linux_dsm_epyc7002/drivers/gpu/drm/i915/gvt/gtt.c
Dave Airlie b1c4f7fead Merge tag 'drm-intel-next-2019-04-17' of git://anongit.freedesktop.org/drm/drm-intel into drm-next
UAPI Changes:

- uAPI "Fixes:" patch for the upcoming kernel 5.1, included here too

  We have an Ack from the media folks (only current user) for this
  late tweak

Cross-subsystem Changes:

- ALSA: hda: Fix racy display power access (Takashi, Chris)

Driver Changes:

- DDI and MIPI-DSI clocks fixes for Icelake (Vandita)
- Fix Icelake frequency change/locking (RPS) (Mika)
- Temporarily disable ppGTT read-only bit on Icelake (Mika)
- Add missing Icelake W/As (Mika)
- Enable 12 deep CSB status FIFO on Icelake (Mika)
- Inherit more Icelake code for Elkhartlake (Bob, Jani)

- Handle catastrophic error on engine reset (Mika)
- Shortcut readiness to reset check (Mika)
- Regression fix for GEM_BUSY causing us to report a mixed uabi-class request as not busy (Chris)
- Revert back to max link rate and lane count on eDP (Jani)
- Fix pipe BPP readout for BXT/GLK DSI (Ville)
- Set DP min_bpp to 8*3 for non-RGB output formats (Ville)
- Enable coarse preemption boundaries for Gen8 (Chris)
- Do not enable FEC without DSC (Ville)
- Restore correct BXT DDI latency optim setting calculation (Ville)
- Always reset context's RING registers to avoid running workload twice during reset (Chris)
- Set GPU wedged on driver unload (Janusz)
- Consolidate two similar barries from timeline into one (Chris)
- Only reset the pinned kernel contexts on resume (Chris)
- Wakeref tracking improvements (Chris, Imre)
- Lockdep fixes for shrinker interactions (Chris)
- Bump ready tasks ahead of busywaits in prep of semaphore use (Chris)

- Huge step in splitting display code into fine grained files (Jani)
- Refactor the IRQ init/reset macros for code saving (Paulo)
- Convert IRQ initialization code to uncore MMIO access (Paulo)
- Convert workarounds code to use uncore MMIO access (Chris)
- Nuke drm_crtc_state and use intel_atomic_state instead (Manasi)
- Update SKL clock-gating WA (Radhakrishna, Ville)
- Isolate GuC reset code flow (Chris)
- Expose force_dsc_enable through debugfs (Manasi)
- Header standalone compile testing framework (Jani)
- Code cleanups to reduce driver footprint (Chris)
- PSR code fixes and cleanups (Jose)
- Sparse and kerneldoc updates (Chris)
- Suppress spurious combo PHY B warning (Vile)

Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190418080426.GA6409@jlahtine-desk.ger.corp.intel.com
2019-04-24 10:02:20 +10:00

2796 lines
73 KiB
C

/*
* GTT virtualization
*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Zhi Wang <zhi.a.wang@intel.com>
* Zhenyu Wang <zhenyuw@linux.intel.com>
* Xiao Zheng <xiao.zheng@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
#include "i915_pvinfo.h"
#include "trace.h"
#if defined(VERBOSE_DEBUG)
#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
#else
#define gvt_vdbg_mm(fmt, args...)
#endif
static bool enable_out_of_sync = false;
static int preallocated_oos_pages = 8192;
/*
* validate a gm address and related range size,
* translate it to host gm address
*/
bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
{
if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
addr, size);
return false;
}
return true;
}
/* translate a guest gmadr to host gmadr */
int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
{
if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
"invalid guest gmadr %llx\n", g_addr))
return -EACCES;
if (vgpu_gmadr_is_aperture(vgpu, g_addr))
*h_addr = vgpu_aperture_gmadr_base(vgpu)
+ (g_addr - vgpu_aperture_offset(vgpu));
else
*h_addr = vgpu_hidden_gmadr_base(vgpu)
+ (g_addr - vgpu_hidden_offset(vgpu));
return 0;
}
/* translate a host gmadr to guest gmadr */
int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
{
if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
"invalid host gmadr %llx\n", h_addr))
return -EACCES;
if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
*g_addr = vgpu_aperture_gmadr_base(vgpu)
+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
else
*g_addr = vgpu_hidden_gmadr_base(vgpu)
+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
return 0;
}
int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
unsigned long *h_index)
{
u64 h_addr;
int ret;
ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
&h_addr);
if (ret)
return ret;
*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
return 0;
}
int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
unsigned long *g_index)
{
u64 g_addr;
int ret;
ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
&g_addr);
if (ret)
return ret;
*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
return 0;
}
#define gtt_type_is_entry(type) \
(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
&& type != GTT_TYPE_PPGTT_PTE_ENTRY \
&& type != GTT_TYPE_PPGTT_ROOT_ENTRY)
#define gtt_type_is_pt(type) \
(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
#define gtt_type_is_pte_pt(type) \
(type == GTT_TYPE_PPGTT_PTE_PT)
#define gtt_type_is_root_pointer(type) \
(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
#define gtt_init_entry(e, t, p, v) do { \
(e)->type = t; \
(e)->pdev = p; \
memcpy(&(e)->val64, &v, sizeof(v)); \
} while (0)
/*
* Mappings between GTT_TYPE* enumerations.
* Following information can be found according to the given type:
* - type of next level page table
* - type of entry inside this level page table
* - type of entry with PSE set
*
* If the given type doesn't have such a kind of information,
* e.g. give a l4 root entry type, then request to get its PSE type,
* give a PTE page table type, then request to get its next level page
* table type, as we know l4 root entry doesn't have a PSE bit,
* and a PTE page table doesn't have a next level page table type,
* GTT_TYPE_INVALID will be returned. This is useful when traversing a
* page table.
