linux_dsm_epyc7002/arch/x86/kernel/traps.c
Andy Lutomirski b645af2d59 x86_64, traps: Rework bad_iret
It's possible for iretq to userspace to fail.  This can happen because
of a bad CS, SS, or RIP.

Historically, we've handled it by fixing up an exception from iretq to
land at bad_iret, which pretends that the failed iret frame was really
the hardware part of #GP(0) from userspace.  To make this work, there's
an extra fixup to fudge the gs base into a usable state.

This is suboptimal because it loses the original exception.  It's also
buggy because there's no guarantee that we were on the kernel stack to
begin with.  For example, if the failing iret happened on return from an
NMI, then we'll end up executing general_protection on the NMI stack.
This is bad for several reasons, the most immediate of which is that
general_protection, as a non-paranoid idtentry, will try to deliver
signals and/or schedule from the wrong stack.

This patch throws out bad_iret entirely.  As a replacement, it augments
the existing swapgs fudge into a full-blown iret fixup, mostly written
in C.  It's should be clearer and more correct.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-23 13:56:19 -08:00

863 lines
23 KiB
C

/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
*
* Pentium III FXSR, SSE support
* Gareth Hughes <gareth@valinux.com>, May 2000
*/
/*
* Handle hardware traps and faults.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/context_tracking.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/spinlock.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kgdb.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/kexec.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/io.h>
#ifdef CONFIG_EISA
#include <linux/ioport.h>
#include <linux/eisa.h>
#endif
#if defined(CONFIG_EDAC)
#include <linux/edac.h>
#endif
#include <asm/kmemcheck.h>
#include <asm/stacktrace.h>
#include <asm/processor.h>
#include <asm/debugreg.h>
#include <linux/atomic.h>
#include <asm/ftrace.h>
#include <asm/traps.h>
#include <asm/desc.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/mce.h>
#include <asm/fixmap.h>
#include <asm/mach_traps.h>
#include <asm/alternative.h>
#ifdef CONFIG_X86_64
#include <asm/x86_init.h>
#include <asm/pgalloc.h>
#include <asm/proto.h>
/* No need to be aligned, but done to keep all IDTs defined the same way. */
gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
#else
#include <asm/processor-flags.h>
#include <asm/setup.h>
asmlinkage int system_call(void);
#endif
/* Must be page-aligned because the real IDT is used in a fixmap. */
gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
DECLARE_BITMAP(used_vectors, NR_VECTORS);
EXPORT_SYMBOL_GPL(used_vectors);
static inline void conditional_sti(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void preempt_conditional_sti(struct pt_regs *regs)
{
preempt_count_inc();
if (regs->flags & X86_EFLAGS_IF)
local_irq_enable();
}
static inline void conditional_cli(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_disable();
}
static inline void preempt_conditional_cli(struct pt_regs *regs)
{
if (regs->flags & X86_EFLAGS_IF)
local_irq_disable();
preempt_count_dec();
}
static nokprobe_inline int
do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
struct pt_regs *regs, long error_code)
{
#ifdef CONFIG_X86_32
if (regs->flags & X86_VM_MASK) {
/*
* Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
* On nmi (interrupt 2), do_trap should not be called.
*/
if (trapnr < X86_TRAP_UD) {
if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
error_code, trapnr))
return 0;
}
return -1;
}
#endif
if (!user_mode(regs)) {
if (!fixup_exception(regs)) {
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
die(str, regs, error_code);
}
return 0;
}
return -1;
}
static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
siginfo_t *info)
{
unsigned long siaddr;
int sicode;
switch (trapnr) {
default:
return SEND_SIG_PRIV;
case X86_TRAP_DE:
sicode = FPE_INTDIV;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_UD:
sicode = ILL_ILLOPN;
siaddr = uprobe_get_trap_addr(regs);
break;
case X86_TRAP_AC:
sicode = BUS_ADRALN;
siaddr = 0;
break;
}
info->si_signo = signr;
info->si_errno = 0;
info->si_code = sicode;
info->si_addr = (void __user *)siaddr;
return info;
}
static void
do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
long error_code, siginfo_t *info)
{
struct task_struct *tsk = current;
if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
return;
/*
* We want error_code and trap_nr set for userspace faults and
* kernelspace faults which result in die(), but not
* kernelspace faults which are fixed up. die() gives the
* process no chance to handle the signal and notice the
* kernel fault information, so that won't result in polluting
* the information about previously queued, but not yet
* delivered, faults. See also do_general_protection below.
