linux_dsm_epyc7002/arch/x86_64/kernel/hpet.c
john stultz 7460ed2844 [PATCH] time: x86_64: re-enable vsyscall support for x86_64
Cleanup and re-enable vsyscall gettimeofday using the generic clocksource
infrastructure.

[akpm@osdl.org: cleanup]
Signed-off-by: John Stultz <johnstul@us.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@muc.de>
Cc: Roman Zippel <zippel@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-16 08:14:00 -08:00

512 lines
12 KiB
C

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/mc146818rtc.h>
#include <linux/time.h>
#include <linux/clocksource.h>
#include <linux/ioport.h>
#include <linux/acpi.h>
#include <linux/hpet.h>
#include <asm/pgtable.h>
#include <asm/vsyscall.h>
#include <asm/timex.h>
#include <asm/hpet.h>
int nohpet __initdata;
unsigned long hpet_address;
unsigned long hpet_period; /* fsecs / HPET clock */
unsigned long hpet_tick; /* HPET clocks / interrupt */
int hpet_use_timer; /* Use counter of hpet for time keeping,
* otherwise PIT
*/
#ifdef CONFIG_HPET
static __init int late_hpet_init(void)
{
struct hpet_data hd;
unsigned int ntimer;
if (!hpet_address)
return 0;
memset(&hd, 0, sizeof(hd));
ntimer = hpet_readl(HPET_ID);
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
ntimer++;
/*
* Register with driver.
* Timer0 and Timer1 is used by platform.
*/
hd.hd_phys_address = hpet_address;
hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
hd.hd_nirqs = ntimer;
hd.hd_flags = HPET_DATA_PLATFORM;
hpet_reserve_timer(&hd, 0);
#ifdef CONFIG_HPET_EMULATE_RTC
hpet_reserve_timer(&hd, 1);
#endif
hd.hd_irq[0] = HPET_LEGACY_8254;
hd.hd_irq[1] = HPET_LEGACY_RTC;
if (ntimer > 2) {
struct hpet *hpet;
struct hpet_timer *timer;
int i;
hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
timer = &hpet->hpet_timers[2];
for (i = 2; i < ntimer; timer++, i++)
hd.hd_irq[i] = (timer->hpet_config &
Tn_INT_ROUTE_CNF_MASK) >>
Tn_INT_ROUTE_CNF_SHIFT;
}
hpet_alloc(&hd);
return 0;
}
fs_initcall(late_hpet_init);
#endif
int hpet_timer_stop_set_go(unsigned long tick)
{
unsigned int cfg;
/*
* Stop the timers and reset the main counter.
*/
cfg = hpet_readl(HPET_CFG);
cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
hpet_writel(cfg, HPET_CFG);
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
/*
* Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
* and period also hpet_tick.
*/
if (hpet_use_timer) {
hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
HPET_TN_32BIT, HPET_T0_CFG);
hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
cfg |= HPET_CFG_LEGACY;
}
/*
* Go!
*/
cfg |= HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
return 0;
}
int hpet_arch_init(void)
{
unsigned int id;
if (!hpet_address)
return -1;
set_fixmap_nocache(FIX_HPET_BASE, hpet_address);
__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
/*
* Read the period, compute tick and quotient.
*/
id = hpet_readl(HPET_ID);
if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
return -1;
hpet_period = hpet_readl(HPET_PERIOD);
if (hpet_period < 100000 || hpet_period > 100000000)
return -1;
hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
hpet_use_timer = (id & HPET_ID_LEGSUP);
return hpet_timer_stop_set_go(hpet_tick);
}
int hpet_reenable(void)
{
return hpet_timer_stop_set_go(hpet_tick);
}
/*
* calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
* it to the HPET timer of known frequency.
*/
#define TICK_COUNT 100000000
#define TICK_MIN 5000
/*
* Some platforms take periodic SMI interrupts with 5ms duration. Make sure none
* occurs between the reads of the hpet & TSC.