*/
struct gtt_type_table_entry {
int entry_type;
int pt_type;
int next_pt_type;
int pse_entry_type;
};
#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
[type] = { \
.entry_type = e_type, \
.pt_type = cpt_type, \
.next_pt_type = npt_type, \
.pse_entry_type = pse_type, \
}
static struct gtt_type_table_entry gtt_type_table[] = {
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
/* We take IPS bit as 'PSE' for PTE level. */
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_64K_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_64K_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_64K_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
GTT_TYPE_GGTT_PTE,
GTT_TYPE_INVALID,
GTT_TYPE_INVALID,
GTT_TYPE_INVALID),
};
static inline int get_next_pt_type(int type)
{
return gtt_type_table[type].next_pt_type;
}
static inline int get_pt_type(int type)
{
return gtt_type_table[type].pt_type;
}
static inline int get_entry_type(int type)
{
return gtt_type_table[type].entry_type;
}
static inline int get_pse_type(int type)
{
return gtt_type_table[type].pse_entry_type;
}
static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
{
void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
return readq(addr);
}
static void ggtt_invalidate(struct drm_i915_private *dev_priv)
{
mmio_hw_access_pre(dev_priv);
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
mmio_hw_access_post(dev_priv);
}
static void write_pte64(struct drm_i915_private *dev_priv,
unsigned long index, u64 pte)
{
void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
writeq(pte, addr);
}
static inline int gtt_get_entry64(void *pt,
struct intel_gvt_gtt_entry *e,
unsigned long index, bool hypervisor_access, unsigned long gpa,
struct intel_vgpu *vgpu)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (WARN_ON(info->gtt_entry_size != 8))
return -EINVAL;
if (hypervisor_access) {
ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
(index << info->gtt_entry_size_shift),
&e->val64, 8);
if (WARN_ON(ret))
return ret;
} else if (!pt) {
e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
} else {
e->val64 = *((u64 *)pt + index);
}
return 0;
}
static inline int gtt_set_entry64(void *pt,
struct intel_gvt_gtt_entry *e,
unsigned long index, bool hypervisor_access, unsigned long gpa,
struct intel_vgpu *vgpu)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (WARN_ON(info->gtt_entry_size != 8))
return -EINVAL;
if (hypervisor_access) {
ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
(index << info->gtt_entry_size_shift),
&e->val64, 8);
if (WARN_ON(ret))
return ret;
} else if (!pt) {
write_pte64(vgpu->gvt->dev_priv, index, e->val64);
} else {
*((u64 *)pt + index) = e->val64;
}
return 0;
}
#define GTT_HAW 46
#define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
#define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
#define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
#define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
#define GTT_64K_PTE_STRIDE 16
static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
{
unsigned long pfn;
if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
else
pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
return pfn;
}
static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
{
if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
e->val64 &= ~ADDR_1G_MASK;
pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
e->val64 &= ~ADDR_2M_MASK;
pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
e->val64 &= ~ADDR_64K_MASK;
pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
} else {
e->val64 &= ~ADDR_4K_MASK;
pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
}
e->val64 |= (pfn << PAGE_SHIFT);
}
static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
{
return !!(e->val64 & _PAGE_PSE);
}
static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
{
if (gen8_gtt_test_pse(e)) {
switch (e->type) {
case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
e->val64 &= ~_PAGE_PSE;
e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
break;
case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
e->val64 &= ~_PAGE_PSE;
break;
default:
WARN_ON(1);
}
}
}
static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
{
if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
return false;
return !!(e->val64 & GEN8_PDE_IPS_64K);
}
static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
{
if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
return;
e->val64 &= ~GEN8_PDE_IPS_64K;
}
static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
{
/*
* i915 writes PDP root pointer registers without present bit,
* it also works, so we need to treat root pointer entry
* specifically.
*/
if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
return (e->val64 != 0);
else
return (e->val64 & _PAGE_PRESENT);
}
static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
{
e->val64 &= ~_PAGE_PRESENT;
}
static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
{
e->val64 |= _PAGE_PRESENT;
}
static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
{
return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
}
static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
{
e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
}
static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
{
e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
}
/*
* Per-platform GMA routines.
*/
static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
{
unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
trace_gma_index(__func__, gma, x);
return x;
}
#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
{ \
unsigned long x = (exp); \
trace_gma_index(__func__, gma, x); \
return x; \
}
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
.get_entry = gtt_get_entry64,
.set_entry = gtt_set_entry64,
.clear_present = gtt_entry_clear_present,
.set_present = gtt_entry_set_present,
.test_present = gen8_gtt_test_present,
.test_pse = gen8_gtt_test_pse,
.clear_pse = gen8_gtt_clear_pse,
.clear_ips = gen8_gtt_clear_ips,
.test_ips = gen8_gtt_test_ips,
.clear_64k_splited = gen8_gtt_clear_64k_splited,
.set_64k_splited = gen8_gtt_set_64k_splited,
.test_64k_splited = gen8_gtt_test_64k_splited,
.get_pfn = gen8_gtt_get_pfn,
.set_pfn = gen8_gtt_set_pfn,
};
static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
.gma_to_pte_index = gen8_gma_to_pte_index,
.gma_to_pde_index = gen8_gma_to_pde_index,
.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
.gma_to_pml4_index = gen8_gma_to_pml4_index,
};
/* Update entry type per pse and ips bit. */
static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
struct intel_gvt_gtt_entry *entry, bool ips)
{
switch (entry->type) {
case GTT_TYPE_PPGTT_PDE_ENTRY:
case GTT_TYPE_PPGTT_PDP_ENTRY:
if (pte_ops->test_pse(entry))
entry->type = get_pse_type(entry->type);
break;
case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
if (ips)
entry->type = get_pse_type(entry->type);
break;
default:
GEM_BUG_ON(!gtt_type_is_entry(entry->type));
}
GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
}
/*
* MM helpers.
*/
static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index,
bool guest)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
entry->type = mm->ppgtt_mm.root_entry_type;
pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
mm->ppgtt_mm.shadow_pdps,
entry, index, false, 0, mm->vgpu);
update_entry_type_for_real(pte_ops, entry, false);
}
static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
_ppgtt_get_root_entry(mm, entry, index, true);
}
static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
_ppgtt_get_root_entry(mm, entry, index, false);
}
static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index,
bool guest)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
mm->ppgtt_mm.shadow_pdps,
entry, index, false, 0, mm->vgpu);
}
static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
_ppgtt_set_root_entry(mm, entry, index, true);
}
static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
_ppgtt_set_root_entry(mm, entry, index, false);
}
static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
entry->type = GTT_TYPE_GGTT_PTE;
pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
false, 0, mm->vgpu);
}
static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
false, 0, mm->vgpu);
}
static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
}
static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *entry, unsigned long index)
{
struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
}
/*
* PPGTT shadow page table helpers.
*/
static inline int ppgtt_spt_get_entry(
struct intel_vgpu_ppgtt_spt *spt,
void *page_table, int type,
struct intel_gvt_gtt_entry *e, unsigned long index,
bool guest)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
int ret;
e->type = get_entry_type(type);
if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
return -EINVAL;
ret = ops->get_entry(page_table, e, index, guest,
spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
spt->vgpu);
if (ret)
return ret;
update_entry_type_for_real(ops, e, guest ?
