mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 09:16:24 +07:00
0a379e27db
Hardware engineers confirmed that writing to it has no effect, as implied by the FIXME comment. v2: Also remove comment from bxt_ddi_phy_verify_state(). (Imre) Cc: Imre Deak <imre.deak@intel.com> Signed-off-by: Ander Conselvan de Oliveira <ander.conselvan.de.oliveira@intel.com> Reviewed-by: Imre Deak <imre.deak@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1478069096-11209-1-git-send-email-ander.conselvan.de.oliveira@intel.com
1030 lines
31 KiB
C
1030 lines
31 KiB
C
/*
|
|
* Copyright © 2014-2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "intel_drv.h"
|
|
|
|
/**
|
|
* DOC: DPIO
|
|
*
|
|
* VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
|
|
* ports. DPIO is the name given to such a display PHY. These PHYs
|
|
* don't follow the standard programming model using direct MMIO
|
|
* registers, and instead their registers must be accessed trough IOSF
|
|
* sideband. VLV has one such PHY for driving ports B and C, and CHV
|
|
* adds another PHY for driving port D. Each PHY responds to specific
|
|
* IOSF-SB port.
|
|
*
|
|
* Each display PHY is made up of one or two channels. Each channel
|
|
* houses a common lane part which contains the PLL and other common
|
|
* logic. CH0 common lane also contains the IOSF-SB logic for the
|
|
* Common Register Interface (CRI) ie. the DPIO registers. CRI clock
|
|
* must be running when any DPIO registers are accessed.
|
|
*
|
|
* In addition to having their own registers, the PHYs are also
|
|
* controlled through some dedicated signals from the display
|
|
* controller. These include PLL reference clock enable, PLL enable,
|
|
* and CRI clock selection, for example.
|
|
*
|
|
* Eeach channel also has two splines (also called data lanes), and
|
|
* each spline is made up of one Physical Access Coding Sub-Layer
|
|
* (PCS) block and two TX lanes. So each channel has two PCS blocks
|
|
* and four TX lanes. The TX lanes are used as DP lanes or TMDS
|
|
* data/clock pairs depending on the output type.
|
|
*
|
|
* Additionally the PHY also contains an AUX lane with AUX blocks
|
|
* for each channel. This is used for DP AUX communication, but
|
|
* this fact isn't really relevant for the driver since AUX is
|
|
* controlled from the display controller side. No DPIO registers
|
|
* need to be accessed during AUX communication,
|
|
*
|
|
* Generally on VLV/CHV the common lane corresponds to the pipe and
|
|
* the spline (PCS/TX) corresponds to the port.
|
|
*
|
|
* For dual channel PHY (VLV/CHV):
|
|
*
|
|
* pipe A == CMN/PLL/REF CH0
|
|
*
|
|
* pipe B == CMN/PLL/REF CH1
|
|
*
|
|
* port B == PCS/TX CH0
|
|
*
|
|
* port C == PCS/TX CH1
|
|
*
|
|
* This is especially important when we cross the streams
|
|
* ie. drive port B with pipe B, or port C with pipe A.
|
|
*
|
|
* For single channel PHY (CHV):
|
|
*
|
|
* pipe C == CMN/PLL/REF CH0
|
|
*
|
|
* port D == PCS/TX CH0
|
|
*
|
|
* On BXT the entire PHY channel corresponds to the port. That means
|
|
* the PLL is also now associated with the port rather than the pipe,
|
|
* and so the clock needs to be routed to the appropriate transcoder.
|
|
* Port A PLL is directly connected to transcoder EDP and port B/C
|
|
* PLLs can be routed to any transcoder A/B/C.
|
|
*
|
|
* Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
|
|
* digital port D (CHV) or port A (BXT). ::
|
|
*
|
|
*
|
|
* Dual channel PHY (VLV/CHV/BXT)
|
|
* ---------------------------------
|
|
* | CH0 | CH1 |
|
|
* | CMN/PLL/REF | CMN/PLL/REF |
|
|
* |---------------|---------------| Display PHY
|
|
* | PCS01 | PCS23 | PCS01 | PCS23 |
|
|
* |-------|-------|-------|-------|
|
|
* |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
|
|
* ---------------------------------
|
|
* | DDI0 | DDI1 | DP/HDMI ports
|
|
* ---------------------------------
|
|
*
|
|
* Single channel PHY (CHV/BXT)
|
|
* -----------------
|
|
* | CH0 |
|
|
* | CMN/PLL/REF |
|
|
* |---------------| Display PHY
|
|
* | PCS01 | PCS23 |
|
|
* |-------|-------|
|
|
* |TX0|TX1|TX2|TX3|
|
|
* -----------------
|
|
* | DDI2 | DP/HDMI port
|
|
* -----------------
|
|
*/
|
|
|
|
/**
|
|
* struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
|
|
*/
|
|
struct bxt_ddi_phy_info {
|
|
/**
|
|
* @dual_channel: true if this phy has a second channel.
