mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-29 23:46:41 +07:00
775b64d2b6
This patch reorganizes the way suspend and resume notifications are sent to drivers. The major changes are that now the PM core acquires every device semaphore before calling the methods, and calls to device_add() during suspends will fail, while calls to device_del() during suspends will block. It also provides a way to safely remove a suspended device with the help of the PM core, by using the device_pm_schedule_removal() callback introduced specifically for this purpose, and updates two drivers (msr and cpuid) that need to use it. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
552 lines
14 KiB
C
552 lines
14 KiB
C
/*
|
|
* drivers/base/power/main.c - Where the driver meets power management.
|
|
*
|
|
* Copyright (c) 2003 Patrick Mochel
|
|
* Copyright (c) 2003 Open Source Development Lab
|
|
*
|
|
* This file is released under the GPLv2
|
|
*
|
|
*
|
|
* The driver model core calls device_pm_add() when a device is registered.
|
|
* This will intialize the embedded device_pm_info object in the device
|
|
* and add it to the list of power-controlled devices. sysfs entries for
|
|
* controlling device power management will also be added.
|
|
*
|
|
* A different set of lists than the global subsystem list are used to
|
|
* keep track of power info because we use different lists to hold
|
|
* devices based on what stage of the power management process they
|
|
* are in. The power domain dependencies may also differ from the
|
|
* ancestral dependencies that the subsystem list maintains.
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/resume-trace.h>
|
|
#include <linux/rwsem.h>
|
|
|
|
#include "../base.h"
|
|
#include "power.h"
|
|
|
|
/*
|
|
* The entries in the dpm_active list are in a depth first order, simply
|
|
* because children are guaranteed to be discovered after parents, and
|
|
* are inserted at the back of the list on discovery.
|
|
*
|
|
* All the other lists are kept in the same order, for consistency.
|
|
* However the lists aren't always traversed in the same order.
|
|
* Semaphores must be acquired from the top (i.e., front) down
|
|
* and released in the opposite order. Devices must be suspended
|
|
* from the bottom (i.e., end) up and resumed in the opposite order.
|
|
* That way no parent will be suspended while it still has an active
|
|
* child.
|
|
*
|
|
* Since device_pm_add() may be called with a device semaphore held,
|
|
* we must never try to acquire a device semaphore while holding
|
|
* dpm_list_mutex.
|
|
*/
|
|
|
|
LIST_HEAD(dpm_active);
|
|
static LIST_HEAD(dpm_locked);
|
|
static LIST_HEAD(dpm_off);
|
|
static LIST_HEAD(dpm_off_irq);
|
|
static LIST_HEAD(dpm_destroy);
|
|
|
|
static DEFINE_MUTEX(dpm_list_mtx);
|
|
|
|
static DECLARE_RWSEM(pm_sleep_rwsem);
|
|
|
|
int (*platform_enable_wakeup)(struct device *dev, int is_on);
|
|
|
|
/**
|
|
* device_pm_add - add a device to the list of active devices
|
|
* @dev: Device to be added to the list
|
|
*/
|
|
void device_pm_add(struct device *dev)
|
|
{
|
|
pr_debug("PM: Adding info for %s:%s\n",
|
|
dev->bus ? dev->bus->name : "No Bus",
|
|
kobject_name(&dev->kobj));
|
|
mutex_lock(&dpm_list_mtx);
|
|
list_add_tail(&dev->power.entry, &dpm_active);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* device_pm_remove - remove a device from the list of active devices
|
|
* @dev: Device to be removed from the list
|
|
*
|
|
* This function also removes the device's PM-related sysfs attributes.
|
|
*/
|
|
void device_pm_remove(struct device *dev)
|
|
{
|
|
/*
|
|
* If this function is called during a suspend, it will be blocked,
|
|
* because we're holding the device's semaphore at that time, which may
|
|
* lead to a deadlock. In that case we want to print a warning.