spt->guest_page.pde_ips : false);
gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
type, e->type, index, e->val64);
return 0;
}
static inline int ppgtt_spt_set_entry(
struct intel_vgpu_ppgtt_spt *spt,
void *page_table, int type,
struct intel_gvt_gtt_entry *e, unsigned long index,
bool guest)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
return -EINVAL;
gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
type, e->type, index, e->val64);
return ops->set_entry(page_table, e, index, guest,
spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
spt->vgpu);
}
#define ppgtt_get_guest_entry(spt, e, index) \
ppgtt_spt_get_entry(spt, NULL, \
spt->guest_page.type, e, index, true)
#define ppgtt_set_guest_entry(spt, e, index) \
ppgtt_spt_set_entry(spt, NULL, \
spt->guest_page.type, e, index, true)
#define ppgtt_get_shadow_entry(spt, e, index) \
ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
spt->shadow_page.type, e, index, false)
#define ppgtt_set_shadow_entry(spt, e, index) \
ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
spt->shadow_page.type, e, index, false)
static void *alloc_spt(gfp_t gfp_mask)
{
struct intel_vgpu_ppgtt_spt *spt;
spt = kzalloc(sizeof(*spt), gfp_mask);
if (!spt)
return NULL;
spt->shadow_page.page = alloc_page(gfp_mask);
if (!spt->shadow_page.page) {
kfree(spt);
return NULL;
}
return spt;
}
static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
{
__free_page(spt->shadow_page.page);
kfree(spt);
}
static int detach_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page);
static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
{
struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
PCI_DMA_BIDIRECTIONAL);
radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
if (spt->guest_page.gfn) {
if (spt->guest_page.oos_page)
detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
}
list_del_init(&spt->post_shadow_list);
free_spt(spt);
}
static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
{
struct intel_vgpu_ppgtt_spt *spt, *spn;
struct radix_tree_iter iter;
LIST_HEAD(all_spt);
void __rcu **slot;
rcu_read_lock();
radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
spt = radix_tree_deref_slot(slot);
list_move(&spt->post_shadow_list, &all_spt);
}
rcu_read_unlock();
list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
ppgtt_free_spt(spt);
}
static int ppgtt_handle_guest_write_page_table_bytes(
struct intel_vgpu_ppgtt_spt *spt,
u64 pa, void *p_data, int bytes);
static int ppgtt_write_protection_handler(
struct intel_vgpu_page_track *page_track,
u64 gpa, void *data, int bytes)
{
struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
if (ret)
return ret;
return ret;
}
/* Find a spt by guest gfn. */
static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
struct intel_vgpu *vgpu, unsigned long gfn)
{
struct intel_vgpu_page_track *track;
track = intel_vgpu_find_page_track(vgpu, gfn);
if (track && track->handler == ppgtt_write_protection_handler)
return track->priv_data;
return NULL;
}
/* Find the spt by shadow page mfn. */
static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
struct intel_vgpu *vgpu, unsigned long mfn)
{
return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
}
static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
/* Allocate shadow page table without guest page. */
static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
{
struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
struct intel_vgpu_ppgtt_spt *spt = NULL;
dma_addr_t daddr;
int ret;
retry:
spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
if (!spt) {
if (reclaim_one_ppgtt_mm(vgpu->gvt))
goto retry;
gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
return ERR_PTR(-ENOMEM);
}
spt->vgpu = vgpu;
atomic_set(&spt->refcount, 1);
INIT_LIST_HEAD(&spt->post_shadow_list);
/*
* Init shadow_page.
*/
spt->shadow_page.type = type;
daddr = dma_map_page(kdev, spt->shadow_page.page,
0, 4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev, daddr)) {
gvt_vgpu_err("fail to map dma addr\n");
ret = -EINVAL;
goto err_free_spt;
}
spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
if (ret)
goto err_unmap_dma;
return spt;
err_unmap_dma:
dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
err_free_spt:
free_spt(spt);
return ERR_PTR(ret);
}
/* Allocate shadow page table associated with specific gfn. */
static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
unsigned long gfn, bool guest_pde_ips)
{
struct intel_vgpu_ppgtt_spt *spt;
int ret;
spt = ppgtt_alloc_spt(vgpu, type);
if (IS_ERR(spt))
return spt;
/*
* Init guest_page.
*/
ret = intel_vgpu_register_page_track(vgpu, gfn,
ppgtt_write_protection_handler, spt);
if (ret) {
ppgtt_free_spt(spt);
return ERR_PTR(ret);
}
spt->guest_page.type = type;
spt->guest_page.gfn = gfn;
spt->guest_page.pde_ips = guest_pde_ips;
trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
return spt;
}
#define pt_entry_size_shift(spt) \
((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
#define pt_entries(spt) \
(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
#define for_each_present_guest_entry(spt, e, i) \
for (i = 0; i < pt_entries(spt); \
i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
if (!ppgtt_get_guest_entry(spt, e, i) && \
spt->vgpu->gvt->gtt.pte_ops->test_present(e))
#define for_each_present_shadow_entry(spt, e, i) \
for (i = 0; i < pt_entries(spt); \
i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
if (!ppgtt_get_shadow_entry(spt, e, i) && \
spt->vgpu->gvt->gtt.pte_ops->test_present(e))
#define for_each_shadow_entry(spt, e, i) \
for (i = 0; i < pt_entries(spt); \
i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
if (!ppgtt_get_shadow_entry(spt, e, i))
static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
{
int v = atomic_read(&spt->refcount);
trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
atomic_inc(&spt->refcount);
}
static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
{
int v = atomic_read(&spt->refcount);
trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
return atomic_dec_return(&spt->refcount);
}
static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
struct intel_gvt_gtt_entry *e)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s;
intel_gvt_gtt_type_t cur_pt_type;
GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
cur_pt_type = get_next_pt_type(e->type) + 1;
if (ops->get_pfn(e) ==
vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
return 0;
}
s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
if (!s) {
gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
ops->get_pfn(e));
return -ENXIO;
}
return ppgtt_invalidate_spt(s);
}
static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
struct intel_gvt_gtt_entry *entry)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
unsigned long pfn;
int type;
pfn = ops->get_pfn(entry);
type = spt->shadow_page.type;
/* Uninitialized spte or unshadowed spte. */
if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
return;
intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
}
static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_entry e;
unsigned long index;
int ret;
trace_spt_change(spt->vgpu->id, "die", spt,
spt->guest_page.gfn, spt->shadow_page.type);
if (ppgtt_put_spt(spt) > 0)
return 0;
for_each_present_shadow_entry(spt, &e, index) {
switch (e.type) {
case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
gvt_vdbg_mm("invalidate 4K entry\n");
ppgtt_invalidate_pte(spt, &e);
break;
case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
/* We don't setup 64K shadow entry so far. */
WARN(1, "suspicious 64K gtt entry\n");
continue;
case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
gvt_vdbg_mm("invalidate 2M entry\n");
continue;
case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
WARN(1, "GVT doesn't support 1GB page\n");
continue;
case GTT_TYPE_PPGTT_PML4_ENTRY:
case GTT_TYPE_PPGTT_PDP_ENTRY:
case GTT_TYPE_PPGTT_PDE_ENTRY:
gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
ret = ppgtt_invalidate_spt_by_shadow_entry(
spt->vgpu, &e);
if (ret)
goto fail;
break;
default:
GEM_BUG_ON(1);
}
}
trace_spt_change(spt->vgpu->id, "release", spt,
spt->guest_page.gfn, spt->shadow_page.type);
ppgtt_free_spt(spt);
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
spt, e.val64, e.type);
return ret;
}
static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
{
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
GAMW_ECO_ENABLE_64K_IPS_FIELD;
return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
} else if (INTEL_GEN(dev_priv) >= 11) {
/* 64K paging only controlled by IPS bit in PTE now. */
return true;
} else
return false;
}
static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *spt = NULL;
bool ips = false;
int ret;
GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
if (spt) {
ppgtt_get_spt(spt);
if (ips != spt->guest_page.pde_ips) {
spt->guest_page.pde_ips = ips;
gvt_dbg_mm("reshadow PDE since ips changed\n");
clear_page(spt->shadow_page.vaddr);
ret = ppgtt_populate_spt(spt);
if (ret) {
ppgtt_put_spt(spt);
goto err;
}
}
} else {
int type = get_next_pt_type(we->type);
spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
if (IS_ERR(spt)) {
ret = PTR_ERR(spt);
goto err;
}
ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
if (ret)
goto err_free_spt;
ret = ppgtt_populate_spt(spt);
if (ret)
goto err_free_spt;
trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
spt->shadow_page.type);
}
return spt;
err_free_spt:
ppgtt_free_spt(spt);
err:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
spt, we->val64, we->type);
return ERR_PTR(ret);
}
static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
{
struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
se->type = ge->type;
se->val64 = ge->val64;
/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
ops->clear_ips(se);
ops->set_pfn(se, s->shadow_page.mfn);
}
/**
* Check if can do 2M page
* @vgpu: target vgpu
* @entry: target pfn's gtt entry
*
* Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
* negtive if found err.