*/
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = trapnr;
#ifdef CONFIG_X86_64
if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
printk_ratelimit()) {
pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
tsk->comm, tsk->pid, str,
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");
}
#endif
force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
}
NOKPROBE_SYMBOL(do_trap);
static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
unsigned long trapnr, int signr)
{
enum ctx_state prev_state = exception_enter();
siginfo_t info;
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
NOTIFY_STOP) {
conditional_sti(regs);
do_trap(trapnr, signr, str, regs, error_code,
fill_trap_info(regs, signr, trapnr, &info));
}
exception_exit(prev_state);
}
#define DO_ERROR(trapnr, signr, str, name) \
dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
{ \
do_error_trap(regs, error_code, str, trapnr, signr); \
}
DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
#ifdef CONFIG_X86_64
/* Runs on IST stack */
dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
{
static const char str[] = "double fault";
struct task_struct *tsk = current;
#ifdef CONFIG_X86_ESPFIX64
extern unsigned char native_irq_return_iret[];
/*
* If IRET takes a non-IST fault on the espfix64 stack, then we
* end up promoting it to a doublefault. In that case, modify
* the stack to make it look like we just entered the #GP
* handler from user space, similar to bad_iret.
*/
if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
regs->cs == __KERNEL_CS &&
regs->ip == (unsigned long)native_irq_return_iret)
{
struct pt_regs *normal_regs = task_pt_regs(current);
/* Fake a #GP(0) from userspace. */
memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
regs->ip = (unsigned long)general_protection;
regs->sp = (unsigned long)&normal_regs->orig_ax;
return;
}
#endif
exception_enter();
/* Return not checked because double check cannot be ignored */
notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_DF;
#ifdef CONFIG_DOUBLEFAULT
df_debug(regs, error_code);
#endif
/*
* This is always a kernel trap and never fixable (and thus must
* never return).
*/
for (;;)
die(str, regs, error_code);
}
#endif
dotraplinkage void
do_general_protection(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk;
enum ctx_state prev_state;
prev_state = exception_enter();
conditional_sti(regs);
#ifdef CONFIG_X86_32
if (regs->flags & X86_VM_MASK) {
local_irq_enable();
handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
goto exit;
}
#endif
tsk = current;
if (!user_mode(regs)) {
if (fixup_exception(regs))
goto exit;
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
die("general protection fault", regs, error_code);
goto exit;
}
tsk->thread.error_code = error_code;
tsk->thread.trap_nr = X86_TRAP_GP;
if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
printk_ratelimit()) {
pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
tsk->comm, task_pid_nr(tsk),
regs->ip, regs->sp, error_code);
print_vma_addr(" in ", regs->ip);
pr_cont("\n");
}
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
exit:
exception_exit(prev_state);
}
NOKPROBE_SYMBOL(do_general_protection);
/* May run on IST stack. */
dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
{
enum ctx_state prev_state;
#ifdef CONFIG_DYNAMIC_FTRACE
/*
* ftrace must be first, everything else may cause a recursive crash.
* See note by declaration of modifying_ftrace_code in ftrace.c
*/
if (unlikely(atomic_read(&modifying_ftrace_code)) &&
ftrace_int3_handler(regs))
return;
#endif
if (poke_int3_handler(regs))
return;
prev_state = exception_enter();
#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
SIGTRAP) == NOTIFY_STOP)
goto exit;
#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
#ifdef CONFIG_KPROBES
if (kprobe_int3_handler(regs))
goto exit;
#endif
if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
SIGTRAP) == NOTIFY_STOP)
goto exit;
/*
* Let others (NMI) know that the debug stack is in use
* as we may switch to the interrupt stack.