|
|
*/
|
|
bool dual_channel;
|
|
|
|
/**
|
|
* @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
|
|
* Otherwise the GRC value will be copied from the phy indicated by
|
|
* this field.
|
|
*/
|
|
enum dpio_phy rcomp_phy;
|
|
|
|
/**
|
|
* @channel: struct containing per channel information.
|
|
*/
|
|
struct {
|
|
/**
|
|
* @port: which port maps to this channel.
|
|
*/
|
|
enum port port;
|
|
} channel[2];
|
|
};
|
|
|
|
static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
|
|
[DPIO_PHY0] = {
|
|
.dual_channel = true,
|
|
.rcomp_phy = DPIO_PHY1,
|
|
|
|
.channel = {
|
|
[DPIO_CH0] = { .port = PORT_B },
|
|
[DPIO_CH1] = { .port = PORT_C },
|
|
}
|
|
},
|
|
[DPIO_PHY1] = {
|
|
.dual_channel = false,
|
|
.rcomp_phy = -1,
|
|
|
|
.channel = {
|
|
[DPIO_CH0] = { .port = PORT_A },
|
|
}
|
|
},
|
|
};
|
|
|
|
static u32 bxt_phy_port_mask(const struct bxt_ddi_phy_info *phy_info)
|
|
{
|
|
return (phy_info->dual_channel * BIT(phy_info->channel[DPIO_CH1].port)) |
|
|
BIT(phy_info->channel[DPIO_CH0].port);
|
|
}
|
|
|
|
void bxt_port_to_phy_channel(enum port port,
|
|
enum dpio_phy *phy, enum dpio_channel *ch)
|
|
{
|
|
const struct bxt_ddi_phy_info *phy_info;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(bxt_ddi_phy_info); i++) {
|
|
phy_info = &bxt_ddi_phy_info[i];
|
|
|
|
if (port == phy_info->channel[DPIO_CH0].port) {
|
|
*phy = i;
|
|
*ch = DPIO_CH0;
|
|
return;
|
|
}
|
|
|
|
if (phy_info->dual_channel &&
|
|
port == phy_info->channel[DPIO_CH1].port) {
|
|
*phy = i;
|
|
*ch = DPIO_CH1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
WARN(1, "PHY not found for PORT %c", port_name(port));
|
|
*phy = DPIO_PHY0;
|
|
*ch = DPIO_CH0;
|
|
}
|
|
|
|
void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
|
|
enum port port, u32 margin, u32 scale,
|
|
u32 enable, u32 deemphasis)
|
|
{
|
|
u32 val;
|
|
enum dpio_phy phy;
|
|
enum dpio_channel ch;
|
|
|
|
bxt_port_to_phy_channel(port, &phy, &ch);
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers and we pick lanes 0/1 for that.
