linux_dsm_epyc7002/include/linux/pagemap.h
Matthew Wilcox (Oracle) 4349a83a31 mm: fix readahead_page_batch for retry entries
Both btrfs and fuse have reported faults caused by seeing a retry entry
instead of the page they were looking for.  This was caused by a missing
check in the iterator.

As can be seen in the below panic log, the accessing 0x402 causes a
panic.  In the xarray.h, 0x402 means RETRY_ENTRY.

  BUG: kernel NULL pointer dereference, address: 0000000000000402
  CPU: 14 PID: 306003 Comm: as Not tainted 5.9.0-1-amd64 #1 Debian 5.9.1-1
  Hardware name: Lenovo ThinkSystem SR665/7D2VCTO1WW, BIOS D8E106Q-1.01 05/30/2020
  RIP: 0010:fuse_readahead+0x152/0x470 [fuse]
  Code: 41 8b 57 18 4c 8d 54 10 ff 4c 89 d6 48 8d 7c 24 10 e8 d2 e3 28 f9 48 85 c0 0f 84 fe 00 00 00 44 89 f2 49 89 04 d4 44 8d 72 01 <48> 8b 10 41 8b 4f 1c 48 c1 ea 10 83 e2 01 80 fa 01 19 d2 81 e2 01
  RSP: 0018:ffffad99ceaebc50 EFLAGS: 00010246
  RAX: 0000000000000402 RBX: 0000000000000001 RCX: 0000000000000002
  RDX: 0000000000000000 RSI: ffff94c5af90bd98 RDI: ffffad99ceaebc60
  RBP: ffff94ddc1749a00 R08: 0000000000000402 R09: 0000000000000000
  R10: 0000000000000000 R11: 0000000000000100 R12: ffff94de6c429ce0
  R13: ffff94de6c4d3700 R14: 0000000000000001 R15: ffffad99ceaebd68
  FS:  00007f228c5c7040(0000) GS:ffff94de8ed80000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000402 CR3: 0000001dbd9b4000 CR4: 0000000000350ee0
  Call Trace:
    read_pages+0x83/0x270
    page_cache_readahead_unbounded+0x197/0x230
    generic_file_buffered_read+0x57a/0xa20
    new_sync_read+0x112/0x1a0
    vfs_read+0xf8/0x180
    ksys_read+0x5f/0xe0
    do_syscall_64+0x33/0x80
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Fixes: 042124cc64 ("mm: add new readahead_control API")
Reported-by: David Sterba <dsterba@suse.com>
Reported-by: Wonhyuk Yang <vvghjk1234@gmail.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201103142852.8543-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20201103124349.16722-1-vvghjk1234@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 10:48:22 -08:00

1034 lines
30 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_PAGEMAP_H
#define _LINUX_PAGEMAP_H
/*
* Copyright 1995 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/list.h>
#include <linux/highmem.h>
#include <linux/compiler.h>
#include <linux/uaccess.h>
#include <linux/gfp.h>
#include <linux/bitops.h>
#include <linux/hardirq.h> /* for in_interrupt() */
#include <linux/hugetlb_inline.h>
struct pagevec;
/*
* Bits in mapping->flags.
*/
enum mapping_flags {
AS_EIO = 0, /* IO error on async write */
AS_ENOSPC = 1, /* ENOSPC on async write */
AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
AS_EXITING = 4, /* final truncate in progress */
/* writeback related tags are not used */
AS_NO_WRITEBACK_TAGS = 5,
AS_THP_SUPPORT = 6, /* THPs supported */
};
/**
* mapping_set_error - record a writeback error in the address_space
* @mapping: the mapping in which an error should be set
* @error: the error to set in the mapping
*
* When writeback fails in some way, we must record that error so that
* userspace can be informed when fsync and the like are called. We endeavor
* to report errors on any file that was open at the time of the error. Some
* internal callers also need to know when writeback errors have occurred.
*
* When a writeback error occurs, most filesystems will want to call
* mapping_set_error to record the error in the mapping so that it can be
* reported when the application calls fsync(2).