|
|
* However, it may also be called by unregister_dropped_devices() with
|
|
* the device's semaphore released, in which case the warning should
|
|
* not be printed.
|
|
*/
|
|
if (down_trylock(&dev->sem)) {
|
|
if (down_read_trylock(&pm_sleep_rwsem)) {
|
|
/* No suspend in progress, wait on dev->sem */
|
|
down(&dev->sem);
|
|
up_read(&pm_sleep_rwsem);
|
|
} else {
|
|
/* Suspend in progress, we may deadlock */
|
|
dev_warn(dev, "Suspicious %s during suspend\n",
|
|
__FUNCTION__);
|
|
dump_stack();
|
|
/* The user has been warned ... */
|
|
down(&dev->sem);
|
|
}
|
|
}
|
|
pr_debug("PM: Removing info for %s:%s\n",
|
|
dev->bus ? dev->bus->name : "No Bus",
|
|
kobject_name(&dev->kobj));
|
|
mutex_lock(&dpm_list_mtx);
|
|
dpm_sysfs_remove(dev);
|
|
list_del_init(&dev->power.entry);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
up(&dev->sem);
|
|
}
|
|
|
|
/**
|
|
* device_pm_schedule_removal - schedule the removal of a suspended device
|
|
* @dev: Device to destroy
|
|
*
|
|
* Moves the device to the dpm_destroy list for further processing by
|
|
* unregister_dropped_devices().
|
|
*/
|
|
void device_pm_schedule_removal(struct device *dev)
|
|
{
|
|
pr_debug("PM: Preparing for removal: %s:%s\n",
|
|
dev->bus ? dev->bus->name : "No Bus",
|
|
kobject_name(&dev->kobj));
|
|
mutex_lock(&dpm_list_mtx);
|
|
list_move_tail(&dev->power.entry, &dpm_destroy);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* pm_sleep_lock - mutual exclusion for registration and suspend
|
|
*
|
|
* Returns 0 if no suspend is underway and device registration
|
|
* may proceed, otherwise -EBUSY.
|
|
*/
|
|
int pm_sleep_lock(void)
|
|
{
|
|
if (down_read_trylock(&pm_sleep_rwsem))
|
|
return 0;
|
|
|
|
return -EBUSY;
|
|
}
|
|
|
|
/**
|
|
* pm_sleep_unlock - mutual exclusion for registration and suspend
|
|
*
|
|
* This routine undoes the effect of device_pm_add_lock
|
|
* when a device's registration is complete.
|
|
*/
|
|
void pm_sleep_unlock(void)
|
|
{
|
|
up_read(&pm_sleep_rwsem);
|
|
}
|
|
|
|
|
|
/*------------------------- Resume routines -------------------------*/
|
|
|
|
/**
|
|
* resume_device_early - Power on one device (early resume).
|
|
* @dev: Device.
|
|
*
|
|
* Must be called with interrupts disabled.
|
|
*/
|
|
static int resume_device_early(struct device *dev)
|
|
{
|
|
int error = 0;
|
|
|
|
TRACE_DEVICE(dev);
|
|
TRACE_RESUME(0);
|
|
|
|
if (dev->bus && dev->bus->resume_early) {
|
|
dev_dbg(dev, "EARLY resume\n");
|
|
error = dev->bus->resume_early(dev);
|
|
}
|
|
|
|
TRACE_RESUME(error);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* dpm_power_up - Power on all regular (non-sysdev) devices.
|
|
*
|
|
* Walk the dpm_off_irq list and power each device up. This
|
|
* is used for devices that required they be powered down with
|
|
* interrupts disabled. As devices are powered on, they are moved
|
|
* to the dpm_off list.
|
|
*
|
|
* Must be called with interrupts disabled and only one CPU running.