|
|
*/
|
|
val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
|
|
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
|
|
I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
|
|
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
|
|
val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
|
|
I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
|
|
val &= ~SCALE_DCOMP_METHOD;
|
|
if (enable)
|
|
val |= SCALE_DCOMP_METHOD;
|
|
|
|
if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
|
|
DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
|
|
|
|
I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
|
|
|
|
val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
|
|
val &= ~DE_EMPHASIS;
|
|
val |= deemphasis << DEEMPH_SHIFT;
|
|
I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
|
|
|
|
val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
|
|
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
|
|
I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
|
|
}
|
|
|
|
bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
|
|
enum port port;
|
|
|
|
if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
|
|
return false;
|
|
|
|
if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
|
|
(PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
|
|
DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
|
|
phy);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (phy_info->rcomp_phy == -1 &&
|
|
!(I915_READ(BXT_PORT_REF_DW3(phy)) & GRC_DONE)) {
|
|
DRM_DEBUG_DRIVER("DDI PHY %d powered, but GRC isn't done\n",
|
|
phy);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
|
|
DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
|
|
phy);
|
|
|
|
return false;
|
|
}
|
|
|
|
for_each_port_masked(port, bxt_phy_port_mask(phy_info)) {
|
|
u32 tmp = I915_READ(BXT_PHY_CTL(port));
|
|
|
|
if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
|
|
DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
|
|
"for port %c powered down "
|
|
"(PHY_CTL %08x)\n",
|
|
phy, port_name(port), tmp);
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
|
|
{
|
|
u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
|
|
|
|
return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
|
|
}
|
|
|
|
static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
if (intel_wait_for_register(dev_priv,
|
|
BXT_PORT_REF_DW3(phy),
|
|
GRC_DONE, GRC_DONE,
|
|
10))
|
|
DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
|
|
}
|
|
|
|
static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
|
|
u32 val;
|
|
|
|
if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
|
|
/* Still read out the GRC value for state verification */
|
|
if (phy_info->rcomp_phy != -1)
|
|
dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
|
|
|
|
if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
|
|
DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
|
|
"won't reprogram it\n", phy);
|
|
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
|
|
"force reprogramming it\n", phy);
|
|
}
|
|
|
|
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
|
|
val |= GT_DISPLAY_POWER_ON(phy);
|
|
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
|
|
|
|
/*
|
|
* The PHY registers start out inaccessible and respond to reads with
|
|
* all 1s. Eventually they become accessible as they power up, then
|
|
* the reserved bit will give the default 0. Poll on the reserved bit
|
|
* becoming 0 to find when the PHY is accessible.
|
|
* HW team confirmed that the time to reach phypowergood status is
|
|
* anywhere between 50 us and 100us.
|
|
*/
|
|
if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
|
|
(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
|
|
DRM_ERROR("timeout during PHY%d power on\n", phy);
|
|
}
|
|
|
|
/* Program PLL Rcomp code offset */
|
|
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
|
|
val &= ~IREF0RC_OFFSET_MASK;
|
|
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
|
|
|
|
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
|
|
val &= ~IREF1RC_OFFSET_MASK;
|
|
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
|
|
|
|
/* Program power gating */
|
|
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
|
|
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
|
|
SUS_CLK_CONFIG;
|
|
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
|
|
|
|
if (phy_info->dual_channel) {
|
|
val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
|
|
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
|
|
I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
|
|
}
|
|
|
|
if (phy_info->rcomp_phy != -1) {
|
|
uint32_t grc_code;
|
|
/*
|
|
* PHY0 isn't connected to an RCOMP resistor so copy over
|
|
* the corresponding calibrated value from PHY1, and disable
|
|
* the automatic calibration on PHY0.
|
|
*/
|
|
val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
|
|
phy_info->rcomp_phy);
|
|
grc_code = val << GRC_CODE_FAST_SHIFT |
|
|
val << GRC_CODE_SLOW_SHIFT |
|
|
val;
|
|
I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
|
|
|
|
val = I915_READ(BXT_PORT_REF_DW8(phy));
|
|
val |= GRC_DIS | GRC_RDY_OVRD;
|
|
I915_WRITE(BXT_PORT_REF_DW8(phy), val);
|
|
}
|
|
|
|
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
|
|
val |= COMMON_RESET_DIS;
|
|
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
|
|
|
|
if (phy_info->rcomp_phy == -1)
|
|
bxt_phy_wait_grc_done(dev_priv, phy);
|
|
|
|
}
|
|
|
|
void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
|
|
{
|
|
uint32_t val;
|
|
|
|
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
|
|
val &= ~COMMON_RESET_DIS;
|
|
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
|
|
|
|
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
|
|
val &= ~GT_DISPLAY_POWER_ON(phy);
|
|
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
|
|
}
|
|
|
|
void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
|
|
{
|
|
const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
|
|
enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
|
|
bool was_enabled;
|
|
|
|
lockdep_assert_held(&dev_priv->power_domains.lock);
|
|
|
|
if (rcomp_phy != -1) {
|
|
was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
|
|
|
|
/*
|
|
* We need to copy the GRC calibration value from rcomp_phy,
|
|
* so make sure it's powered up.
|
|
*/
|
|
if (!was_enabled)
|
|
_bxt_ddi_phy_init(dev_priv, rcomp_phy);
|
|
}
|
|
|
|
_bxt_ddi_phy_init(dev_priv, phy);
|
|
|
|
if (rcomp_phy != -1 && !was_enabled)
|
|
bxt_ddi_phy_uninit(dev_priv, phy_info->rcomp_phy);
|
|
}
|
|
|
|
static bool __printf(6, 7)
|
|
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
|
|
i915_reg_t reg, u32 mask, u32 expected,
|
|
const char *reg_fmt, ...)