*/
static inline void mapping_set_error(struct address_space *mapping, int error)
{
if (likely(!error))
return;
/* Record in wb_err for checkers using errseq_t based tracking */
__filemap_set_wb_err(mapping, error);
/* Record it in superblock */
if (mapping->host)
errseq_set(&mapping->host->i_sb->s_wb_err, error);
/* Record it in flags for now, for legacy callers */
if (error == -ENOSPC)
set_bit(AS_ENOSPC, &mapping->flags);
else
set_bit(AS_EIO, &mapping->flags);
}
static inline void mapping_set_unevictable(struct address_space *mapping)
{
set_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_clear_unevictable(struct address_space *mapping)
{
clear_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline bool mapping_unevictable(struct address_space *mapping)
{
return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
}
static inline void mapping_set_exiting(struct address_space *mapping)
{
set_bit(AS_EXITING, &mapping->flags);
}
static inline int mapping_exiting(struct address_space *mapping)
{
return test_bit(AS_EXITING, &mapping->flags);
}
static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
{
set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
}
static inline int mapping_use_writeback_tags(struct address_space *mapping)
{
return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
}
static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
{
return mapping->gfp_mask;
}
/* Restricts the given gfp_mask to what the mapping allows. */
static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
gfp_t gfp_mask)
{
return mapping_gfp_mask(mapping) & gfp_mask;
}
/*
* This is non-atomic. Only to be used before the mapping is activated.
* Probably needs a barrier...
*/
static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
{
m->gfp_mask = mask;
}
static inline bool mapping_thp_support(struct address_space *mapping)
{
return test_bit(AS_THP_SUPPORT, &mapping->flags);
}
static inline int filemap_nr_thps(struct address_space *mapping)
{
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
return atomic_read(&mapping->nr_thps);
#else
return 0;
#endif
}
static inline void filemap_nr_thps_inc(struct address_space *mapping)
{
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
if (!mapping_thp_support(mapping))
atomic_inc(&mapping->nr_thps);
#else
WARN_ON_ONCE(1);
#endif
}
static inline void filemap_nr_thps_dec(struct address_space *mapping)
{
#ifdef CONFIG_READ_ONLY_THP_FOR_FS
if (!mapping_thp_support(mapping))
atomic_dec(&mapping->nr_thps);
#else
WARN_ON_ONCE(1);
#endif
}
void release_pages(struct page **pages, int nr);
/*
* speculatively take a reference to a page.
* If the page is free (_refcount == 0), then _refcount is untouched, and 0
* is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
*
* This function must be called inside the same rcu_read_lock() section as has
* been used to lookup the page in the pagecache radix-tree (or page table):
* this allows allocators to use a synchronize_rcu() to stabilize _refcount.
*
* Unless an RCU grace period has passed, the count of all pages coming out
* of the allocator must be considered unstable. page_count may return higher
* than expected, and put_page must be able to do the right thing when the
* page has been finished with, no matter what it is subsequently allocated
* for (because put_page is what is used here to drop an invalid speculative
* reference).
*
* This is the interesting part of the lockless pagecache (and lockless
* get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
* has the following pattern:
* 1. find page in radix tree
* 2. conditionally increment refcount
* 3. check the page is still in pagecache (if no, goto 1)
*
* Remove-side that cares about stability of _refcount (eg. reclaim) has the
* following (with the i_pages lock held):
* A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
* B. remove page from pagecache
* C. free the page
*
* There are 2 critical interleavings that matter:
* - 2 runs before A: in this case, A sees elevated refcount and bails out
* - A runs before 2: in this case, 2 sees zero refcount and retries;
* subsequently, B will complete and 1 will find no page, causing the
* lookup to return NULL.
*
* It is possible that between 1 and 2, the page is removed then the exact same
* page is inserted into the same position in pagecache. That's OK: the
* old find_get_page using a lock could equally have run before or after
* such a re-insertion, depending on order that locks are granted.
*
* Lookups racing against pagecache insertion isn't a big problem: either 1
* will find the page or it will not. Likewise, the old find_get_page could run
* either before the insertion or afterwards, depending on timing.