|
|
*/
|
|
static void dpm_power_up(void)
|
|
{
|
|
|
|
while (!list_empty(&dpm_off_irq)) {
|
|
struct list_head *entry = dpm_off_irq.next;
|
|
struct device *dev = to_device(entry);
|
|
|
|
list_move_tail(entry, &dpm_off);
|
|
resume_device_early(dev);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* device_power_up - Turn on all devices that need special attention.
|
|
*
|
|
* Power on system devices, then devices that required we shut them down
|
|
* with interrupts disabled.
|
|
*
|
|
* Must be called with interrupts disabled.
|
|
*/
|
|
void device_power_up(void)
|
|
{
|
|
sysdev_resume();
|
|
dpm_power_up();
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_power_up);
|
|
|
|
/**
|
|
* resume_device - Restore state for one device.
|
|
* @dev: Device.
|
|
*
|
|
*/
|
|
static int resume_device(struct device *dev)
|
|
{
|
|
int error = 0;
|
|
|
|
TRACE_DEVICE(dev);
|
|
TRACE_RESUME(0);
|
|
|
|
if (dev->bus && dev->bus->resume) {
|
|
dev_dbg(dev,"resuming\n");
|
|
error = dev->bus->resume(dev);
|
|
}
|
|
|
|
if (!error && dev->type && dev->type->resume) {
|
|
dev_dbg(dev,"resuming\n");
|
|
error = dev->type->resume(dev);
|
|
}
|
|
|
|
if (!error && dev->class && dev->class->resume) {
|
|
dev_dbg(dev,"class resume\n");
|
|
error = dev->class->resume(dev);
|
|
}
|
|
|
|
TRACE_RESUME(error);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* dpm_resume - Resume every device.
|
|
*
|
|
* Resume the devices that have either not gone through
|
|
* the late suspend, or that did go through it but also
|
|
* went through the early resume.
|
|
*
|
|
* Take devices from the dpm_off_list, resume them,
|
|
* and put them on the dpm_locked list.
|
|
*/
|
|
static void dpm_resume(void)
|
|
{
|
|
mutex_lock(&dpm_list_mtx);
|
|
while(!list_empty(&dpm_off)) {
|
|
struct list_head *entry = dpm_off.next;
|
|
struct device *dev = to_device(entry);
|
|
|
|
list_move_tail(entry, &dpm_locked);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
resume_device(dev);
|
|
mutex_lock(&dpm_list_mtx);
|
|
}
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* unlock_all_devices - Release each device's semaphore
|
|
*
|
|
* Go through the dpm_off list. Put each device on the dpm_active
|
|
* list and unlock it.
|
|
*/
|
|
static void unlock_all_devices(void)
|
|
{
|
|
mutex_lock(&dpm_list_mtx);
|
|
while (!list_empty(&dpm_locked)) {
|
|
struct list_head *entry = dpm_locked.prev;
|
|
struct device *dev = to_device(entry);
|
|
|
|
list_move(entry, &dpm_active);
|
|
up(&dev->sem);
|
|
}
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* unregister_dropped_devices - Unregister devices scheduled for removal
|
|
*
|
|
* Unregister all devices on the dpm_destroy list.
|
|
*/
|
|
static void unregister_dropped_devices(void)
|
|
{
|
|
mutex_lock(&dpm_list_mtx);
|
|
while (!list_empty(&dpm_destroy)) {
|
|
struct list_head *entry = dpm_destroy.next;
|
|
struct device *dev = to_device(entry);
|
|
|
|
up(&dev->sem);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
/* This also removes the device from the list */
|
|
device_unregister(dev);
|
|
mutex_lock(&dpm_list_mtx);
|
|
}
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* device_resume - Restore state of each device in system.
|
|
*
|
|
* Resume all the devices, unlock them all, and allow new
|
|
* devices to be registered once again.