*/
debug_stack_usage_inc();
preempt_conditional_sti(regs);
do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
preempt_conditional_cli(regs);
debug_stack_usage_dec();
exit:
exception_exit(prev_state);
}
NOKPROBE_SYMBOL(do_int3);
#ifdef CONFIG_X86_64
/*
* Help handler running on IST stack to switch back to user stack
* for scheduling or signal handling. The actual stack switch is done in
* entry.S
*/
asmlinkage __visible struct pt_regs *sync_regs(struct pt_regs *eregs)
{
struct pt_regs *regs = eregs;
/* Did already sync */
if (eregs == (struct pt_regs *)eregs->sp)
;
/* Exception from user space */
else if (user_mode(eregs))
regs = task_pt_regs(current);
/*
* Exception from kernel and interrupts are enabled. Move to
* kernel process stack.
*/
else if (eregs->flags & X86_EFLAGS_IF)
regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
if (eregs != regs)
*regs = *eregs;
return regs;
}
NOKPROBE_SYMBOL(sync_regs);
struct bad_iret_stack {
void *error_entry_ret;
struct pt_regs regs;
};
asmlinkage __visible
struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
{
/*
* This is called from entry_64.S early in handling a fault
* caused by a bad iret to user mode. To handle the fault
* correctly, we want move our stack frame to task_pt_regs
* and we want to pretend that the exception came from the
* iret target.
*/
struct bad_iret_stack *new_stack =
container_of(task_pt_regs(current),
struct bad_iret_stack, regs);
/* Copy the IRET target to the new stack. */
memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
/* Copy the remainder of the stack from the current stack. */
memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
BUG_ON(!user_mode_vm(&new_stack->regs));
return new_stack;
}
#endif
/*
* Our handling of the processor debug registers is non-trivial.
* We do not clear them on entry and exit from the kernel. Therefore
* it is possible to get a watchpoint trap here from inside the kernel.
* However, the code in ./ptrace.c has ensured that the user can
* only set watchpoints on userspace addresses. Therefore the in-kernel
* watchpoint trap can only occur in code which is reading/writing
* from user space. Such code must not hold kernel locks (since it
* can equally take a page fault), therefore it is safe to call
* force_sig_info even though that claims and releases locks.
*
* Code in ./signal.c ensures that the debug control register
* is restored before we deliver any signal, and therefore that
* user code runs with the correct debug control register even though
* we clear it here.
*
* Being careful here means that we don't have to be as careful in a
* lot of more complicated places (task switching can be a bit lazy
* about restoring all the debug state, and ptrace doesn't have to
* find every occurrence of the TF bit that could be saved away even
* by user code)
*
* May run on IST stack.
*/
dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
{
struct task_struct *tsk = current;
enum ctx_state prev_state;
int user_icebp = 0;
unsigned long dr6;
int si_code;
prev_state = exception_enter();
get_debugreg(dr6, 6);
/* Filter out all the reserved bits which are preset to 1 */
dr6 &= ~DR6_RESERVED;
/*
* If dr6 has no reason to give us about the origin of this trap,
* then it's very likely the result of an icebp/int01 trap.
* User wants a sigtrap for that.
*/
if (!dr6 && user_mode(regs))
user_icebp = 1;
/* Catch kmemcheck conditions first of all! */
if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
goto exit;
/* DR6 may or may not be cleared by the CPU */
set_debugreg(0, 6);
/*
* The processor cleared BTF, so don't mark that we need it set.
*/
clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
/* Store the virtualized DR6 value */
tsk->thread.debugreg6 = dr6;
#ifdef CONFIG_KPROBES
if (kprobe_debug_handler(regs))
goto exit;
#endif
if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
SIGTRAP) == NOTIFY_STOP)
goto exit;
/*
* Let others (NMI) know that the debug stack is in use
* as we may switch to the interrupt stack.
*/
debug_stack_usage_inc();
/* It's safe to allow irq's after DR6 has been saved */
preempt_conditional_sti(regs);
if (regs->flags & X86_VM_MASK) {
handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
X86_TRAP_DB);
preempt_conditional_cli(regs);
debug_stack_usage_dec();
goto exit;
}
/*
* Single-stepping through system calls: ignore any exceptions in
* kernel space, but re-enable TF when returning to user mode.