*/
static inline int __page_cache_add_speculative(struct page *page, int count)
{
#ifdef CONFIG_TINY_RCU
# ifdef CONFIG_PREEMPT_COUNT
VM_BUG_ON(!in_atomic() && !irqs_disabled());
# endif
/*
* Preempt must be disabled here - we rely on rcu_read_lock doing
* this for us.
*
* Pagecache won't be truncated from interrupt context, so if we have
* found a page in the radix tree here, we have pinned its refcount by
* disabling preempt, and hence no need for the "speculative get" that
* SMP requires.
*/
VM_BUG_ON_PAGE(page_count(page) == 0, page);
page_ref_add(page, count);
#else
if (unlikely(!page_ref_add_unless(page, count, 0))) {
/*
* Either the page has been freed, or will be freed.
* In either case, retry here and the caller should
* do the right thing (see comments above).
*/
return 0;
}
#endif
VM_BUG_ON_PAGE(PageTail(page), page);
return 1;
}
static inline int page_cache_get_speculative(struct page *page)
{
return __page_cache_add_speculative(page, 1);
}
static inline int page_cache_add_speculative(struct page *page, int count)
{
return __page_cache_add_speculative(page, count);
}
/**
* attach_page_private - Attach private data to a page.
* @page: Page to attach data to.
* @data: Data to attach to page.
*
* Attaching private data to a page increments the page's reference count.
* The data must be detached before the page will be freed.
*/
static inline void attach_page_private(struct page *page, void *data)
{
get_page(page);
set_page_private(page, (unsigned long)data);
SetPagePrivate(page);
}
/**
* detach_page_private - Detach private data from a page.
* @page: Page to detach data from.
*
* Removes the data that was previously attached to the page and decrements
* the refcount on the page.
*
* Return: Data that was attached to the page.
*/
static inline void *detach_page_private(struct page *page)
{
void *data = (void *)page_private(page);
if (!PagePrivate(page))
return NULL;
ClearPagePrivate(page);
set_page_private(page, 0);
put_page(page);
return data;
}
#ifdef CONFIG_NUMA
extern struct page *__page_cache_alloc(gfp_t gfp);
#else
static inline struct page *__page_cache_alloc(gfp_t gfp)
{
return alloc_pages(gfp, 0);
}
#endif
static inline struct page *page_cache_alloc(struct address_space *x)
{
return __page_cache_alloc(mapping_gfp_mask(x));
}
static inline gfp_t readahead_gfp_mask(struct address_space *x)
{
return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
}
typedef int filler_t(void *, struct page *);
pgoff_t page_cache_next_miss(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
pgoff_t page_cache_prev_miss(struct address_space *mapping,
pgoff_t index, unsigned long max_scan);
#define FGP_ACCESSED 0x00000001
#define FGP_LOCK 0x00000002
#define FGP_CREAT 0x00000004
#define FGP_WRITE 0x00000008
#define FGP_NOFS 0x00000010
#define FGP_NOWAIT 0x00000020
#define FGP_FOR_MMAP 0x00000040
#define FGP_HEAD 0x00000080
struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
int fgp_flags, gfp_t cache_gfp_mask);
/**
* find_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned with an increased refcount.
*
* Otherwise, %NULL is returned.
*/
static inline struct page *find_get_page(struct address_space *mapping,
pgoff_t offset)
{
return pagecache_get_page(mapping, offset, 0, 0);
}
static inline struct page *find_get_page_flags(struct address_space *mapping,
pgoff_t offset, int fgp_flags)
{
return pagecache_get_page(mapping, offset, fgp_flags, 0);
}
/**
* find_lock_page - locate, pin and lock a pagecache page
* @mapping: the address_space to search
* @index: the page index
*
* Looks up the page cache entry at @mapping & @index. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* Context: May sleep.
* Return: A struct page or %NULL if there is no page in the cache for this
* index.
*/
static inline struct page *find_lock_page(struct address_space *mapping,
pgoff_t index)
{
return pagecache_get_page(mapping, index, FGP_LOCK, 0);
}
/**
* find_lock_head - Locate, pin and lock a pagecache page.
* @mapping: The address_space to search.
* @index: The page index.