*/
static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
struct intel_gvt_gtt_entry *entry)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
unsigned long pfn;
if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
return 0;
pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
if (pfn == INTEL_GVT_INVALID_ADDR)
return -EINVAL;
return PageTransHuge(pfn_to_page(pfn));
}
static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
struct intel_gvt_gtt_entry *se)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *sub_spt;
struct intel_gvt_gtt_entry sub_se;
unsigned long start_gfn;
dma_addr_t dma_addr;
unsigned long sub_index;
int ret;
gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
start_gfn = ops->get_pfn(se);
sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
if (IS_ERR(sub_spt))
return PTR_ERR(sub_spt);
for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
start_gfn + sub_index, PAGE_SIZE, &dma_addr);
if (ret) {
ppgtt_invalidate_spt(spt);
return ret;
}
sub_se.val64 = se->val64;
/* Copy the PAT field from PDE. */
sub_se.val64 &= ~_PAGE_PAT;
sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
}
/* Clear dirty field. */
se->val64 &= ~_PAGE_DIRTY;
ops->clear_pse(se);
ops->clear_ips(se);
ops->set_pfn(se, sub_spt->shadow_page.mfn);
ppgtt_set_shadow_entry(spt, se, index);
return 0;
}
static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
struct intel_gvt_gtt_entry *se)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_gvt_gtt_entry entry = *se;
unsigned long start_gfn;
dma_addr_t dma_addr;
int i, ret;
gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
start_gfn = ops->get_pfn(se);
entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
ops->set_64k_splited(&entry);
for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
start_gfn + i, PAGE_SIZE, &dma_addr);
if (ret)
return ret;
ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
ppgtt_set_shadow_entry(spt, &entry, index + i);
}
return 0;
}
static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
struct intel_gvt_gtt_entry *ge)
{
struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
struct intel_gvt_gtt_entry se = *ge;
unsigned long gfn, page_size = PAGE_SIZE;
dma_addr_t dma_addr;
int ret;
if (!pte_ops->test_present(ge))
return 0;
gfn = pte_ops->get_pfn(ge);
switch (ge->type) {
case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
gvt_vdbg_mm("shadow 4K gtt entry\n");
break;
case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
gvt_vdbg_mm("shadow 64K gtt entry\n");
/*
* The layout of 64K page is special, the page size is
* controlled by uper PDE. To be simple, we always split
* 64K page to smaller 4K pages in shadow PT.
*/
return split_64KB_gtt_entry(vgpu, spt, index, &se);
case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
gvt_vdbg_mm("shadow 2M gtt entry\n");
ret = is_2MB_gtt_possible(vgpu, ge);
if (ret == 0)
return split_2MB_gtt_entry(vgpu, spt, index, &se);
else if (ret < 0)
return ret;
page_size = I915_GTT_PAGE_SIZE_2M;
break;
case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
gvt_vgpu_err("GVT doesn't support 1GB entry\n");
return -EINVAL;
default:
GEM_BUG_ON(1);
};
/* direct shadow */
ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
&dma_addr);
if (ret)
return -ENXIO;
pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
ppgtt_set_shadow_entry(spt, &se, index);
return 0;
}
static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s;
struct intel_gvt_gtt_entry se, ge;
unsigned long gfn, i;
int ret;
trace_spt_change(spt->vgpu->id, "born", spt,
spt->guest_page.gfn, spt->shadow_page.type);
for_each_present_guest_entry(spt, &ge, i) {
if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
if (IS_ERR(s)) {
ret = PTR_ERR(s);
goto fail;
}
ppgtt_get_shadow_entry(spt, &se, i);
ppgtt_generate_shadow_entry(&se, s, &ge);
ppgtt_set_shadow_entry(spt, &se, i);
} else {
gfn = ops->get_pfn(&ge);
if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
ops->set_pfn(&se, gvt->gtt.scratch_mfn);
ppgtt_set_shadow_entry(spt, &se, i);
continue;
}
ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
if (ret)
goto fail;
}
}
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
spt, ge.val64, ge.type);
return ret;
}
static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
struct intel_gvt_gtt_entry *se, unsigned long index)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
int ret;
trace_spt_guest_change(spt->vgpu->id, "remove", spt,
spt->shadow_page.type, se->val64, index);
gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
se->type, index, se->val64);
if (!ops->test_present(se))
return 0;
if (ops->get_pfn(se) ==
vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
return 0;
if (gtt_type_is_pt(get_next_pt_type(se->type))) {
struct intel_vgpu_ppgtt_spt *s =
intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
if (!s) {
gvt_vgpu_err("fail to find guest page\n");
ret = -ENXIO;
goto fail;
}
ret = ppgtt_invalidate_spt(s);
if (ret)
goto fail;
} else {
/* We don't setup 64K shadow entry so far. */
WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
"suspicious 64K entry\n");
ppgtt_invalidate_pte(spt, se);
}
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
spt, se->val64, se->type);
return ret;
}
static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
struct intel_gvt_gtt_entry *we, unsigned long index)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_entry m;
struct intel_vgpu_ppgtt_spt *s;
int ret;
trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
we->val64, index);
gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
we->type, index, we->val64);
if (gtt_type_is_pt(get_next_pt_type(we->type))) {
s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
if (IS_ERR(s)) {
ret = PTR_ERR(s);
goto fail;
}
ppgtt_get_shadow_entry(spt, &m, index);
ppgtt_generate_shadow_entry(&m, s, we);
ppgtt_set_shadow_entry(spt, &m, index);
} else {
ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
if (ret)
goto fail;
}
return 0;
fail:
gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
spt, we->val64, we->type);
return ret;
}
static int sync_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
struct intel_gvt_gtt_entry old, new;
int index;
int ret;