|
|
{
|
|
struct va_format vaf;
|
|
va_list args;
|
|
u32 val;
|
|
|
|
val = I915_READ(reg);
|
|
if ((val & mask) == expected)
|
|
return true;
|
|
|
|
va_start(args, reg_fmt);
|
|
vaf.fmt = reg_fmt;
|
|
vaf.va = &args;
|
|
|
|
DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
|
|
"current %08x, expected %08x (mask %08x)\n",
|
|
phy, &vaf, reg.reg, val, (val & ~mask) | expected,
|
|
mask);
|
|
|
|
va_end(args);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
|
|
enum dpio_phy phy)
|
|
{
|
|
const struct bxt_ddi_phy_info *phy_info = &bxt_ddi_phy_info[phy];
|
|
uint32_t mask;
|
|
bool ok;
|
|
|
|
#define _CHK(reg, mask, exp, fmt, ...) \
|
|
__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
|
|
## __VA_ARGS__)
|
|
|
|
if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
|
|
return false;
|
|
|
|
ok = true;
|
|
|
|
/* PLL Rcomp code offset */
|
|
ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
|
|
IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
|
|
"BXT_PORT_CL1CM_DW9(%d)", phy);
|
|
ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
|
|
IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
|
|
"BXT_PORT_CL1CM_DW10(%d)", phy);
|
|
|
|
/* Power gating */
|
|
mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
|
|
ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
|
|
"BXT_PORT_CL1CM_DW28(%d)", phy);
|
|
|
|
if (phy_info->dual_channel)
|
|
ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
|
|
DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
|
|
"BXT_PORT_CL2CM_DW6(%d)", phy);
|
|
|
|
if (phy_info->rcomp_phy != -1) {
|
|
u32 grc_code = dev_priv->bxt_phy_grc;
|
|
|
|
grc_code = grc_code << GRC_CODE_FAST_SHIFT |
|
|
grc_code << GRC_CODE_SLOW_SHIFT |
|
|
grc_code;
|
|
mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
|
|
GRC_CODE_NOM_MASK;
|
|
ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
|
|
"BXT_PORT_REF_DW6(%d)", phy);
|
|
|
|
mask = GRC_DIS | GRC_RDY_OVRD;
|
|
ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
|
|
"BXT_PORT_REF_DW8(%d)", phy);
|
|
}
|
|
|
|
return ok;
|
|
#undef _CHK
|
|
}
|
|
|
|
uint8_t
|
|
bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
|
|
uint8_t lane_count)
|
|
{
|
|
switch (lane_count) {
|
|
case 1:
|
|
return 0;
|
|
case 2:
|
|
return BIT(2) | BIT(0);
|
|
case 4:
|
|
return BIT(3) | BIT(2) | BIT(0);
|
|
default:
|
|
MISSING_CASE(lane_count);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
|
|
uint8_t lane_lat_optim_mask)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
|
|
enum port port = dport->port;
|
|
enum dpio_phy phy;
|
|
enum dpio_channel ch;
|
|
int lane;
|
|
|
|
bxt_port_to_phy_channel(port, &phy, &ch);
|
|
|
|
for (lane = 0; lane < 4; lane++) {
|
|
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
|
|
|
|
/*
|
|
* Note that on CHV this flag is called UPAR, but has
|
|
* the same function.
|
|
*/
|
|
val &= ~LATENCY_OPTIM;
|
|
if (lane_lat_optim_mask & BIT(lane))
|
|
val |= LATENCY_OPTIM;
|
|
|
|
I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
|
|
}
|
|
}
|
|
|
|
uint8_t
|
|
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
|
|
enum port port = dport->port;
|
|
enum dpio_phy phy;
|
|
enum dpio_channel ch;
|
|
int lane;
|
|
uint8_t mask;
|
|
|
|
bxt_port_to_phy_channel(port, &phy, &ch);
|
|
|
|
mask = 0;
|
|
for (lane = 0; lane < 4; lane++) {
|
|
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
|
|
|
|
if (val & LATENCY_OPTIM)
|
|
mask |= BIT(lane);
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
|
|
void chv_set_phy_signal_level(struct intel_encoder *encoder,
|
|
u32 deemph_reg_value, u32 margin_reg_value,
|
|
bool uniq_trans_scale)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
|
|
enum dpio_channel ch = vlv_dport_to_channel(dport);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
u32 val;
|
|
int i;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Clear calc init */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
|
|
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
|
|
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
|
|
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
|
|
val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
|
|
val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
|
|
val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
|
|
}
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
|
|
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
|
|
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
|
|
val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
|
|
val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
|
|
}
|
|
|
|
/* Program swing deemph */
|
|
for (i = 0; i < intel_crtc->config->lane_count; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
|
|
val &= ~DPIO_SWING_DEEMPH9P5_MASK;
|
|
val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
|
|
}
|
|
|
|
/* Program swing margin */
|
|
for (i = 0; i < intel_crtc->config->lane_count; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
|
|
|
|
val &= ~DPIO_SWING_MARGIN000_MASK;
|
|
val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
|
|
|
|
/*
|
|
* Supposedly this value shouldn't matter when unique transition
|
|
* scale is disabled, but in fact it does matter. Let's just
|
|
* always program the same value and hope it's OK.
