linux_dsm_epyc7002/kernel/kcsan/report.c
Marco Elver 2402d0eae5 kcsan: Add option for verbose reporting
Adds CONFIG_KCSAN_VERBOSE to optionally enable more verbose reports.
Currently information about the reporting task's held locks and IRQ
trace events are shown, if they are enabled.

Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: Qian Cai <cai@lca.pw>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-03-25 09:56:00 -07:00

617 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/debug_locks.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/preempt.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/spinlock.h>
#include <linux/stacktrace.h>
#include "kcsan.h"
#include "encoding.h"
/*
* Max. number of stack entries to show in the report.
*/
#define NUM_STACK_ENTRIES 64
/*
* Other thread info: communicated from other racing thread to thread that set
* up the watchpoint, which then prints the complete report atomically. Only
* need one struct, as all threads should to be serialized regardless to print
* the reports, with reporting being in the slow-path.
*/
static struct {
const volatile void *ptr;
size_t size;
int access_type;
int task_pid;
int cpu_id;
unsigned long stack_entries[NUM_STACK_ENTRIES];
int num_stack_entries;
/*
* Optionally pass @current. Typically we do not need to pass @current
* via @other_info since just @task_pid is sufficient. Passing @current
* has additional overhead.
*
* To safely pass @current, we must either use get_task_struct/
* put_task_struct, or stall the thread that populated @other_info.
*
* We cannot rely on get_task_struct/put_task_struct in case
* release_report() races with a task being released, and would have to
* free it in release_report(). This may result in deadlock if we want
* to use KCSAN on the allocators.
*
* Since we also want to reliably print held locks for
* CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
* that populated @other_info until it has been consumed.
*/
struct task_struct *task;
} other_info;
/*
* Information about reported races; used to rate limit reporting.
*/
struct report_time {
/*
* The last time the race was reported.
*/
unsigned long time;
/*
* The frames of the 2 threads; if only 1 thread is known, one frame
* will be 0.
*/
unsigned long frame1;
unsigned long frame2;
};
/*
* Since we also want to be able to debug allocators with KCSAN, to avoid
* deadlock, report_times cannot be dynamically resized with krealloc in
* rate_limit_report.
*
* Therefore, we use a fixed-size array, which at most will occupy a page. This
* still adequately rate limits reports, assuming that a) number of unique data
* races is not excessive, and b) occurrence of unique races within the
* same time window is limited.
*/
#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
#define REPORT_TIMES_SIZE \
(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
REPORT_TIMES_MAX : \
CONFIG_KCSAN_REPORT_ONCE_IN_MS)
static struct report_time report_times[REPORT_TIMES_SIZE];
/*
* This spinlock protects reporting and other_info, since other_info is usually
* required when reporting.
*/
static DEFINE_SPINLOCK(report_lock);
/*
* Checks if the race identified by thread frames frame1 and frame2 has
* been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
*/
static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
{
struct report_time *use_entry = &report_times[0];
unsigned long invalid_before;
int i;
BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
return false;
invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
/* Check if a matching race report exists. */
for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
struct report_time *rt = &report_times[i];
/*
* Must always select an entry for use to store info as we
* cannot resize report_times; at the end of the scan, use_entry
* will be the oldest entry, which ideally also happened before
* KCSAN_REPORT_ONCE_IN_MS ago.
*/
if (time_before(rt->time, use_entry->time))
use_entry = rt;
/*
* Initially, no need to check any further as this entry as well
* as following entries have never been used.
*/
if (rt->time == 0)
break;
/* Check if entry expired. */
if (time_before(rt->time, invalid_before))
continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
/* Reported recently, check if race matches. */
if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
(rt->frame1 == frame2 && rt->frame2 == frame1))
return true;
}
use_entry->time = jiffies;
use_entry->frame1 = frame1;
use_entry->frame2 = frame2;
return false;
}
/*
* Special rules to skip reporting.