trace_oos_change(vgpu->id, "sync", oos_page->id,
spt, spt->guest_page.type);
old.type = new.type = get_entry_type(spt->guest_page.type);
old.val64 = new.val64 = 0;
for (index = 0; index < (I915_GTT_PAGE_SIZE >>
info->gtt_entry_size_shift); index++) {
ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
ops->get_entry(NULL, &new, index, true,
spt->guest_page.gfn << PAGE_SHIFT, vgpu);
if (old.val64 == new.val64
&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
continue;
trace_oos_sync(vgpu->id, oos_page->id,
spt, spt->guest_page.type,
new.val64, index);
ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
if (ret)
return ret;
ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
}
spt->guest_page.write_cnt = 0;
list_del_init(&spt->post_shadow_list);
return 0;
}
static int detach_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
trace_oos_change(vgpu->id, "detach", oos_page->id,
spt, spt->guest_page.type);
spt->guest_page.write_cnt = 0;
spt->guest_page.oos_page = NULL;
oos_page->spt = NULL;
list_del_init(&oos_page->vm_list);
list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
return 0;
}
static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
int ret;
ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
oos_page->mem, I915_GTT_PAGE_SIZE);
if (ret)
return ret;
oos_page->spt = spt;
spt->guest_page.oos_page = oos_page;
list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
spt, spt->guest_page.type);
return 0;
}
static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
int ret;
ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
if (ret)
return ret;
trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
spt, spt->guest_page.type);
list_del_init(&oos_page->vm_list);
return sync_oos_page(spt->vgpu, oos_page);
}
static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
int ret;
WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
if (list_empty(&gtt->oos_page_free_list_head)) {
oos_page = container_of(gtt->oos_page_use_list_head.next,
struct intel_vgpu_oos_page, list);
ret = ppgtt_set_guest_page_sync(oos_page->spt);
if (ret)
return ret;
ret = detach_oos_page(spt->vgpu, oos_page);
if (ret)
return ret;
} else
oos_page = container_of(gtt->oos_page_free_list_head.next,
struct intel_vgpu_oos_page, list);
return attach_oos_page(oos_page, spt);
}
static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
return -EINVAL;
trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
spt, spt->guest_page.type);
list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
}
/**
* intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
* @vgpu: a vGPU
*
* This function is called before submitting a guest workload to host,
* to sync all the out-of-synced shadow for vGPU
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_oos_page *oos_page;
int ret;
if (!enable_out_of_sync)
return 0;
list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
oos_page = container_of(pos,
struct intel_vgpu_oos_page, vm_list);
ret = ppgtt_set_guest_page_sync(oos_page->spt);
if (ret)
return ret;
}
return 0;
}
/*
* The heart of PPGTT shadow page table.
*/
static int ppgtt_handle_guest_write_page_table(
struct intel_vgpu_ppgtt_spt *spt,
struct intel_gvt_gtt_entry *we, unsigned long index)
{
struct intel_vgpu *vgpu = spt->vgpu;
int type = spt->shadow_page.type;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_gvt_gtt_entry old_se;
int new_present;
int i, ret;
new_present = ops->test_present(we);
/*
* Adding the new entry first and then removing the old one, that can
* guarantee the ppgtt table is validated during the window between
* adding and removal.
*/
ppgtt_get_shadow_entry(spt, &old_se, index);
if (new_present) {
ret = ppgtt_handle_guest_entry_add(spt, we, index);
if (ret)
goto fail;
}
ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
if (ret)
goto fail;
if (!new_present) {
/* For 64KB splited entries, we need clear them all. */
if (ops->test_64k_splited(&old_se) &&
!(index % GTT_64K_PTE_STRIDE)) {
gvt_vdbg_mm("remove splited 64K shadow entries\n");
for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
ops->clear_64k_splited(&old_se);
ops->set_pfn(&old_se,
vgpu->gtt.scratch_pt[type].page_mfn);
ppgtt_set_shadow_entry(spt, &old_se, index + i);
}
} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
ops->clear_pse(&old_se);
ops->set_pfn(&old_se,
vgpu->gtt.scratch_pt[type].page_mfn);
ppgtt_set_shadow_entry(spt, &old_se, index);
} else {
ops->set_pfn(&old_se,
vgpu->gtt.scratch_pt[type].page_mfn);
ppgtt_set_shadow_entry(spt, &old_se, index);
}
}
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
spt, we->val64, we->type);
return ret;
}
static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
{
return enable_out_of_sync
&& gtt_type_is_pte_pt(spt->guest_page.type)
&& spt->guest_page.write_cnt >= 2;
}
static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
unsigned long index)
{
set_bit(index, spt->post_shadow_bitmap);
if (!list_empty(&spt->post_shadow_list))
return;
list_add_tail(&spt->post_shadow_list,
&spt->vgpu->gtt.post_shadow_list_head);
}
/**
* intel_vgpu_flush_post_shadow - flush the post shadow transactions
* @vgpu: a vGPU
*
* This function is called before submitting a guest workload to host,
* to flush all the post shadows for a vGPU.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_ppgtt_spt *spt;
struct intel_gvt_gtt_entry ge;
unsigned long index;
int ret;
list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
post_shadow_list);
for_each_set_bit(index, spt->post_shadow_bitmap,
GTT_ENTRY_NUM_IN_ONE_PAGE) {
ppgtt_get_guest_entry(spt, &ge, index);
ret = ppgtt_handle_guest_write_page_table(spt,
&ge, index);
if (ret)
return ret;
clear_bit(index, spt->post_shadow_bitmap);
}
list_del_init(&spt->post_shadow_list);
}
return 0;
}
static int ppgtt_handle_guest_write_page_table_bytes(
struct intel_vgpu_ppgtt_spt *spt,
u64 pa, void *p_data, int bytes)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
struct intel_gvt_gtt_entry we, se;
unsigned long index;
int ret;
index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
ppgtt_get_guest_entry(spt, &we, index);
/*
* For page table which has 64K gtt entry, only PTE#0, PTE#16,
* PTE#32, ... PTE#496 are used. Unused PTEs update should be
* ignored.
