mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
19acd03d95
The __kcsan_{enable,disable}_current() variants only call into KCSAN if KCSAN is enabled for the current compilation unit. Note: This is typically not what we want, as we usually want to ensure that even calls into other functions still have KCSAN disabled. These variants may safely be used in header files that are shared between regular kernel code and code that does not link the KCSAN runtime. Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
431 lines
15 KiB
C
431 lines
15 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef _LINUX_KCSAN_CHECKS_H
|
|
#define _LINUX_KCSAN_CHECKS_H
|
|
|
|
/* Note: Only include what is already included by compiler.h. */
|
|
#include <linux/compiler_attributes.h>
|
|
#include <linux/types.h>
|
|
|
|
/*
|
|
* ACCESS TYPE MODIFIERS
|
|
*
|
|
* <none>: normal read access;
|
|
* WRITE : write access;
|
|
* ATOMIC: access is atomic;
|
|
* ASSERT: access is not a regular access, but an assertion;
|
|
* SCOPED: access is a scoped access;
|
|
*/
|
|
#define KCSAN_ACCESS_WRITE 0x1
|
|
#define KCSAN_ACCESS_ATOMIC 0x2
|
|
#define KCSAN_ACCESS_ASSERT 0x4
|
|
#define KCSAN_ACCESS_SCOPED 0x8
|
|
|
|
/*
|
|
* __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
|
|
* even in compilation units that selectively disable KCSAN, but must use KCSAN
|
|
* to validate access to an address. Never use these in header files!
|
|
*/
|
|
#ifdef CONFIG_KCSAN
|
|
/**
|
|
* __kcsan_check_access - check generic access for races
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
* @type: access type modifier
|
|
*/
|
|
void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
|
|
|
|
/**
|
|
* kcsan_disable_current - disable KCSAN for the current context
|
|
*
|
|
* Supports nesting.
|
|
*/
|
|
void kcsan_disable_current(void);
|
|
|
|
/**
|
|
* kcsan_enable_current - re-enable KCSAN for the current context
|
|
*
|
|
* Supports nesting.
|
|
*/
|
|
void kcsan_enable_current(void);
|
|
void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
|
|
|
|
/**
|
|
* kcsan_nestable_atomic_begin - begin nestable atomic region
|
|
*
|
|
* Accesses within the atomic region may appear to race with other accesses but
|
|
* should be considered atomic.
|
|
*/
|
|
void kcsan_nestable_atomic_begin(void);
|
|
|
|
/**
|
|
* kcsan_nestable_atomic_end - end nestable atomic region
|
|
*/
|
|
void kcsan_nestable_atomic_end(void);
|
|
|
|
/**
|
|
* kcsan_flat_atomic_begin - begin flat atomic region
|
|
*
|
|
* Accesses within the atomic region may appear to race with other accesses but
|
|
* should be considered atomic.
|
|
*/
|
|
void kcsan_flat_atomic_begin(void);
|
|
|
|
/**
|
|
* kcsan_flat_atomic_end - end flat atomic region
|
|
*/
|
|
void kcsan_flat_atomic_end(void);
|
|
|
|
/**
|
|
* kcsan_atomic_next - consider following accesses as atomic
|
|
*
|
|
* Force treating the next n memory accesses for the current context as atomic
|
|
* operations.
|
|
*
|
|
* @n: number of following memory accesses to treat as atomic.
|
|
*/
|
|
void kcsan_atomic_next(int n);
|
|
|
|
/**
|
|
* kcsan_set_access_mask - set access mask
|
|
*
|
|
* Set the access mask for all accesses for the current context if non-zero.
|
|
* Only value changes to bits set in the mask will be reported.
|
|
*
|
|
* @mask: bitmask
|
|
*/
|
|
void kcsan_set_access_mask(unsigned long mask);
|
|
|
|
/* Scoped access information. */
|
|
struct kcsan_scoped_access {
|
|
struct list_head list;
|
|
const volatile void *ptr;
|
|
size_t size;
|
|
int type;
|
|
};
|
|
/*
|
|
* Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
|
|
* out of scope; relies on attribute "cleanup", which is supported by all
|
|
* compilers that support KCSAN.
|
|
*/
|
|
#define __kcsan_cleanup_scoped \
|
|
__maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
|
|
|
|
/**
|
|
* kcsan_begin_scoped_access - begin scoped access
|
|
*
|
|
* Begin scoped access and initialize @sa, which will cause KCSAN to
|
|
* continuously check the memory range in the current thread until
|
|
* kcsan_end_scoped_access() is called for @sa.
|
|
*
|
|
* Scoped accesses are implemented by appending @sa to an internal list for the
|
|
* current execution context, and then checked on every call into the KCSAN
|
|
* runtime.