*/
static bool
skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
{
/* Should never get here if value_change==FALSE. */
WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
/*
* The first call to skip_report always has value_change==TRUE, since we
* cannot know the value written of an instrumented access. For the 2nd
* call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
*
* 1. read watchpoint, conflicting write (value_change==TRUE): report;
* 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
* 3. write watchpoint, conflicting write (value_change==TRUE): report;
* 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
* 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
* 6. write watchpoint, conflicting read (value_change==TRUE): report;
*
* Cases 1-4 are intuitive and expected; case 5 ensures we do not report
* data races where the write may have rewritten the same value; case 6
* is possible either if the size is larger than what we check value
* changes for or the access type is KCSAN_ACCESS_ASSERT.
*/
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
value_change == KCSAN_VALUE_CHANGE_MAYBE) {
/*
* The access is a write, but the data value did not change.
*
* We opt-out of this filter for certain functions at request of
* maintainers.
*/
char buf[64];
snprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
if (!strnstr(buf, "rcu_", sizeof(buf)) &&
!strnstr(buf, "_rcu", sizeof(buf)) &&
!strnstr(buf, "_srcu", sizeof(buf)))
return true;
}
return kcsan_skip_report_debugfs(top_frame);
}
static const char *get_access_type(int type)
{
switch (type) {
case 0:
return "read";
case KCSAN_ACCESS_ATOMIC:
return "read (marked)";
case KCSAN_ACCESS_WRITE:
return "write";
case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "write (marked)";
/*
* ASSERT variants:
*/
case KCSAN_ACCESS_ASSERT:
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_ATOMIC:
return "assert no writes";
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE:
case KCSAN_ACCESS_ASSERT | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
return "assert no accesses";
default:
BUG();
}
}
static const char *get_bug_type(int type)
{
return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
}
/* Return thread description: in task or interrupt. */
static const char *get_thread_desc(int task_id)
{
if (task_id != -1) {
static char buf[32]; /* safe: protected by report_lock */
snprintf(buf, sizeof(buf), "task %i", task_id);
return buf;
}
return "interrupt";
}
/* Helper to skip KCSAN-related functions in stack-trace. */
static int get_stack_skipnr(unsigned long stack_entries[], int num_entries)
{
char buf[64];
int skip = 0;
for (; skip < num_entries; ++skip) {
snprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
if (!strnstr(buf, "csan_", sizeof(buf)) &&
!strnstr(buf, "tsan_", sizeof(buf)) &&
!strnstr(buf, "_once_size", sizeof(buf))) {
break;
}
}
return skip;
}
/* Compares symbolized strings of addr1 and addr2. */
static int sym_strcmp(void *addr1, void *addr2)
{
char buf1[64];
char buf2[64];
snprintf(buf1, sizeof(buf1), "%pS", addr1);
snprintf(buf2, sizeof(buf2), "%pS", addr2);
return strncmp(buf1, buf2, sizeof(buf1));
}
static void print_verbose_info(struct task_struct *task)
{
if (!task)
return;
pr_err("\n");
debug_show_held_locks(task);
print_irqtrace_events(task);
}
/*
* Returns true if a report was generated, false otherwise.
*/
static bool print_report(const volatile void *ptr, size_t size, int access_type,
enum kcsan_value_change value_change, int cpu_id,
enum kcsan_report_type type)
{
unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
unsigned long this_frame = stack_entries[skipnr];
unsigned long other_frame = 0;
int other_skipnr = 0; /* silence uninit warnings */
/*
* Must check report filter rules before starting to print.
*/
if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
return false;
if (type == KCSAN_REPORT_RACE_SIGNAL) {
other_skipnr = get_stack_skipnr(other_info.stack_entries,
other_info.num_stack_entries);
other_frame = other_info.stack_entries[other_skipnr];
/* @value_change is only known for the other thread */
if (skip_report(value_change, other_frame))
return false;
}
if (rate_limit_report(this_frame, other_frame))
return false;
/* Print report header. */
pr_err("==================================================================\n");
switch (type) {
case KCSAN_REPORT_RACE_SIGNAL: {
int cmp;
/*
* Order functions lexographically for consistent bug titles.
* Do not print offset of functions to keep title short.