*/
if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
(index % GTT_64K_PTE_STRIDE)) {
gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
index);
return 0;
}
if (bytes == info->gtt_entry_size) {
ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
if (ret)
return ret;
} else {
if (!test_bit(index, spt->post_shadow_bitmap)) {
int type = spt->shadow_page.type;
ppgtt_get_shadow_entry(spt, &se, index);
ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
if (ret)
return ret;
ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
ppgtt_set_shadow_entry(spt, &se, index);
}
ppgtt_set_post_shadow(spt, index);
}
if (!enable_out_of_sync)
return 0;
spt->guest_page.write_cnt++;
if (spt->guest_page.oos_page)
ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
false, 0, vgpu);
if (can_do_out_of_sync(spt)) {
if (!spt->guest_page.oos_page)
ppgtt_allocate_oos_page(spt);
ret = ppgtt_set_guest_page_oos(spt);
if (ret < 0)
return ret;
}
return 0;
}
static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
struct intel_gvt_gtt_entry se;
int index;
if (!mm->ppgtt_mm.shadowed)
return;
for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
ppgtt_get_shadow_root_entry(mm, &se, index);
if (!ops->test_present(&se))
continue;
ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
se.val64 = 0;
ppgtt_set_shadow_root_entry(mm, &se, index);
trace_spt_guest_change(vgpu->id, "destroy root pointer",
NULL, se.type, se.val64, index);
}
mm->ppgtt_mm.shadowed = false;
}
static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
struct intel_vgpu_ppgtt_spt *spt;
struct intel_gvt_gtt_entry ge, se;
int index, ret;
if (mm->ppgtt_mm.shadowed)
return 0;
mm->ppgtt_mm.shadowed = true;
for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
ppgtt_get_guest_root_entry(mm, &ge, index);
if (!ops->test_present(&ge))
continue;
trace_spt_guest_change(vgpu->id, __func__, NULL,
ge.type, ge.val64, index);
spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
if (IS_ERR(spt)) {
gvt_vgpu_err("fail to populate guest root pointer\n");
ret = PTR_ERR(spt);
goto fail;
}
ppgtt_generate_shadow_entry(&se, spt, &ge);
ppgtt_set_shadow_root_entry(mm, &se, index);
trace_spt_guest_change(vgpu->id, "populate root pointer",
NULL, se.type, se.val64, index);
}
return 0;
fail:
invalidate_ppgtt_mm(mm);
return ret;
}
static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
{
struct intel_vgpu_mm *mm;
mm = kzalloc(sizeof(*mm), GFP_KERNEL);
if (!mm)
return NULL;
mm->vgpu = vgpu;
kref_init(&mm->ref);
atomic_set(&mm->pincount, 0);
return mm;
}
static void vgpu_free_mm(struct intel_vgpu_mm *mm)
{
kfree(mm);
}
/**
* intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
* @vgpu: a vGPU
* @root_entry_type: ppgtt root entry type
* @pdps: guest pdps.
*
* This function is used to create a ppgtt mm object for a vGPU.
*
* Returns:
* Zero on success, negative error code in pointer if failed.
*/
struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_vgpu_mm *mm;
int ret;
mm = vgpu_alloc_mm(vgpu);
if (!mm)
return ERR_PTR(-ENOMEM);
mm->type = INTEL_GVT_MM_PPGTT;
GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
mm->ppgtt_mm.root_entry_type = root_entry_type;
INIT_LIST_HEAD(&mm->ppgtt_mm.list);
INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
mm->ppgtt_mm.guest_pdps[0] = pdps[0];
else
memcpy(mm->ppgtt_mm.guest_pdps, pdps,
sizeof(mm->ppgtt_mm.guest_pdps));
ret = shadow_ppgtt_mm(mm);
if (ret) {
gvt_vgpu_err("failed to shadow ppgtt mm\n");
vgpu_free_mm(mm);
return ERR_PTR(ret);
}
list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
mutex_lock(&gvt->gtt.ppgtt_mm_lock);
list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
return mm;
}
static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
{
struct intel_vgpu_mm *mm;
unsigned long nr_entries;
mm = vgpu_alloc_mm(vgpu);
if (!mm)
return ERR_PTR(-ENOMEM);
mm->type = INTEL_GVT_MM_GGTT;
nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
mm->ggtt_mm.virtual_ggtt =
vzalloc(array_size(nr_entries,
vgpu->gvt->device_info.gtt_entry_size));
if (!mm->ggtt_mm.virtual_ggtt) {
vgpu_free_mm(mm);
return ERR_PTR(-ENOMEM);
}
return mm;
}
/**
* _intel_vgpu_mm_release - destroy a mm object
* @mm_ref: a kref object
*
* This function is used to destroy a mm object for vGPU
*
*/
void _intel_vgpu_mm_release(struct kref *mm_ref)
{
struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
if (GEM_WARN_ON(atomic_read(&mm->pincount)))
gvt_err("vgpu mm pin count bug detected\n");
if (mm->type == INTEL_GVT_MM_PPGTT) {
list_del(&mm->ppgtt_mm.list);
list_del(&mm->ppgtt_mm.lru_list);
invalidate_ppgtt_mm(mm);
} else {
vfree(mm->ggtt_mm.virtual_ggtt);
}
vgpu_free_mm(mm);
}
/**
* intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
* @mm: a vGPU mm object
*
* This function is called when user doesn't want to use a vGPU mm object
*/
void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
{
atomic_dec_if_positive(&mm->pincount);
}
/**
* intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
* @mm: target vgpu mm
*
* This function is called when user wants to use a vGPU mm object. If this
* mm object hasn't been shadowed yet, the shadow will be populated at this
* time.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
{
int ret;
atomic_inc(&mm->pincount);
if (mm->type == INTEL_GVT_MM_PPGTT) {
ret = shadow_ppgtt_mm(mm);
if (ret)
return ret;
mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
list_move_tail(&mm->ppgtt_mm.lru_list,
&mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
}
return 0;
}
static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
{
struct intel_vgpu_mm *mm;
struct list_head *pos, *n;
mutex_lock(&gvt->gtt.ppgtt_mm_lock);
list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
if (atomic_read(&mm->pincount))
continue;
list_del_init(&mm->ppgtt_mm.lru_list);
mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
invalidate_ppgtt_mm(mm);
return 1;
}
mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
return 0;
}
/*
* GMA translation APIs.
*/
static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s;
s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
if (!s)
return -ENXIO;
if (!guest)
ppgtt_get_shadow_entry(s, e, index);
else
ppgtt_get_guest_entry(s, e, index);
return 0;
}
/**
* intel_vgpu_gma_to_gpa - translate a gma to GPA
* @mm: mm object. could be a PPGTT or GGTT mm object
* @gma: graphics memory address in this mm object
*
* This function is used to translate a graphics memory address in specific
* graphics memory space to guest physical address.