*
* We already checked v86 mode above, so we can check for kernel mode
* by just checking the CPL of CS.
*/
if ((dr6 & DR_STEP) && !user_mode(regs)) {
tsk->thread.debugreg6 &= ~DR_STEP;
set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
regs->flags &= ~X86_EFLAGS_TF;
}
si_code = get_si_code(tsk->thread.debugreg6);
if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
send_sigtrap(tsk, regs, error_code, si_code);
preempt_conditional_cli(regs);
debug_stack_usage_dec();
exit:
exception_exit(prev_state);
}
NOKPROBE_SYMBOL(do_debug);
/*
* Note that we play around with the 'TS' bit in an attempt to get
* the correct behaviour even in the presence of the asynchronous
* IRQ13 behaviour
*/
static void math_error(struct pt_regs *regs, int error_code, int trapnr)
{
struct task_struct *task = current;
siginfo_t info;
unsigned short err;
char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
"simd exception";
if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
return;
conditional_sti(regs);
if (!user_mode_vm(regs))
{
if (!fixup_exception(regs)) {
task->thread.error_code = error_code;
task->thread.trap_nr = trapnr;
die(str, regs, error_code);
}
return;
}
/*
* Save the info for the exception handler and clear the error.
*/
save_init_fpu(task);
task->thread.trap_nr = trapnr;
task->thread.error_code = error_code;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
if (trapnr == X86_TRAP_MF) {
unsigned short cwd, swd;
/*
* (~cwd & swd) will mask out exceptions that are not set to unmasked
* status. 0x3f is the exception bits in these regs, 0x200 is the
* C1 reg you need in case of a stack fault, 0x040 is the stack
* fault bit. We should only be taking one exception at a time,
* so if this combination doesn't produce any single exception,
* then we have a bad program that isn't synchronizing its FPU usage
* and it will suffer the consequences since we won't be able to
* fully reproduce the context of the exception
*/
cwd = get_fpu_cwd(task);
swd = get_fpu_swd(task);
err = swd & ~cwd;
} else {
/*
* The SIMD FPU exceptions are handled a little differently, as there
* is only a single status/control register. Thus, to determine which
* unmasked exception was caught we must mask the exception mask bits
* at 0x1f80, and then use these to mask the exception bits at 0x3f.
*/
unsigned short mxcsr = get_fpu_mxcsr(task);
err = ~(mxcsr >> 7) & mxcsr;
}
if (err & 0x001) { /* Invalid op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
info.si_code = FPE_FLTINV;
} else if (err & 0x004) { /* Divide by Zero */
info.si_code = FPE_FLTDIV;
} else if (err & 0x008) { /* Overflow */
info.si_code = FPE_FLTOVF;
} else if (err & 0x012) { /* Denormal, Underflow */
info.si_code = FPE_FLTUND;
} else if (err & 0x020) { /* Precision */
info.si_code = FPE_FLTRES;
} else {
/*
* If we're using IRQ 13, or supposedly even some trap
* X86_TRAP_MF implementations, it's possible
* we get a spurious trap, which is not an error.
*/
return;
}
force_sig_info(SIGFPE, &info, task);
}
dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
{
enum ctx_state prev_state;
prev_state = exception_enter();
math_error(regs, error_code, X86_TRAP_MF);
exception_exit(prev_state);
}
dotraplinkage void
do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
{
enum ctx_state prev_state;
prev_state = exception_enter();
math_error(regs, error_code, X86_TRAP_XF);
exception_exit(prev_state);
}
dotraplinkage void
do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
{
conditional_sti(regs);
#if 0
/* No need to warn about this any longer. */
pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
#endif
}
asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
{
}
asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
{
}
/*
* 'math_state_restore()' saves the current math information in the
* old math state array, and gets the new ones from the current task
*
* Careful.. There are problems with IBM-designed IRQ13 behaviour.
* Don't touch unless you *really* know how it works.
*
* Must be called with kernel preemption disabled (eg with local
* local interrupts as in the case of do_device_not_available).
*/
void math_state_restore(void)
{
struct task_struct *tsk = current;
if (!tsk_used_math(tsk)) {
local_irq_enable();
/*
* does a slab alloc which can sleep
*/
if (init_fpu(tsk)) {
/*
* ran out of memory!