*/
cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
pr_err("BUG: KCSAN: %s in %ps / %ps\n",
get_bug_type(access_type | other_info.access_type),
(void *)(cmp < 0 ? other_frame : this_frame),
(void *)(cmp < 0 ? this_frame : other_frame));
} break;
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(access_type),
(void *)this_frame);
break;
default:
BUG();
}
pr_err("\n");
/* Print information about the racing accesses. */
switch (type) {
case KCSAN_REPORT_RACE_SIGNAL:
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(other_info.access_type), other_info.ptr,
other_info.size, get_thread_desc(other_info.task_pid),
other_info.cpu_id);
/* Print the other thread's stack trace. */
stack_trace_print(other_info.stack_entries + other_skipnr,
other_info.num_stack_entries - other_skipnr,
0);
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
print_verbose_info(other_info.task);
pr_err("\n");
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(access_type), ptr, size,
get_thread_desc(in_task() ? task_pid_nr(current) : -1),
cpu_id);
break;
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
get_access_type(access_type), ptr, size,
get_thread_desc(in_task() ? task_pid_nr(current) : -1),
cpu_id);
break;
default:
BUG();
}
/* Print stack trace of this thread. */
stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
0);
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
print_verbose_info(current);
/* Print report footer. */
pr_err("\n");
pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
dump_stack_print_info(KERN_DEFAULT);
pr_err("==================================================================\n");
return true;
}
static void release_report(unsigned long *flags, enum kcsan_report_type type)
{
if (type == KCSAN_REPORT_RACE_SIGNAL)
other_info.ptr = NULL; /* mark for reuse */
spin_unlock_irqrestore(&report_lock, *flags);
}
/*
* Sets @other_info.task and awaits consumption of @other_info.
*
* Precondition: report_lock is held.
* Postcondition: report_lock is held.
*/
static void
set_other_info_task_blocking(unsigned long *flags, const volatile void *ptr)
{
/*
* We may be instrumenting a code-path where current->state is already
* something other than TASK_RUNNING.
*/
const bool is_running = current->state == TASK_RUNNING;
/*
* To avoid deadlock in case we are in an interrupt here and this is a
* race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
* timeout to ensure this works in all contexts.
*
* Await approximately the worst case delay of the reporting thread (if
* we are not interrupted).
*/
int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
other_info.task = current;
do {
if (is_running) {
/*
* Let lockdep know the real task is sleeping, to print
* the held locks (recall we turned lockdep off, so
* locking/unlocking @report_lock won't be recorded).
*/
set_current_state(TASK_UNINTERRUPTIBLE);
}
spin_unlock_irqrestore(&report_lock, *flags);
/*
* We cannot call schedule() since we also cannot reliably
* determine if sleeping here is permitted -- see in_atomic().
*/
udelay(1);
spin_lock_irqsave(&report_lock, *flags);
if (timeout-- < 0) {
/*
* Abort. Reset other_info.task to NULL, since it
* appears the other thread is still going to consume
* it. It will result in no verbose info printed for
* this task.
*/
other_info.task = NULL;
break;
}
/*
* If @ptr nor @current matches, then our information has been
* consumed and we may continue. If not, retry.
*/
} while (other_info.ptr == ptr && other_info.task == current);
if (is_running)
set_current_state(TASK_RUNNING);
}
/*
* Depending on the report type either sets other_info and returns false, or
* acquires the matching other_info and returns true. If other_info is not
* required for the report type, simply acquires report_lock and returns true.
*/
static bool prepare_report(unsigned long *flags, const volatile void *ptr,
size_t size, int access_type, int cpu_id,
enum kcsan_report_type type)
{
if (type != KCSAN_REPORT_CONSUMED_WATCHPOINT &&
type != KCSAN_REPORT_RACE_SIGNAL) {
/* other_info not required; just acquire report_lock */
spin_lock_irqsave(&report_lock, *flags);
return true;
}
retry:
spin_lock_irqsave(&report_lock, *flags);
switch (type) {
case KCSAN_REPORT_CONSUMED_WATCHPOINT:
if (other_info.ptr != NULL)
break; /* still in use, retry */
other_info.ptr = ptr;
other_info.size = size;
other_info.access_type = access_type;
other_info.task_pid = in_task() ? task_pid_nr(current) : -1;
other_info.cpu_id = cpu_id;
other_info.num_stack_entries = stack_trace_save(other_info.stack_entries, NUM_STACK_ENTRIES, 1);
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
set_other_info_task_blocking(flags, ptr);
spin_unlock_irqrestore(&report_lock, *flags);
/*
* The other thread will print the summary; other_info may now
* be consumed.