*
* Returns:
* Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
*/
unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
unsigned long gpa = INTEL_GVT_INVALID_ADDR;
unsigned long gma_index[4];
struct intel_gvt_gtt_entry e;
int i, levels = 0;
int ret;
GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
mm->type != INTEL_GVT_MM_PPGTT);
if (mm->type == INTEL_GVT_MM_GGTT) {
if (!vgpu_gmadr_is_valid(vgpu, gma))
goto err;
ggtt_get_guest_entry(mm, &e,
gma_ops->gma_to_ggtt_pte_index(gma));
gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
+ (gma & ~I915_GTT_PAGE_MASK);
trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
} else {
switch (mm->ppgtt_mm.root_entry_type) {
case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
ppgtt_get_shadow_root_entry(mm, &e, 0);
gma_index[0] = gma_ops->gma_to_pml4_index(gma);
gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
gma_index[2] = gma_ops->gma_to_pde_index(gma);
gma_index[3] = gma_ops->gma_to_pte_index(gma);
levels = 4;
break;
case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
ppgtt_get_shadow_root_entry(mm, &e,
gma_ops->gma_to_l3_pdp_index(gma));
gma_index[0] = gma_ops->gma_to_pde_index(gma);
gma_index[1] = gma_ops->gma_to_pte_index(gma);
levels = 2;
break;
default:
GEM_BUG_ON(1);
}
/* walk the shadow page table and get gpa from guest entry */
for (i = 0; i < levels; i++) {
ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
(i == levels - 1));
if (ret)
goto err;
if (!pte_ops->test_present(&e)) {
gvt_dbg_core("GMA 0x%lx is not present\n", gma);
goto err;
}
}
gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
(gma & ~I915_GTT_PAGE_MASK);
trace_gma_translate(vgpu->id, "ppgtt", 0,
mm->ppgtt_mm.root_entry_type, gma, gpa);
}
return gpa;
err:
gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
return INTEL_GVT_INVALID_ADDR;
}
static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
unsigned int off, void *p_data, unsigned int bytes)
{
struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
unsigned long index = off >> info->gtt_entry_size_shift;
struct intel_gvt_gtt_entry e;
if (bytes != 4 && bytes != 8)
return -EINVAL;
ggtt_get_guest_entry(ggtt_mm, &e, index);
memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
bytes);
return 0;
}
/**
* intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
* @vgpu: a vGPU
* @off: register offset
* @p_data: data will be returned to guest
* @bytes: data length
*
* This function is used to emulate the GTT MMIO register read
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
off -= info->gtt_start_offset;
ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
return ret;
}
static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
struct intel_gvt_gtt_entry *entry)
{
struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
unsigned long pfn;
pfn = pte_ops->get_pfn(entry);
if (pfn != vgpu->gvt->gtt.scratch_mfn)
intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
pfn << PAGE_SHIFT);
}
static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
const struct intel_gvt_device_info *info = &gvt->device_info;
struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
unsigned long gma, gfn;
struct intel_gvt_gtt_entry e, m;
dma_addr_t dma_addr;
int ret;
struct intel_gvt_partial_pte *partial_pte, *pos, *n;
bool partial_update = false;
if (bytes != 4 && bytes != 8)
return -EINVAL;
gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
/* the VM may configure the whole GM space when ballooning is used */
if (!vgpu_gmadr_is_valid(vgpu, gma))
return 0;
e.type = GTT_TYPE_GGTT_PTE;
memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
bytes);
/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
* write, save the first 4 bytes in a list and update virtual
* PTE. Only update shadow PTE when the second 4 bytes comes.
*/
if (bytes < info->gtt_entry_size) {
bool found = false;
list_for_each_entry_safe(pos, n,
&ggtt_mm->ggtt_mm.partial_pte_list, list) {
if (g_gtt_index == pos->offset >>
info->gtt_entry_size_shift) {
if (off != pos->offset) {
/* the second partial part*/
int last_off = pos->offset &
(info->gtt_entry_size - 1);
memcpy((void *)&e.val64 + last_off,
(void *)&pos->data + last_off,
bytes);
list_del(&pos->list);
kfree(pos);
found = true;
break;
}
/* update of the first partial part */
pos->data = e.val64;
ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
return 0;
}
}
if (!found) {
/* the first partial part */
partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
if (!partial_pte)
return -ENOMEM;
partial_pte->offset = off;
partial_pte->data = e.val64;
list_add_tail(&partial_pte->list,
&ggtt_mm->ggtt_mm.partial_pte_list);
partial_update = true;
}
}
if (!partial_update && (ops->test_present(&e))) {
gfn = ops->get_pfn(&e);
m = e;
/* one PTE update may be issued in multiple writes and the
* first write may not construct a valid gfn
*/
if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
ops->set_pfn(&m, gvt->gtt.scratch_mfn);
goto out;
}
ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
PAGE_SIZE, &dma_addr);
if (ret) {
gvt_vgpu_err("fail to populate guest ggtt entry\n");
/* guest driver may read/write the entry when partial
* update the entry in this situation p2m will fail
* settting the shadow entry to point to a scratch page
*/
ops->set_pfn(&m, gvt->gtt.scratch_mfn);
} else
ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
} else {
ops->set_pfn(&m, gvt->gtt.scratch_mfn);
ops->clear_present(&m);
}
out:
ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
ggtt_invalidate_pte(vgpu, &e);
ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
ggtt_invalidate(gvt->dev_priv);
return 0;
}
/*
* intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
* @vgpu: a vGPU
* @off: register offset
* @p_data: data from guest write
* @bytes: data length
*
* This function is used to emulate the GTT MMIO register write
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
unsigned int off, void *p_data, unsigned int bytes)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
off -= info->gtt_start_offset;
ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
return ret;
}
static int alloc_scratch_pages(struct intel_vgpu *vgpu,
intel_gvt_gtt_type_t type)
{
struct intel_vgpu_gtt *gtt = &vgpu->gtt;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
int page_entry_num = I915_GTT_PAGE_SIZE >>
vgpu->gvt->device_info.gtt_entry_size_shift;
void *scratch_pt;
int i;
struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
return -EINVAL;
scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
if (!scratch_pt) {
gvt_vgpu_err("fail to allocate scratch page\n");
return -ENOMEM;
}
daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, daddr)) {
gvt_vgpu_err("fail to dmamap scratch_pt\n");
__free_page(virt_to_page(scratch_pt));
return -ENOMEM;
}
gtt->scratch_pt[type].page_mfn =
(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
vgpu->id, type, gtt->scratch_pt[type].page_mfn);
/* Build the tree by full filled the scratch pt with the entries which
* point to the next level scratch pt or scratch page. The
* scratch_pt[type] indicate the scratch pt/scratch page used by the
* 'type' pt.
* e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
* GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
* is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
*/
if (type > GTT_TYPE_PPGTT_PTE_PT) {
struct intel_gvt_gtt_entry se;
memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
se.type = get_entry_type(type - 1);
ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
/* The entry parameters like present/writeable/cache type
* set to the same as i915's scratch page tree.
*/
se.val64 |= _PAGE_PRESENT | _PAGE_RW;
if (type == GTT_TYPE_PPGTT_PDE_PT)
se.val64 |= PPAT_CACHED;
for (i = 0; i < page_entry_num; i++)
ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
}
return 0;
}
static int release_scratch_page_tree(struct intel_vgpu *vgpu)
{
int i;
struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
if (vgpu->gtt.scratch_pt[i].page != NULL) {
daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
I915_GTT_PAGE_SHIFT);
dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(vgpu->gtt.scratch_pt[i].page);
vgpu->gtt.scratch_pt[i].page = NULL;
vgpu->gtt.scratch_pt[i].page_mfn = 0;
}
}
return 0;
}
static int create_scratch_page_tree(struct intel_vgpu *vgpu)
{
int i, ret;
for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
ret = alloc_scratch_pages(vgpu, i);
if (ret)
goto err;
}
return 0;
err:
release_scratch_page_tree(vgpu);
return ret;
}
/**
* intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
* @vgpu: a vGPU
*
* This function is used to initialize per-vGPU graphics memory virtualization
* components.