*/
do_group_exit(SIGKILL);
return;
}
local_irq_disable();
}
__thread_fpu_begin(tsk);
/*
* Paranoid restore. send a SIGSEGV if we fail to restore the state.
*/
if (unlikely(restore_fpu_checking(tsk))) {
drop_init_fpu(tsk);
force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
return;
}
tsk->thread.fpu_counter++;
}
EXPORT_SYMBOL_GPL(math_state_restore);
dotraplinkage void
do_device_not_available(struct pt_regs *regs, long error_code)
{
enum ctx_state prev_state;
prev_state = exception_enter();
BUG_ON(use_eager_fpu());
#ifdef CONFIG_MATH_EMULATION
if (read_cr0() & X86_CR0_EM) {
struct math_emu_info info = { };
conditional_sti(regs);
info.regs = regs;
math_emulate(&info);
exception_exit(prev_state);
return;
}
#endif
math_state_restore(); /* interrupts still off */
#ifdef CONFIG_X86_32
conditional_sti(regs);
#endif
exception_exit(prev_state);
}
NOKPROBE_SYMBOL(do_device_not_available);
#ifdef CONFIG_X86_32
dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
{
siginfo_t info;
enum ctx_state prev_state;
prev_state = exception_enter();
local_irq_enable();
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = ILL_BADSTK;
info.si_addr = NULL;
if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
&info);
}
exception_exit(prev_state);
}
#endif
/* Set of traps needed for early debugging. */
void __init early_trap_init(void)
{
set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
/* int3 can be called from all */
set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
#ifdef CONFIG_X86_32
set_intr_gate(X86_TRAP_PF, page_fault);
#endif
load_idt(&idt_descr);
}
void __init early_trap_pf_init(void)
{
#ifdef CONFIG_X86_64
set_intr_gate(X86_TRAP_PF, page_fault);
#endif
}
void __init trap_init(void)
{
int i;
#ifdef CONFIG_EISA
void __iomem *p = early_ioremap(0x0FFFD9, 4);
if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
EISA_bus = 1;
early_iounmap(p, 4);
#endif
set_intr_gate(X86_TRAP_DE, divide_error);
set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
/* int4 can be called from all */
set_system_intr_gate(X86_TRAP_OF, &overflow);
set_intr_gate(X86_TRAP_BR, bounds);
set_intr_gate(X86_TRAP_UD, invalid_op);
set_intr_gate(X86_TRAP_NM, device_not_available);
#ifdef CONFIG_X86_32
set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
#else
set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
#endif
set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
set_intr_gate(X86_TRAP_TS, invalid_TSS);
set_intr_gate(X86_TRAP_NP, segment_not_present);
set_intr_gate(X86_TRAP_SS, stack_segment);
set_intr_gate(X86_TRAP_GP, general_protection);
set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
set_intr_gate(X86_TRAP_MF, coprocessor_error);
set_intr_gate(X86_TRAP_AC, alignment_check);
#ifdef CONFIG_X86_MCE
set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
#endif
set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
/* Reserve all the builtin and the syscall vector: */
for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
set_bit(i, used_vectors);
#ifdef CONFIG_IA32_EMULATION
set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
set_bit(IA32_SYSCALL_VECTOR, used_vectors);
#endif
#ifdef CONFIG_X86_32
set_system_trap_gate(SYSCALL_VECTOR, &system_call);
set_bit(SYSCALL_VECTOR, used_vectors);
#endif
/*
* Set the IDT descriptor to a fixed read-only location, so that the
* "sidt" instruction will not leak the location of the kernel, and
* to defend the IDT against arbitrary memory write vulnerabilities.
* It will be reloaded in cpu_init() */
__set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
idt_descr.address = fix_to_virt(FIX_RO_IDT);
/*
* Should be a barrier for any external CPU state:
*/
cpu_init();
x86_init.irqs.trap_init();
#ifdef CONFIG_X86_64
memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
set_nmi_gate(X86_TRAP_DB, &debug);
set_nmi_gate(X86_TRAP_BP, &int3);
#endif
}