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
* @type: access type modifier
|
|
* @sa: struct kcsan_scoped_access to use for the scope of the access
|
|
*/
|
|
struct kcsan_scoped_access *
|
|
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
|
struct kcsan_scoped_access *sa);
|
|
|
|
/**
|
|
* kcsan_end_scoped_access - end scoped access
|
|
*
|
|
* End a scoped access, which will stop KCSAN checking the memory range.
|
|
* Requires that kcsan_begin_scoped_access() was previously called once for @sa.
|
|
*
|
|
* @sa: a previously initialized struct kcsan_scoped_access
|
|
*/
|
|
void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
|
|
|
|
|
|
#else /* CONFIG_KCSAN */
|
|
|
|
static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
|
|
int type) { }
|
|
|
|
static inline void kcsan_disable_current(void) { }
|
|
static inline void kcsan_enable_current(void) { }
|
|
static inline void kcsan_enable_current_nowarn(void) { }
|
|
static inline void kcsan_nestable_atomic_begin(void) { }
|
|
static inline void kcsan_nestable_atomic_end(void) { }
|
|
static inline void kcsan_flat_atomic_begin(void) { }
|
|
static inline void kcsan_flat_atomic_end(void) { }
|
|
static inline void kcsan_atomic_next(int n) { }
|
|
static inline void kcsan_set_access_mask(unsigned long mask) { }
|
|
|
|
struct kcsan_scoped_access { };
|
|
#define __kcsan_cleanup_scoped __maybe_unused
|
|
static inline struct kcsan_scoped_access *
|
|
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
|
struct kcsan_scoped_access *sa) { return sa; }
|
|
static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
|
|
|
|
#endif /* CONFIG_KCSAN */
|
|
|
|
#ifdef __SANITIZE_THREAD__
|
|
/*
|
|
* Only calls into the runtime when the particular compilation unit has KCSAN
|
|
* instrumentation enabled. May be used in header files.
|
|
*/
|
|
#define kcsan_check_access __kcsan_check_access
|
|
|
|
/*
|
|
* Only use these to disable KCSAN for accesses in the current compilation unit;
|
|
* calls into libraries may still perform KCSAN checks.
|
|
*/
|
|
#define __kcsan_disable_current kcsan_disable_current
|
|
#define __kcsan_enable_current kcsan_enable_current_nowarn
|
|
#else
|
|
static inline void kcsan_check_access(const volatile void *ptr, size_t size,
|
|
int type) { }
|
|
static inline void __kcsan_enable_current(void) { }
|
|
static inline void __kcsan_disable_current(void) { }
|
|
#endif
|
|
|
|
/**
|
|
* __kcsan_check_read - check regular read access for races
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
*/
|
|
#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
|
|
|
|
/**
|
|
* __kcsan_check_write - check regular write access for races
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
*/
|
|
#define __kcsan_check_write(ptr, size) \
|
|
__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
|
|
|
|
/**
|
|
* kcsan_check_read - check regular read access for races
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
*/
|
|
#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
|
|
|
|
/**
|
|
* kcsan_check_write - check regular write access for races
|
|
*
|
|
* @ptr: address of access
|
|
* @size: size of access
|
|
*/
|
|
#define kcsan_check_write(ptr, size) \
|
|
kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
|
|
|
|
/*
|
|
* Check for atomic accesses: if atomic accesses are not ignored, this simply
|
|
* aliases to kcsan_check_access(), otherwise becomes a no-op.
|
|
*/
|
|
#ifdef CONFIG_KCSAN_IGNORE_ATOMICS
|
|
#define kcsan_check_atomic_read(...) do { } while (0)
|
|
#define kcsan_check_atomic_write(...) do { } while (0)
|
|
#else
|
|
#define kcsan_check_atomic_read(ptr, size) \
|
|
kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
|
|
#define kcsan_check_atomic_write(ptr, size) \
|
|
kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
|
|
#endif
|
|
|
|
/**
|
|
* ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
|
|
*
|
|
* Assert that there are no concurrent writes to @var; other readers are
|
|
* allowed. This assertion can be used to specify properties of concurrent code,
|
|
* where violation cannot be detected as a normal data race.
|
|
*
|
|
* For example, if we only have a single writer, but multiple concurrent
|
|
* readers, to avoid data races, all these accesses must be marked; even
|
|
* concurrent marked writes racing with the single writer are bugs.