*
* Looks up the page cache entry at @mapping & @index. If there is a
* page cache page, its head page is returned locked and with an increased
* refcount.
*
* Context: May sleep.
* Return: A struct page which is !PageTail, or %NULL if there is no page
* in the cache for this index.
*/
static inline struct page *find_lock_head(struct address_space *mapping,
pgoff_t index)
{
return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
}
/**
* find_or_create_page - locate or add a pagecache page
* @mapping: the page's address_space
* @index: the page's index into the mapping
* @gfp_mask: page allocation mode
*
* Looks up the page cache slot at @mapping & @offset. If there is a
* page cache page, it is returned locked and with an increased
* refcount.
*
* If the page is not present, a new page is allocated using @gfp_mask
* and added to the page cache and the VM's LRU list. The page is
* returned locked and with an increased refcount.
*
* On memory exhaustion, %NULL is returned.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an
* atomic allocation!
*/
static inline struct page *find_or_create_page(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask)
{
return pagecache_get_page(mapping, index,
FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
gfp_mask);
}
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
* @mapping: target address_space
* @index: the page index
*
* Same as grab_cache_page(), but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
* and deadlock against the caller's locked page.
*/
static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
pgoff_t index)
{
return pagecache_get_page(mapping, index,
FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
mapping_gfp_mask(mapping));
}
/* Does this page contain this index? */
static inline bool thp_contains(struct page *head, pgoff_t index)
{
/* HugeTLBfs indexes the page cache in units of hpage_size */
if (PageHuge(head))
return head->index == index;
return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
}
/*
* Given the page we found in the page cache, return the page corresponding
* to this index in the file
*/
static inline struct page *find_subpage(struct page *head, pgoff_t index)
{
/* HugeTLBfs wants the head page regardless */
if (PageHuge(head))
return head;
return head + (index & (thp_nr_pages(head) - 1));
}
unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
unsigned int nr_entries, struct page **entries,
pgoff_t *indices);
unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
pgoff_t end, unsigned int nr_pages,
struct page **pages);
static inline unsigned find_get_pages(struct address_space *mapping,
pgoff_t *start, unsigned int nr_pages,
struct page **pages)
{
return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
pages);
}
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages);
unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
struct page **pages);
static inline unsigned find_get_pages_tag(struct address_space *mapping,
pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
struct page **pages)
{
return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
nr_pages, pages);
}
struct page *grab_cache_page_write_begin(struct address_space *mapping,
pgoff_t index, unsigned flags);
/*
* Returns locked page at given index in given cache, creating it if needed.
*/
static inline struct page *grab_cache_page(struct address_space *mapping,
pgoff_t index)
{
return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
}
extern struct page * read_cache_page(struct address_space *mapping,
pgoff_t index, filler_t *filler, void *data);
extern struct page * read_cache_page_gfp(struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern int read_cache_pages(struct address_space *mapping,
struct list_head *pages, filler_t *filler, void *data);
static inline struct page *read_mapping_page(struct address_space *mapping,
pgoff_t index, void *data)
{
return read_cache_page(mapping, index, NULL, data);
}
/*
* Get index of the page with in radix-tree
* (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
*/
static inline pgoff_t page_to_index(struct page *page)
{
pgoff_t pgoff;
if (likely(!PageTransTail(page)))
return page->index;
/*
* We don't initialize ->index for tail pages: calculate based on
* head page
*/
pgoff = compound_head(page)->index;
pgoff += page - compound_head(page);
return pgoff;
}
/*
* Get the offset in PAGE_SIZE.
* (TODO: hugepage should have ->index in PAGE_SIZE)
*/
static inline pgoff_t page_to_pgoff(struct page *page)
{
if (unlikely(PageHeadHuge(page)))
return page->index << compound_order(page);
return page_to_index(page);
}
/*
* Return byte-offset into filesystem object for page.
