access them they are temporarily mapped. */
void __meminit init_memory_mapping(unsigned long start, unsigned long end)
{
unsigned long next;
Dprintk("init_memory_mapping\n");
/*
* Find space for the kernel direct mapping tables.
* Later we should allocate these tables in the local node of the memory
* mapped. Unfortunately this is done currently before the nodes are
* discovered.
*/
if (!after_bootmem)
find_early_table_space(end);
start = (unsigned long)__va(start);
end = (unsigned long)__va(end);
for (; start < end; start = next) {
int map;
unsigned long pud_phys;
pgd_t *pgd = pgd_offset_k(start);
pud_t *pud;
if (after_bootmem)
pud = pud_offset(pgd, start & PGDIR_MASK);
else
pud = alloc_low_page(&map, &pud_phys);
next = start + PGDIR_SIZE;
if (next > end)
next = end;
phys_pud_init(pud, __pa(start), __pa(next));
if (!after_bootmem)
set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys));
unmap_low_page(map);
}
if (!after_bootmem)
asm volatile("movq %%cr4,%0" : "=r" (mmu_cr4_features));
__flush_tlb_all();
}
void __cpuinit zap_low_mappings(int cpu)
{
if (cpu == 0) {
pgd_t *pgd = pgd_offset_k(0UL);
pgd_clear(pgd);
} else {
/*
* For AP's, zap the low identity mappings by changing the cr3
* to init_level4_pgt and doing local flush tlb all
*/
asm volatile("movq %0,%%cr3" :: "r" (__pa_symbol(&init_level4_pgt)));
}
__flush_tlb_all();
}
#ifndef CONFIG_NUMA
void __init paging_init(void)
{
unsigned long max_zone_pfns[MAX_NR_ZONES];
memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
max_zone_pfns[ZONE_NORMAL] = end_pfn;
memory_present(0, 0, end_pfn);
sparse_init();
free_area_init_nodes(max_zone_pfns);
}
#endif
/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
from the CPU leading to inconsistent cache lines. address and size
must be aligned to 2MB boundaries.
Does nothing when the mapping doesn't exist. */
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
{
unsigned long end = address + size;
BUG_ON(address & ~LARGE_PAGE_MASK);
BUG_ON(size & ~LARGE_PAGE_MASK);
for (; address < end; address += LARGE_PAGE_SIZE) {
pgd_t *pgd = pgd_offset_k(address);
pud_t *pud;
pmd_t *pmd;
if (pgd_none(*pgd))
continue;
pud = pud_offset(pgd, address);
if (pud_none(*pud))
continue;
pmd = pmd_offset(pud, address);
if (!pmd || pmd_none(*pmd))
continue;
if (0 == (pmd_val(*pmd) & _PAGE_PSE)) {
/* Could handle this, but it should not happen currently. */
printk(KERN_ERR
"clear_kernel_mapping: mapping has been split. will leak memory\n");
pmd_ERROR(*pmd);
}
set_pmd(pmd, __pmd(0));
}
__flush_tlb_all();
}
/*
* Memory hotplug specific functions
*/
void online_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
totalram_pages++;
num_physpages++;
}
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Memory is added always to NORMAL zone. This means you will never get
* additional DMA/DMA32 memory.
*/
int arch_add_memory(int nid, u64 start, u64 size)
{
struct pglist_data *pgdat = NODE_DATA(nid);
struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
unsigned long start_pfn = start >> PAGE_SHIFT;
unsigned long nr_pages = size >> PAGE_SHIFT;
int ret;
init_memory_mapping(start, (start + size -1));
ret = __add_pages(zone, start_pfn, nr_pages);
if (ret)
goto error;
return ret;
error:
printk("%s: Problem encountered in __add_pages!\n", __func__);
return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);
int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
EXPORT_SYMBOL_GPL(remove_memory);
#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif
#endif /* CONFIG_MEMORY_HOTPLUG */
#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
/*
* Memory Hotadd without sparsemem. The mem_maps have been allocated in advance,
* just online the pages.