*/
static void __init read_hpet_tsc(int *hpet, int *tsc)
{
int tsc1, tsc2, hpet1;
do {
tsc1 = get_cycles_sync();
hpet1 = hpet_readl(HPET_COUNTER);
tsc2 = get_cycles_sync();
} while (tsc2 - tsc1 > TICK_MIN);
*hpet = hpet1;
*tsc = tsc2;
}
unsigned int __init hpet_calibrate_tsc(void)
{
int tsc_start, hpet_start;
int tsc_now, hpet_now;
unsigned long flags;
local_irq_save(flags);
read_hpet_tsc(&hpet_start, &tsc_start);
do {
local_irq_disable();
read_hpet_tsc(&hpet_now, &tsc_now);
local_irq_restore(flags);
} while ((tsc_now - tsc_start) < TICK_COUNT &&
(hpet_now - hpet_start) < TICK_COUNT);
return (tsc_now - tsc_start) * 1000000000L
/ ((hpet_now - hpet_start) * hpet_period / 1000);
}
#ifdef CONFIG_HPET_EMULATE_RTC
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
* is enabled, we support RTC interrupt functionality in software.
* RTC has 3 kinds of interrupts:
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
* is updated
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
* (1) and (2) above are implemented using polling at a frequency of
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
* overhead. (DEFAULT_RTC_INT_FREQ)
* For (3), we use interrupts at 64Hz or user specified periodic
* frequency, whichever is higher.
*/
#include <linux/rtc.h>
#define DEFAULT_RTC_INT_FREQ 64
#define RTC_NUM_INTS 1
static unsigned long UIE_on;
static unsigned long prev_update_sec;
static unsigned long AIE_on;
static struct rtc_time alarm_time;
static unsigned long PIE_on;
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
static unsigned long PIE_count;
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
static unsigned int hpet_t1_cmp; /* cached comparator register */
int is_hpet_enabled(void)
{
return hpet_address != 0;
}
/*
* Timer 1 for RTC, we do not use periodic interrupt feature,
* even if HPET supports periodic interrupts on Timer 1.
* The reason being, to set up a periodic interrupt in HPET, we need to
* stop the main counter. And if we do that everytime someone diables/enables
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
* So, for the time being, simulate the periodic interrupt in software.
*
* hpet_rtc_timer_init() is called for the first time and during subsequent
* interuppts reinit happens through hpet_rtc_timer_reinit().
*/
int hpet_rtc_timer_init(void)
{
unsigned int cfg, cnt;
unsigned long flags;
if (!is_hpet_enabled())
return 0;
/*
* Set the counter 1 and enable the interrupts.
*/
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
local_irq_save(flags);
cnt = hpet_readl(HPET_COUNTER);
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
hpet_writel(cnt, HPET_T1_CMP);
hpet_t1_cmp = cnt;
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_PERIODIC;
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
hpet_writel(cfg, HPET_T1_CFG);
local_irq_restore(flags);
return 1;
}
static void hpet_rtc_timer_reinit(void)
{
unsigned int cfg, cnt, ticks_per_int, lost_ints;
if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
cfg = hpet_readl(HPET_T1_CFG);
cfg &= ~HPET_TN_ENABLE;
hpet_writel(cfg, HPET_T1_CFG);
return;
}
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
hpet_rtc_int_freq = PIE_freq;
else
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
/* It is more accurate to use the comparator value than current count.*/
ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
hpet_t1_cmp += ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
/*
* If the interrupt handler was delayed too long, the write above tries
* to schedule the next interrupt in the past and the hardware would
* not interrupt until the counter had wrapped around.
* So we have to check that the comparator wasn't set to a past time.
*/
cnt = hpet_readl(HPET_COUNTER);
if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
/* Make sure that, even with the time needed to execute
* this code, the next scheduled interrupt has been moved
* back to the future: */
lost_ints++;
hpet_t1_cmp += lost_ints * ticks_per_int;
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
if (PIE_on)
PIE_count += lost_ints;
if (printk_ratelimit())
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
hpet_rtc_int_freq);
}
}
/*
* The functions below are called from rtc driver.
* Return 0 if HPET is not being used.
* Otherwise do the necessary changes and return 1.