|
|
*/
|
|
void device_resume(void)
|
|
{
|
|
might_sleep();
|
|
dpm_resume();
|
|
unlock_all_devices();
|
|
unregister_dropped_devices();
|
|
up_write(&pm_sleep_rwsem);
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_resume);
|
|
|
|
|
|
/*------------------------- Suspend routines -------------------------*/
|
|
|
|
static inline char *suspend_verb(u32 event)
|
|
{
|
|
switch (event) {
|
|
case PM_EVENT_SUSPEND: return "suspend";
|
|
case PM_EVENT_FREEZE: return "freeze";
|
|
case PM_EVENT_PRETHAW: return "prethaw";
|
|
default: return "(unknown suspend event)";
|
|
}
|
|
}
|
|
|
|
static void
|
|
suspend_device_dbg(struct device *dev, pm_message_t state, char *info)
|
|
{
|
|
dev_dbg(dev, "%s%s%s\n", info, suspend_verb(state.event),
|
|
((state.event == PM_EVENT_SUSPEND) && device_may_wakeup(dev)) ?
|
|
", may wakeup" : "");
|
|
}
|
|
|
|
/**
|
|
* suspend_device_late - Shut down one device (late suspend).
|
|
* @dev: Device.
|
|
* @state: Power state device is entering.
|
|
*
|
|
* This is called with interrupts off and only a single CPU running.
|
|
*/
|
|
static int suspend_device_late(struct device *dev, pm_message_t state)
|
|
{
|
|
int error = 0;
|
|
|
|
if (dev->bus && dev->bus->suspend_late) {
|
|
suspend_device_dbg(dev, state, "LATE ");
|
|
error = dev->bus->suspend_late(dev, state);
|
|
suspend_report_result(dev->bus->suspend_late, error);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* device_power_down - Shut down special devices.
|
|
* @state: Power state to enter.
|
|
*
|
|
* Power down devices that require interrupts to be disabled
|
|
* and move them from the dpm_off list to the dpm_off_irq list.
|
|
* Then power down system devices.
|
|
*
|
|
* Must be called with interrupts disabled and only one CPU running.
|
|
*/
|
|
int device_power_down(pm_message_t state)
|
|
{
|
|
int error = 0;
|
|
|
|
while (!list_empty(&dpm_off)) {
|
|
struct list_head *entry = dpm_off.prev;
|
|
struct device *dev = to_device(entry);
|
|
|
|
list_del_init(&dev->power.entry);
|
|
error = suspend_device_late(dev, state);
|
|
if (error) {
|
|
printk(KERN_ERR "Could not power down device %s: "
|
|
"error %d\n",
|
|
kobject_name(&dev->kobj), error);
|
|
if (list_empty(&dev->power.entry))
|
|
list_add(&dev->power.entry, &dpm_off);
|
|
break;
|
|
}
|
|
if (list_empty(&dev->power.entry))
|
|
list_add(&dev->power.entry, &dpm_off_irq);
|
|
}
|
|
|
|
if (!error)
|
|
error = sysdev_suspend(state);
|
|
if (error)
|
|
dpm_power_up();
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_power_down);
|
|
|
|
/**
|
|
* suspend_device - Save state of one device.
|
|
* @dev: Device.
|
|
* @state: Power state device is entering.
|
|
*/
|
|
int suspend_device(struct device *dev, pm_message_t state)
|
|
{
|
|
int error = 0;
|
|
|
|
if (dev->power.power_state.event) {
|
|
dev_dbg(dev, "PM: suspend %d-->%d\n",
|
|
dev->power.power_state.event, state.event);
|
|
}
|
|
|
|
if (dev->class && dev->class->suspend) {
|
|
suspend_device_dbg(dev, state, "class ");
|
|
error = dev->class->suspend(dev, state);
|
|
suspend_report_result(dev->class->suspend, error);
|
|
}
|
|
|
|
if (!error && dev->type && dev->type->suspend) {
|
|
suspend_device_dbg(dev, state, "type ");
|
|
error = dev->type->suspend(dev, state);
|
|
suspend_report_result(dev->type->suspend, error);
|
|
}
|
|
|
|
if (!error && dev->bus && dev->bus->suspend) {
|
|
suspend_device_dbg(dev, state, "");
|
|
error = dev->bus->suspend(dev, state);
|
|
suspend_report_result(dev->bus->suspend, error);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* dpm_suspend - Suspend every device.