|
|
*/
|
|
val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
|
|
val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
|
|
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
|
|
}
|
|
|
|
/*
|
|
* The document said it needs to set bit 27 for ch0 and bit 26
|
|
* for ch1. Might be a typo in the doc.
|
|
* For now, for this unique transition scale selection, set bit
|
|
* 27 for ch0 and ch1.
|
|
*/
|
|
for (i = 0; i < intel_crtc->config->lane_count; i++) {
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
|
|
if (uniq_trans_scale)
|
|
val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
|
|
else
|
|
val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
|
|
}
|
|
|
|
/* Start swing calculation */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
|
|
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
|
|
val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
}
|
|
|
|
void chv_data_lane_soft_reset(struct intel_encoder *encoder,
|
|
bool reset)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
|
|
struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
|
|
enum pipe pipe = crtc->pipe;
|
|
uint32_t val;
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
|
|
if (reset)
|
|
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
|
|
else
|
|
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
|
|
|
|
if (crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
|
|
if (reset)
|
|
val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
|
|
else
|
|
val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
|
|
}
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
|
|
val |= CHV_PCS_REQ_SOFTRESET_EN;
|
|
if (reset)
|
|
val &= ~DPIO_PCS_CLK_SOFT_RESET;
|
|
else
|
|
val |= DPIO_PCS_CLK_SOFT_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
|
|
|
|
if (crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
|
|
val |= CHV_PCS_REQ_SOFTRESET_EN;
|
|
if (reset)
|
|
val &= ~DPIO_PCS_CLK_SOFT_RESET;
|
|
else
|
|
val |= DPIO_PCS_CLK_SOFT_RESET;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
|
|
}
|
|
}
|
|
|
|
void chv_phy_pre_pll_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel ch = vlv_dport_to_channel(dport);
|
|
enum pipe pipe = intel_crtc->pipe;
|
|
unsigned int lane_mask =
|
|
intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
|
|
u32 val;
|
|
|
|
/*
|
|
* Must trick the second common lane into life.
|
|
* Otherwise we can't even access the PLL.
|
|
*/
|
|
if (ch == DPIO_CH0 && pipe == PIPE_B)
|
|
dport->release_cl2_override =
|
|
!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
|
|
|
|
chv_phy_powergate_lanes(encoder, true, lane_mask);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Assert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, true);
|
|
|
|
/* program left/right clock distribution */
|
|
if (pipe != PIPE_B) {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
|
|
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
|
|
if (ch == DPIO_CH0)
|
|
val |= CHV_BUFLEFTENA1_FORCE;
|
|
if (ch == DPIO_CH1)
|
|
val |= CHV_BUFRIGHTENA1_FORCE;
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
|
|
} else {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
|
|
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
|
|
if (ch == DPIO_CH0)
|
|
val |= CHV_BUFLEFTENA2_FORCE;
|
|
if (ch == DPIO_CH1)
|
|
val |= CHV_BUFRIGHTENA2_FORCE;
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
|
|
}
|
|
|
|
/* program clock channel usage */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
|
|
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_PCS_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_PCS_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
|
|
val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_PCS_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_PCS_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
|
|
}
|
|
|
|
/*
|
|
* This a a bit weird since generally CL
|
|
* matches the pipe, but here we need to
|
|
* pick the CL based on the port.