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
{
struct intel_vgpu_gtt *gtt = &vgpu->gtt;
INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
INIT_LIST_HEAD(&gtt->oos_page_list_head);
INIT_LIST_HEAD(&gtt->post_shadow_list_head);
gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
if (IS_ERR(gtt->ggtt_mm)) {
gvt_vgpu_err("fail to create mm for ggtt.\n");
return PTR_ERR(gtt->ggtt_mm);
}
intel_vgpu_reset_ggtt(vgpu, false);
INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
return create_scratch_page_tree(vgpu);
}
static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_mm *mm;
list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
intel_vgpu_destroy_mm(mm);
}
if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
gvt_err("vgpu ppgtt mm is not fully destroyed\n");
if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
gvt_err("Why we still has spt not freed?\n");
ppgtt_free_all_spt(vgpu);
}
}
static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
{
struct intel_gvt_partial_pte *pos, *next;
list_for_each_entry_safe(pos, next,
&vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
list) {
gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
pos->offset, pos->data);
kfree(pos);
}
intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
vgpu->gtt.ggtt_mm = NULL;
}
/**
* intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
* @vgpu: a vGPU
*
* This function is used to clean up per-vGPU graphics memory virtualization
* components.
*
* Returns:
* Zero on success, error code if failed.
*/
void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
{
intel_vgpu_destroy_all_ppgtt_mm(vgpu);
intel_vgpu_destroy_ggtt_mm(vgpu);
release_scratch_page_tree(vgpu);
}
static void clean_spt_oos(struct intel_gvt *gvt)
{
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct list_head *pos, *n;
struct intel_vgpu_oos_page *oos_page;
WARN(!list_empty(&gtt->oos_page_use_list_head),
"someone is still using oos page\n");
list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
list_del(&oos_page->list);
free_page((unsigned long)oos_page->mem);
kfree(oos_page);
}
}
static int setup_spt_oos(struct intel_gvt *gvt)
{
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_vgpu_oos_page *oos_page;
int i;
int ret;
INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
for (i = 0; i < preallocated_oos_pages; i++) {
oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
if (!oos_page) {
ret = -ENOMEM;
goto fail;
}
oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
if (!oos_page->mem) {
ret = -ENOMEM;
kfree(oos_page);
goto fail;
}
INIT_LIST_HEAD(&oos_page->list);
INIT_LIST_HEAD(&oos_page->vm_list);
oos_page->id = i;
list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
}
gvt_dbg_mm("%d oos pages preallocated\n", i);
return 0;
fail:
clean_spt_oos(gvt);
return ret;
}
/**
* intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
* @vgpu: a vGPU
* @pdps: pdp root array
*
* This function is used to find a PPGTT mm object from mm object pool
*
* Returns:
* pointer to mm object on success, NULL if failed.
*/
struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
u64 pdps[])
{
struct intel_vgpu_mm *mm;
struct list_head *pos;
list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
switch (mm->ppgtt_mm.root_entry_type) {
case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
return mm;
break;
case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
sizeof(mm->ppgtt_mm.guest_pdps)))
return mm;
break;
default:
GEM_BUG_ON(1);
}
}
return NULL;
}
/**
* intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
* @vgpu: a vGPU
* @root_entry_type: ppgtt root entry type
* @pdps: guest pdps
*
* This function is used to find or create a PPGTT mm object from a guest.
*
* Returns:
* Zero on success, negative error code if failed.
*/
struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
{
struct intel_vgpu_mm *mm;
mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
if (mm) {
intel_vgpu_mm_get(mm);
} else {
mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
if (IS_ERR(mm))
gvt_vgpu_err("fail to create mm\n");
}
return mm;
}
/**
* intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
* @vgpu: a vGPU
* @pdps: guest pdps
*
* This function is used to find a PPGTT mm object from a guest and destroy it.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
{
struct intel_vgpu_mm *mm;
mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
if (!mm) {
gvt_vgpu_err("fail to find ppgtt instance.\n");
return -EINVAL;
}
intel_vgpu_mm_put(mm);
return 0;
}
/**
* intel_gvt_init_gtt - initialize mm components of a GVT device
* @gvt: GVT device
*
* This function is called at the initialization stage, to initialize
* the mm components of a GVT device.
*
* Returns:
* zero on success, negative error code if failed.
*/
int intel_gvt_init_gtt(struct intel_gvt *gvt)
{
int ret;
void *page;
struct device *dev = &gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
gvt_dbg_core("init gtt\n");
gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
page = (void *)get_zeroed_page(GFP_KERNEL);
if (!page) {
gvt_err("fail to allocate scratch ggtt page\n");
return -ENOMEM;
}
daddr = dma_map_page(dev, virt_to_page(page), 0,
4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, daddr)) {
gvt_err("fail to dmamap scratch ggtt page\n");
__free_page(virt_to_page(page));
return -ENOMEM;
}
gvt->gtt.scratch_page = virt_to_page(page);
gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
if (enable_out_of_sync) {
ret = setup_spt_oos(gvt);
if (ret) {
gvt_err("fail to initialize SPT oos\n");
dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(gvt->gtt.scratch_page);
return ret;
}
}
INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
mutex_init(&gvt->gtt.ppgtt_mm_lock);
return 0;
}
/**
* intel_gvt_clean_gtt - clean up mm components of a GVT device
* @gvt: GVT device
*
* This function is called at the driver unloading stage, to clean up the
* the mm components of a GVT device.
*
*/
void intel_gvt_clean_gtt(struct intel_gvt *gvt)
{
struct device *dev = &gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
I915_GTT_PAGE_SHIFT);
dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(gvt->gtt.scratch_page);
if (enable_out_of_sync)
clean_spt_oos(gvt);
}
/**
* intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
* @vgpu: a vGPU
*
* This function is called when invalidate all PPGTT instances of a vGPU.
*
*/
void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_mm *mm;
list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
if (mm->type == INTEL_GVT_MM_PPGTT) {
mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
list_del_init(&mm->ppgtt_mm.lru_list);
mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
if (mm->ppgtt_mm.shadowed)
invalidate_ppgtt_mm(mm);
}
}
}
/**
* intel_vgpu_reset_ggtt - reset the GGTT entry
* @vgpu: a vGPU
* @invalidate_old: invalidate old entries
*
* This function is called at the vGPU create stage
* to reset all the GGTT entries.
*
*/
void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
{
struct intel_gvt *gvt = vgpu->gvt;
struct drm_i915_private *dev_priv = gvt->dev_priv;
struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
struct intel_gvt_gtt_entry old_entry;
u32 index;
u32 num_entries;
pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
pte_ops->set_present(&entry);
index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
while (num_entries--) {
if (invalidate_old) {
ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
ggtt_invalidate_pte(vgpu, &old_entry);
}
ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
}
index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
while (num_entries--) {
if (invalidate_old) {
ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
ggtt_invalidate_pte(vgpu, &old_entry);
}
ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
}
ggtt_invalidate(dev_priv);
}
/**
* intel_vgpu_reset_gtt - reset the all GTT related status
* @vgpu: a vGPU
*
* This function is called from vfio core to reset reset all
* GTT related status, including GGTT, PPGTT, scratch page.
*
*/
void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
{
/* Shadow pages are only created when there is no page
* table tracking data, so remove page tracking data after
* removing the shadow pages.
*/
intel_vgpu_destroy_all_ppgtt_mm(vgpu);
intel_vgpu_reset_ggtt(vgpu, true);
}