*/
static inline loff_t page_offset(struct page *page)
{
return ((loff_t)page->index) << PAGE_SHIFT;
}
static inline loff_t page_file_offset(struct page *page)
{
return ((loff_t)page_index(page)) << PAGE_SHIFT;
}
extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
unsigned long address);
static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
unsigned long address)
{
pgoff_t pgoff;
if (unlikely(is_vm_hugetlb_page(vma)))
return linear_hugepage_index(vma, address);
pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
return pgoff;
}
/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
struct wait_page_key {
struct page *page;
int bit_nr;
int page_match;
};
struct wait_page_queue {
struct page *page;
int bit_nr;
wait_queue_entry_t wait;
};
static inline bool wake_page_match(struct wait_page_queue *wait_page,
struct wait_page_key *key)
{
if (wait_page->page != key->page)
return false;
key->page_match = 1;
if (wait_page->bit_nr != key->bit_nr)
return false;
return true;
}
extern void __lock_page(struct page *page);
extern int __lock_page_killable(struct page *page);
extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags);
extern void unlock_page(struct page *page);
/*
* Return true if the page was successfully locked
*/
static inline int trylock_page(struct page *page)
{
page = compound_head(page);
return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
}
/*
* lock_page may only be called if we have the page's inode pinned.
*/
static inline void lock_page(struct page *page)
{
might_sleep();
if (!trylock_page(page))
__lock_page(page);
}
/*
* lock_page_killable is like lock_page but can be interrupted by fatal
* signals. It returns 0 if it locked the page and -EINTR if it was
* killed while waiting.
*/
static inline int lock_page_killable(struct page *page)
{
might_sleep();
if (!trylock_page(page))
return __lock_page_killable(page);
return 0;
}
/*
* lock_page_async - Lock the page, unless this would block. If the page
* is already locked, then queue a callback when the page becomes unlocked.
* This callback can then retry the operation.
*
* Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
* was already locked and the callback defined in 'wait' was queued.
*/
static inline int lock_page_async(struct page *page,
struct wait_page_queue *wait)
{
if (!trylock_page(page))
return __lock_page_async(page, wait);
return 0;
}
/*
* lock_page_or_retry - Lock the page, unless this would block and the
* caller indicated that it can handle a retry.
*
* Return value and mmap_lock implications depend on flags; see
* __lock_page_or_retry().
*/
static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
unsigned int flags)
{
might_sleep();
return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
}
/*
* This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
* and should not be used directly.
*/
extern void wait_on_page_bit(struct page *page, int bit_nr);
extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
/*
* Wait for a page to be unlocked.
*
* This must be called with the caller "holding" the page,
* ie with increased "page->count" so that the page won't
* go away during the wait..
*/
static inline void wait_on_page_locked(struct page *page)
{
if (PageLocked(page))
wait_on_page_bit(compound_head(page), PG_locked);
}
static inline int wait_on_page_locked_killable(struct page *page)
{
if (!PageLocked(page))
return 0;
return wait_on_page_bit_killable(compound_head(page), PG_locked);
}
extern void put_and_wait_on_page_locked(struct page *page);
void wait_on_page_writeback(struct page *page);
extern void end_page_writeback(struct page *page);
void wait_for_stable_page(struct page *page);
void page_endio(struct page *page, bool is_write, int err);
/*
* Add an arbitrary waiter to a page's wait queue
*/
extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
/*
* Fault everything in given userspace address range in.
*/
static inline int fault_in_pages_writeable(char __user *uaddr, int size)
{
char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return 0;
if (unlikely(uaddr > end))
return -EFAULT;
/*
* Writing zeroes into userspace here is OK, because we know that if
* the zero gets there, we'll be overwriting it.
*/
do {
if (unlikely(__put_user(0, uaddr) != 0))
return -EFAULT;
uaddr += PAGE_SIZE;
} while (uaddr <= end);
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK))
return __put_user(0, end);
return 0;
}
static inline int fault_in_pages_readable(const char __user *uaddr, int size)
{
volatile char c;
const char __user *end = uaddr + size - 1;
if (unlikely(size == 0))
return 0;
if (unlikely(uaddr > end))
return -EFAULT;
do {
if (unlikely(__get_user(c, uaddr) != 0))
return -EFAULT;
uaddr += PAGE_SIZE;
} while (uaddr <= end);
/* Check whether the range spilled into the next page. */
if (((unsigned long)uaddr & PAGE_MASK) ==
((unsigned long)end & PAGE_MASK)) {
return __get_user(c, end);
}
(void)c;
return 0;
}
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t index, gfp_t gfp_mask);
extern void delete_from_page_cache(struct page *page);
extern void __delete_from_page_cache(struct page *page, void *shadow);
int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
void delete_from_page_cache_batch(struct address_space *mapping,
struct pagevec *pvec);
/*
* Like add_to_page_cache_locked, but used to add newly allocated pages:
* the page is new, so we can just run __SetPageLocked() against it.