|
|
* @state: Power state to put each device in.
|
|
*
|
|
* Walk the dpm_locked list. Suspend each device and move it
|
|
* to the dpm_off list.
|
|
*
|
|
* (For historical reasons, if it returns -EAGAIN, that used to mean
|
|
* that the device would be called again with interrupts disabled.
|
|
* These days, we use the "suspend_late()" callback for that, so we
|
|
* print a warning and consider it an error).
|
|
*/
|
|
static int dpm_suspend(pm_message_t state)
|
|
{
|
|
int error = 0;
|
|
|
|
mutex_lock(&dpm_list_mtx);
|
|
while (!list_empty(&dpm_locked)) {
|
|
struct list_head *entry = dpm_locked.prev;
|
|
struct device *dev = to_device(entry);
|
|
|
|
list_del_init(&dev->power.entry);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
error = suspend_device(dev, state);
|
|
if (error) {
|
|
printk(KERN_ERR "Could not suspend device %s: "
|
|
"error %d%s\n",
|
|
kobject_name(&dev->kobj),
|
|
error,
|
|
(error == -EAGAIN ?
|
|
" (please convert to suspend_late)" :
|
|
""));
|
|
mutex_lock(&dpm_list_mtx);
|
|
if (list_empty(&dev->power.entry))
|
|
list_add(&dev->power.entry, &dpm_locked);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
break;
|
|
}
|
|
mutex_lock(&dpm_list_mtx);
|
|
if (list_empty(&dev->power.entry))
|
|
list_add(&dev->power.entry, &dpm_off);
|
|
}
|
|
mutex_unlock(&dpm_list_mtx);
|
|
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* lock_all_devices - Acquire every device's semaphore
|
|
*
|
|
* Go through the dpm_active list. Carefully lock each device's
|
|
* semaphore and put it in on the dpm_locked list.
|
|
*/
|
|
static void lock_all_devices(void)
|
|
{
|
|
mutex_lock(&dpm_list_mtx);
|
|
while (!list_empty(&dpm_active)) {
|
|
struct list_head *entry = dpm_active.next;
|
|
struct device *dev = to_device(entry);
|
|
|
|
/* Required locking order is dev->sem first,
|
|
* then dpm_list_mutex. Hence this awkward code.
|
|
*/
|
|
get_device(dev);
|
|
mutex_unlock(&dpm_list_mtx);
|
|
down(&dev->sem);
|
|
mutex_lock(&dpm_list_mtx);
|
|
|
|
if (list_empty(entry))
|
|
up(&dev->sem); /* Device was removed */
|
|
else
|
|
list_move_tail(entry, &dpm_locked);
|
|
put_device(dev);
|
|
}
|
|
mutex_unlock(&dpm_list_mtx);
|
|
}
|
|
|
|
/**
|
|
* device_suspend - Save state and stop all devices in system.
|
|
*
|
|
* Prevent new devices from being registered, then lock all devices
|
|
* and suspend them.
|
|
*/
|
|
int device_suspend(pm_message_t state)
|
|
{
|
|
int error;
|
|
|
|
might_sleep();
|
|
down_write(&pm_sleep_rwsem);
|
|
lock_all_devices();
|
|
error = dpm_suspend(state);
|
|
if (error)
|
|
device_resume();
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_suspend);
|
|
|
|
void __suspend_report_result(const char *function, void *fn, int ret)
|
|
{
|
|
if (ret) {
|
|
printk(KERN_ERR "%s(): ", function);
|
|
print_fn_descriptor_symbol("%s() returns ", (unsigned long)fn);
|
|
printk("%d\n", ret);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__suspend_report_result);
|