*/
int __add_pages(struct zone *z, unsigned long start_pfn, unsigned long nr_pages)
{
int err = -EIO;
unsigned long pfn;
unsigned long total = 0, mem = 0;
for (pfn = start_pfn; pfn < start_pfn + nr_pages; pfn++) {
if (pfn_valid(pfn)) {
online_page(pfn_to_page(pfn));
err = 0;
mem++;
}
total++;
}
if (!err) {
z->spanned_pages += total;
z->present_pages += mem;
z->zone_pgdat->node_spanned_pages += total;
z->zone_pgdat->node_present_pages += mem;
}
return err;
}
#endif
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
kcore_vsyscall;
void __init mem_init(void)
{
long codesize, reservedpages, datasize, initsize;
pci_iommu_alloc();
/* clear the zero-page */
memset(empty_zero_page, 0, PAGE_SIZE);
reservedpages = 0;
/* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
totalram_pages = numa_free_all_bootmem();
#else
totalram_pages = free_all_bootmem();
#endif
reservedpages = end_pfn - totalram_pages -
absent_pages_in_range(0, end_pfn);
after_bootmem = 1;
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_etext;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
/* Register memory areas for /proc/kcore */
kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
VMALLOC_END-VMALLOC_START);
kclist_add(&kcore_kernel, &_stext, _end - _stext);
kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
VSYSCALL_END - VSYSCALL_START);
printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
end_pfn << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
#ifdef CONFIG_SMP
/*
* Sync boot_level4_pgt mappings with the init_level4_pgt
* except for the low identity mappings which are already zapped
* in init_level4_pgt. This sync-up is essential for AP's bringup
*/
memcpy(boot_level4_pgt+1, init_level4_pgt+1, (PTRS_PER_PGD-1)*sizeof(pgd_t));
#endif
}
void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
unsigned long addr;
if (begin >= end)
return;
printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
for (addr = begin; addr < end; addr += PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
init_page_count(virt_to_page(addr));
memset((void *)(addr & ~(PAGE_SIZE-1)),
POISON_FREE_INITMEM, PAGE_SIZE);
free_page(addr);
totalram_pages++;
}
}
void free_initmem(void)
{
memset(__initdata_begin, POISON_FREE_INITDATA,
__initdata_end - __initdata_begin);
free_init_pages("unused kernel memory",
(unsigned long)(&__init_begin),
(unsigned long)(&__init_end));
}
#ifdef CONFIG_DEBUG_RODATA
void mark_rodata_ro(void)
{
unsigned long addr = (unsigned long)__start_rodata;
for (; addr < (unsigned long)__end_rodata; addr += PAGE_SIZE)
change_page_attr_addr(addr, 1, PAGE_KERNEL_RO);
printk ("Write protecting the kernel read-only data: %luk\n",
(__end_rodata - __start_rodata) >> 10);
/*
* change_page_attr_addr() requires a global_flush_tlb() call after it.
* We do this after the printk so that if something went wrong in the
* change, the printk gets out at least to give a better debug hint
* of who is the culprit.
*/
global_flush_tlb();
}
#endif
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
free_init_pages("initrd memory", start, end);
}
#endif
void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
{
#ifdef CONFIG_NUMA
int nid = phys_to_nid(phys);
#endif
unsigned long pfn = phys >> PAGE_SHIFT;
if (pfn >= end_pfn) {
/* This can happen with kdump kernels when accessing firmware
tables. */
if (pfn < end_pfn_map)
return;
printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
phys, len);
return;
}
/* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
reserve_bootmem_node(NODE_DATA(nid), phys, len);
#else
reserve_bootmem(phys, len);
#endif
if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
dma_reserve += len / PAGE_SIZE;
set_dma_reserve(dma_reserve);
}
}
int kern_addr_valid(unsigned long addr)
{
unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if (above != 0 && above != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_large(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
extern int exception_trace, page_fault_trace;
static ctl_table debug_table2[] = {
{
.ctl_name = 99,
.procname = "exception-trace",
.data = &exception_trace,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{}
};
static ctl_table debug_root_table2[] = {
{
.ctl_name = CTL_DEBUG,
.procname = "debug",
.mode = 0555,
.child = debug_table2
},
{}
};
static __init int x8664_sysctl_init(void)
{
register_sysctl_table(debug_root_table2);
return 0;
}
__initcall(x8664_sysctl_init);
#endif
/* A pseudo VMA to allow ptrace access for the vsyscall page. This only
covers the 64bit vsyscall page now. 32bit has a real VMA now and does
not need special handling anymore. */
static struct vm_area_struct gate_vma = {
.vm_start = VSYSCALL_START,
.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
.vm_page_prot = PAGE_READONLY_EXEC,
.vm_flags = VM_READ | VM_EXEC
};
struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
if (test_tsk_thread_flag(tsk, TIF_IA32))
return NULL;
#endif
return &gate_vma;
}
int in_gate_area(struct task_struct *task, unsigned long addr)
{
struct vm_area_struct *vma = get_gate_vma(task);
if (!vma)
return 0;
return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
/* Use this when you have no reliable task/vma, typically from interrupt
* context. It is less reliable than using the task's vma and may give
* false positives.
*/
int in_gate_area_no_task(unsigned long addr)
{
return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}