*/
static inline int add_to_page_cache(struct page *page,
struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
{
int error;
__SetPageLocked(page);
error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
if (unlikely(error))
__ClearPageLocked(page);
return error;
}
/**
* struct readahead_control - Describes a readahead request.
*
* A readahead request is for consecutive pages. Filesystems which
* implement the ->readahead method should call readahead_page() or
* readahead_page_batch() in a loop and attempt to start I/O against
* each page in the request.
*
* Most of the fields in this struct are private and should be accessed
* by the functions below.
*
* @file: The file, used primarily by network filesystems for authentication.
* May be NULL if invoked internally by the filesystem.
* @mapping: Readahead this filesystem object.
*/
struct readahead_control {
struct file *file;
struct address_space *mapping;
/* private: use the readahead_* accessors instead */
pgoff_t _index;
unsigned int _nr_pages;
unsigned int _batch_count;
};
#define DEFINE_READAHEAD(rac, f, m, i) \
struct readahead_control rac = { \
.file = f, \
.mapping = m, \
._index = i, \
}
#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
void page_cache_ra_unbounded(struct readahead_control *,
unsigned long nr_to_read, unsigned long lookahead_count);
void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
unsigned long req_count);
void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
struct page *, unsigned long req_count);
/**
* page_cache_sync_readahead - generic file readahead
* @mapping: address_space which holds the pagecache and I/O vectors
* @ra: file_ra_state which holds the readahead state
* @file: Used by the filesystem for authentication.
* @index: Index of first page to be read.
* @req_count: Total number of pages being read by the caller.
*
* page_cache_sync_readahead() should be called when a cache miss happened:
* it will submit the read. The readahead logic may decide to piggyback more
* pages onto the read request if access patterns suggest it will improve
* performance.
*/
static inline
void page_cache_sync_readahead(struct address_space *mapping,
struct file_ra_state *ra, struct file *file, pgoff_t index,
unsigned long req_count)
{
DEFINE_READAHEAD(ractl, file, mapping, index);
page_cache_sync_ra(&ractl, ra, req_count);
}
/**
* page_cache_async_readahead - file readahead for marked pages
* @mapping: address_space which holds the pagecache and I/O vectors
* @ra: file_ra_state which holds the readahead state
* @file: Used by the filesystem for authentication.
* @page: The page at @index which triggered the readahead call.
* @index: Index of first page to be read.
* @req_count: Total number of pages being read by the caller.
*
* page_cache_async_readahead() should be called when a page is used which
* is marked as PageReadahead; this is a marker to suggest that the application
* has used up enough of the readahead window that we should start pulling in
* more pages.
*/
static inline
void page_cache_async_readahead(struct address_space *mapping,
struct file_ra_state *ra, struct file *file,
struct page *page, pgoff_t index, unsigned long req_count)
{
DEFINE_READAHEAD(ractl, file, mapping, index);
page_cache_async_ra(&ractl, ra, page, req_count);
}
/**
* readahead_page - Get the next page to read.
* @rac: The current readahead request.
*
* Context: The page is locked and has an elevated refcount. The caller
* should decreases the refcount once the page has been submitted for I/O
* and unlock the page once all I/O to that page has completed.
* Return: A pointer to the next page, or %NULL if we are done.