*/
return false;
case KCSAN_REPORT_RACE_SIGNAL:
if (other_info.ptr == NULL)
break; /* no data available yet, retry */
/*
* First check if this is the other_info we are expecting, i.e.
* matches based on how watchpoint was encoded.
*/
if (!matching_access((unsigned long)other_info.ptr &
WATCHPOINT_ADDR_MASK,
other_info.size,
(unsigned long)ptr & WATCHPOINT_ADDR_MASK,
size))
break; /* mismatching watchpoint, retry */
if (!matching_access((unsigned long)other_info.ptr,
other_info.size, (unsigned long)ptr,
size)) {
/*
* If the actual accesses to not match, this was a false
* positive due to watchpoint encoding.
*/
kcsan_counter_inc(
KCSAN_COUNTER_ENCODING_FALSE_POSITIVES);
/* discard this other_info */
release_report(flags, KCSAN_REPORT_RACE_SIGNAL);
return false;
}
access_type |= other_info.access_type;
if ((access_type & KCSAN_ACCESS_WRITE) == 0) {
/*
* While the address matches, this is not the other_info
* from the thread that consumed our watchpoint, since
* neither this nor the access in other_info is a write.
* It is invalid to continue with the report, since we
* only have information about reads.
*
* This can happen due to concurrent races on the same
* address, with at least 4 threads. To avoid locking up
* other_info and all other threads, we have to consume
* it regardless.
*
* A concrete case to illustrate why we might lock up if
* we do not consume other_info:
*
* We have 4 threads, all accessing the same address
* (or matching address ranges). Assume the following
* watcher and watchpoint consumer pairs:
* write1-read1, read2-write2. The first to populate
* other_info is write2, however, write1 consumes it,
* resulting in a report of write1-write2. This report
* is valid, however, now read1 populates other_info;
* read2-read1 is an invalid conflict, yet, no other
* conflicting access is left. Therefore, we must
* consume read1's other_info.
*
* Since this case is assumed to be rare, it is
* reasonable to omit this report: one of the other
* reports includes information about the same shared
* data, and at this point the likelihood that we
* re-report the same race again is high.
*/
release_report(flags, KCSAN_REPORT_RACE_SIGNAL);
return false;
}
/*
* Matching & usable access in other_info: keep other_info_lock
* locked, as this thread consumes it to print the full report;
* unlocked in release_report.
*/
return true;
default:
BUG();
}
spin_unlock_irqrestore(&report_lock, *flags);
goto retry;
}
void kcsan_report(const volatile void *ptr, size_t size, int access_type,
enum kcsan_value_change value_change, int cpu_id,
enum kcsan_report_type type)
{
unsigned long flags = 0;
/*
* With TRACE_IRQFLAGS, lockdep's IRQ trace state becomes corrupted if
* we do not turn off lockdep here; this could happen due to recursion
* into lockdep via KCSAN if we detect a race in utilities used by
* lockdep.
*/
lockdep_off();
kcsan_disable_current();
if (prepare_report(&flags, ptr, size, access_type, cpu_id, type)) {
/*
* Never report if value_change is FALSE, only if we it is
* either TRUE or MAYBE. In case of MAYBE, further filtering may
* be done once we know the full stack trace in print_report().
*/
bool reported = value_change != KCSAN_VALUE_CHANGE_FALSE &&
print_report(ptr, size, access_type, value_change, cpu_id, type);
if (reported && panic_on_warn)
panic("panic_on_warn set ...\n");
release_report(&flags, type);
}
kcsan_enable_current();
lockdep_on();
}