|
|
*/
|
|
val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
|
|
if (pipe != PIPE_B)
|
|
val &= ~CHV_CMN_USEDCLKCHANNEL;
|
|
else
|
|
val |= CHV_CMN_USEDCLKCHANNEL;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void chv_phy_pre_encoder_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel ch = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
int data, i, stagger;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* allow hardware to manage TX FIFO reset source */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
|
|
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
|
|
val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
|
|
}
|
|
|
|
/* Program Tx lane latency optimal setting*/
|
|
for (i = 0; i < intel_crtc->config->lane_count; i++) {
|
|
/* Set the upar bit */
|
|
if (intel_crtc->config->lane_count == 1)
|
|
data = 0x0;
|
|
else
|
|
data = (i == 1) ? 0x0 : 0x1;
|
|
vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
|
|
data << DPIO_UPAR_SHIFT);
|
|
}
|
|
|
|
/* Data lane stagger programming */
|
|
if (intel_crtc->config->port_clock > 270000)
|
|
stagger = 0x18;
|
|
else if (intel_crtc->config->port_clock > 135000)
|
|
stagger = 0xd;
|
|
else if (intel_crtc->config->port_clock > 67500)
|
|
stagger = 0x7;
|
|
else if (intel_crtc->config->port_clock > 33750)
|
|
stagger = 0x4;
|
|
else
|
|
stagger = 0x2;
|
|
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
|
|
val |= DPIO_TX2_STAGGER_MASK(0x1f);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
|
|
val |= DPIO_TX2_STAGGER_MASK(0x1f);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
|
|
}
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
|
|
DPIO_LANESTAGGER_STRAP(stagger) |
|
|
DPIO_LANESTAGGER_STRAP_OVRD |
|
|
DPIO_TX1_STAGGER_MASK(0x1f) |
|
|
DPIO_TX1_STAGGER_MULT(6) |
|
|
DPIO_TX2_STAGGER_MULT(0));
|
|
|
|
if (intel_crtc->config->lane_count > 2) {
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
|
|
DPIO_LANESTAGGER_STRAP(stagger) |
|
|
DPIO_LANESTAGGER_STRAP_OVRD |
|
|
DPIO_TX1_STAGGER_MASK(0x1f) |
|
|
DPIO_TX1_STAGGER_MULT(7) |
|
|
DPIO_TX2_STAGGER_MULT(5));
|
|
}
|
|
|
|
/* Deassert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, false);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void chv_phy_release_cl2_override(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (dport->release_cl2_override) {
|
|
chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
|
|
dport->release_cl2_override = false;
|
|
}
|
|
}
|
|
|
|
void chv_phy_post_pll_disable(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* disable left/right clock distribution */
|
|
if (pipe != PIPE_B) {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
|
|
val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
|
|
} else {
|
|
val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
|
|
val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
|
|
vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
|
|
}
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
|
|
/*
|
|
* Leave the power down bit cleared for at least one
|
|
* lane so that chv_powergate_phy_ch() will power
|
|
* on something when the channel is otherwise unused.
|
|
* When the port is off and the override is removed
|
|
* the lanes power down anyway, so otherwise it doesn't
|
|
* really matter what the state of power down bits is
|
|
* after this.
|
|
*/
|
|
chv_phy_powergate_lanes(encoder, false, 0x0);
|
|
}
|
|
|
|
void vlv_set_phy_signal_level(struct intel_encoder *encoder,
|
|
u32 demph_reg_value, u32 preemph_reg_value,
|
|
u32 uniqtranscale_reg_value, u32 tx3_demph)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
|
|
uniqtranscale_reg_value);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
|
|
|
|
if (tx3_demph)
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
|
|
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void vlv_phy_pre_pll_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
/* Program Tx lane resets to default */
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
|
|
DPIO_PCS_TX_LANE2_RESET |
|
|
DPIO_PCS_TX_LANE1_RESET);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
|
|
DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
|
|
DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
|
|
(1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
|
|
DPIO_PCS_CLK_SOFT_RESET);
|
|
|
|
/* Fix up inter-pair skew failure */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
|
|
struct drm_device *dev = encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
u32 val;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Enable clock channels for this port */
|
|
val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
|
|
val = 0;
|
|
if (pipe)
|
|
val |= (1<<21);
|
|
else
|
|
val &= ~(1<<21);
|
|
val |= 0x001000c4;
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
|
|
|
|
/* Program lane clock */
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
void vlv_phy_reset_lanes(struct intel_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_crtc *intel_crtc =
|
|
to_intel_crtc(encoder->base.crtc);
|
|
enum dpio_channel port = vlv_dport_to_channel(dport);
|
|
int pipe = intel_crtc->pipe;
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
|
|
vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|