*/
static inline struct page *readahead_page(struct readahead_control *rac)
{
struct page *page;
BUG_ON(rac->_batch_count > rac->_nr_pages);
rac->_nr_pages -= rac->_batch_count;
rac->_index += rac->_batch_count;
if (!rac->_nr_pages) {
rac->_batch_count = 0;
return NULL;
}
page = xa_load(&rac->mapping->i_pages, rac->_index);
VM_BUG_ON_PAGE(!PageLocked(page), page);
rac->_batch_count = thp_nr_pages(page);
return page;
}
static inline unsigned int __readahead_batch(struct readahead_control *rac,
struct page **array, unsigned int array_sz)
{
unsigned int i = 0;
XA_STATE(xas, &rac->mapping->i_pages, 0);
struct page *page;
BUG_ON(rac->_batch_count > rac->_nr_pages);
rac->_nr_pages -= rac->_batch_count;
rac->_index += rac->_batch_count;
rac->_batch_count = 0;
xas_set(&xas, rac->_index);
rcu_read_lock();
xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
if (xas_retry(&xas, page))
continue;
VM_BUG_ON_PAGE(!PageLocked(page), page);
VM_BUG_ON_PAGE(PageTail(page), page);
array[i++] = page;
rac->_batch_count += thp_nr_pages(page);
/*
* The page cache isn't using multi-index entries yet,
* so the xas cursor needs to be manually moved to the
* next index. This can be removed once the page cache
* is converted.
*/
if (PageHead(page))
xas_set(&xas, rac->_index + rac->_batch_count);
if (i == array_sz)
break;
}
rcu_read_unlock();
return i;
}
/**
* readahead_page_batch - Get a batch of pages to read.
* @rac: The current readahead request.
* @array: An array of pointers to struct page.
*
* Context: The pages are locked and have an elevated refcount. The caller
* should decreases the refcount once the page has been submitted for I/O
* and unlock the page once all I/O to that page has completed.
* Return: The number of pages placed in the array. 0 indicates the request
* is complete.
*/
#define readahead_page_batch(rac, array) \
__readahead_batch(rac, array, ARRAY_SIZE(array))
/**
* readahead_pos - The byte offset into the file of this readahead request.
* @rac: The readahead request.
*/
static inline loff_t readahead_pos(struct readahead_control *rac)
{
return (loff_t)rac->_index * PAGE_SIZE;
}
/**
* readahead_length - The number of bytes in this readahead request.
* @rac: The readahead request.
*/
static inline loff_t readahead_length(struct readahead_control *rac)
{
return (loff_t)rac->_nr_pages * PAGE_SIZE;
}
/**
* readahead_index - The index of the first page in this readahead request.
* @rac: The readahead request.
*/
static inline pgoff_t readahead_index(struct readahead_control *rac)
{
return rac->_index;
}
/**
* readahead_count - The number of pages in this readahead request.
* @rac: The readahead request.
*/
static inline unsigned int readahead_count(struct readahead_control *rac)
{
return rac->_nr_pages;
}
static inline unsigned long dir_pages(struct inode *inode)
{
return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
PAGE_SHIFT;
}
/**
* page_mkwrite_check_truncate - check if page was truncated
* @page: the page to check
* @inode: the inode to check the page against
*
* Returns the number of bytes in the page up to EOF,
* or -EFAULT if the page was truncated.
*/
static inline int page_mkwrite_check_truncate(struct page *page,
struct inode *inode)
{
loff_t size = i_size_read(inode);
pgoff_t index = size >> PAGE_SHIFT;
int offset = offset_in_page(size);
if (page->mapping != inode->i_mapping)
return -EFAULT;
/* page is wholly inside EOF */
if (page->index < index)
return PAGE_SIZE;
/* page is wholly past EOF */
if (page->index > index || !offset)
return -EFAULT;
/* page is partially inside EOF */
return offset;
}
/**
* i_blocks_per_page - How many blocks fit in this page.
* @inode: The inode which contains the blocks.
* @page: The page (head page if the page is a THP).
*
* If the block size is larger than the size of this page, return zero.
*
* Context: The caller should hold a refcount on the page to prevent it
* from being split.
* Return: The number of filesystem blocks covered by this page.
*/
static inline
unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
{
return thp_size(page) >> inode->i_blkbits;
}
#endif /* _LINUX_PAGEMAP_H */