*/
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
{
if (!is_hpet_enabled())
return 0;
if (bit_mask & RTC_UIE)
UIE_on = 0;
if (bit_mask & RTC_PIE)
PIE_on = 0;
if (bit_mask & RTC_AIE)
AIE_on = 0;
return 1;
}
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
{
int timer_init_reqd = 0;
if (!is_hpet_enabled())
return 0;
if (!(PIE_on | AIE_on | UIE_on))
timer_init_reqd = 1;
if (bit_mask & RTC_UIE) {
UIE_on = 1;
}
if (bit_mask & RTC_PIE) {
PIE_on = 1;
PIE_count = 0;
}
if (bit_mask & RTC_AIE) {
AIE_on = 1;
}
if (timer_init_reqd)
hpet_rtc_timer_init();
return 1;
}
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
{
if (!is_hpet_enabled())
return 0;
alarm_time.tm_hour = hrs;
alarm_time.tm_min = min;
alarm_time.tm_sec = sec;
return 1;
}
int hpet_set_periodic_freq(unsigned long freq)
{
if (!is_hpet_enabled())
return 0;
PIE_freq = freq;
PIE_count = 0;
return 1;
}
int hpet_rtc_dropped_irq(void)
{
if (!is_hpet_enabled())
return 0;
return 1;
}
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
struct rtc_time curr_time;
unsigned long rtc_int_flag = 0;
int call_rtc_interrupt = 0;
hpet_rtc_timer_reinit();
if (UIE_on | AIE_on) {
rtc_get_rtc_time(&curr_time);
}
if (UIE_on) {
if (curr_time.tm_sec != prev_update_sec) {
/* Set update int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag = RTC_UF;
prev_update_sec = curr_time.tm_sec;
}
}
if (PIE_on) {
PIE_count++;
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
/* Set periodic int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_PF;
PIE_count = 0;
}
}
if (AIE_on) {
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
(curr_time.tm_min == alarm_time.tm_min) &&
(curr_time.tm_hour == alarm_time.tm_hour)) {
/* Set alarm int info, call real rtc int routine */
call_rtc_interrupt = 1;
rtc_int_flag |= RTC_AF;
}
}
if (call_rtc_interrupt) {
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
rtc_interrupt(rtc_int_flag, dev_id);
}
return IRQ_HANDLED;
}
#endif
static int __init nohpet_setup(char *s)
{
nohpet = 1;
return 1;
}
__setup("nohpet", nohpet_setup);
#define HPET_MASK 0xFFFFFFFF
#define HPET_SHIFT 22
/* FSEC = 10^-15 NSEC = 10^-9 */
#define FSEC_PER_NSEC 1000000
static void *hpet_ptr;
static cycle_t read_hpet(void)
{
return (cycle_t)readl(hpet_ptr);
}
static cycle_t __vsyscall_fn vread_hpet(void)
{
return readl((void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
}
struct clocksource clocksource_hpet = {
.name = "hpet",
.rating = 250,
.read = read_hpet,
.mask = (cycle_t)HPET_MASK,
.mult = 0, /* set below */
.shift = HPET_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
.vread = vread_hpet,
};
static int __init init_hpet_clocksource(void)
{
unsigned long hpet_period;
void __iomem *hpet_base;
u64 tmp;
if (!hpet_address)
return -ENODEV;
/* calculate the hpet address: */
hpet_base = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
hpet_ptr = hpet_base + HPET_COUNTER;
/* calculate the frequency: */
hpet_period = readl(hpet_base + HPET_PERIOD);
/*
* hpet period is in femto seconds per cycle
* so we need to convert this to ns/cyc units
* aproximated by mult/2^shift
*
* fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
* fsec/cyc * 1ns/1000000fsec * 2^shift = mult
* fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
* (fsec/cyc << shift)/1000000 = mult
* (hpet_period << shift)/FSEC_PER_NSEC = mult
*/
tmp = (u64)hpet_period << HPET_SHIFT;
do_div(tmp, FSEC_PER_NSEC);
clocksource_hpet.mult = (u32)tmp;
return clocksource_register(&clocksource_hpet);
}
module_init(init_hpet_clocksource);