|
|
* Unfortunately, due to being marked, they are no longer data races. For cases
|
|
* like these, we can use the macro as follows:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* void writer(void) {
|
|
* spin_lock(&update_foo_lock);
|
|
* ASSERT_EXCLUSIVE_WRITER(shared_foo);
|
|
* WRITE_ONCE(shared_foo, ...);
|
|
* spin_unlock(&update_foo_lock);
|
|
* }
|
|
* void reader(void) {
|
|
* // update_foo_lock does not need to be held!
|
|
* ... = READ_ONCE(shared_foo);
|
|
* }
|
|
*
|
|
* Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
|
|
* checking if a clear scope where no concurrent writes are expected exists.
|
|
*
|
|
* @var: variable to assert on
|
|
*/
|
|
#define ASSERT_EXCLUSIVE_WRITER(var) \
|
|
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
|
|
|
|
/*
|
|
* Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
|
|
* expected to be unique for the scope in which instances of kcsan_scoped_access
|
|
* are declared.
|
|
*/
|
|
#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
|
|
#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
|
|
struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
|
|
__kcsan_cleanup_scoped; \
|
|
struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
|
|
__maybe_unused = kcsan_begin_scoped_access( \
|
|
&(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
|
|
&__kcsan_scoped_name(id, _))
|
|
|
|
/**
|
|
* ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
|
|
*
|
|
* Scoped variant of ASSERT_EXCLUSIVE_WRITER().
|
|
*
|
|
* Assert that there are no concurrent writes to @var for the duration of the
|
|
* scope in which it is introduced. This provides a better way to fully cover
|
|
* the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
|
|
* increases the likelihood for KCSAN to detect racing accesses.
|
|
*
|
|
* For example, it allows finding race-condition bugs that only occur due to
|
|
* state changes within the scope itself:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* void writer(void) {
|
|
* spin_lock(&update_foo_lock);
|
|
* {
|
|
* ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
|
|
* WRITE_ONCE(shared_foo, 42);
|
|
* ...
|
|
* // shared_foo should still be 42 here!
|
|
* }
|
|
* spin_unlock(&update_foo_lock);
|
|
* }
|
|
* void buggy(void) {
|
|
* if (READ_ONCE(shared_foo) == 42)
|
|
* WRITE_ONCE(shared_foo, 1); // bug!
|
|
* }
|
|
*
|
|
* @var: variable to assert on
|
|
*/
|
|
#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
|
|
__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
|
|
|
|
/**
|
|
* ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
|
|
*
|
|
* Assert that there are no concurrent accesses to @var (no readers nor
|
|
* writers). This assertion can be used to specify properties of concurrent
|
|
* code, where violation cannot be detected as a normal data race.
|
|
*
|
|
* For example, where exclusive access is expected after determining no other
|
|
* users of an object are left, but the object is not actually freed. We can
|
|
* check that this property actually holds as follows:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* if (refcount_dec_and_test(&obj->refcnt)) {
|
|
* ASSERT_EXCLUSIVE_ACCESS(*obj);
|
|
* do_some_cleanup(obj);
|
|
* release_for_reuse(obj);
|
|
* }
|
|
*
|
|
* Note: ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
|
|
* checking if a clear scope where no concurrent accesses are expected exists.
|
|
*
|
|
* Note: For cases where the object is freed, `KASAN <kasan.html>`_ is a better
|
|
* fit to detect use-after-free bugs.
|
|
*
|
|
* @var: variable to assert on
|
|
*/
|
|
#define ASSERT_EXCLUSIVE_ACCESS(var) \
|
|
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
|
|
|
|
/**
|
|
* ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
|
|
*
|
|
* Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
|
|
*
|
|
* Assert that there are no concurrent accesses to @var (no readers nor writers)
|
|
* for the entire duration of the scope in which it is introduced. This provides
|
|
* a better way to fully cover the enclosing scope, compared to multiple
|
|
* ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
|
|
* racing accesses.
|
|
*
|
|
* @var: variable to assert on
|
|
*/
|
|
#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
|
|
__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
|
|
|
|
/**
|
|
* ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
|
|
*
|
|
* Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
|
|
*
|
|
* Assert that there are no concurrent writes to a subset of bits in @var;
|
|
* concurrent readers are permitted. This assertion captures more detailed
|
|
* bit-level properties, compared to the other (word granularity) assertions.
|
|
* Only the bits set in @mask are checked for concurrent modifications, while
|
|
* ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
|
|
* are ignored.
|
|
*
|
|
* Use this for variables, where some bits must not be modified concurrently,
|
|
* yet other bits are expected to be modified concurrently.
|
|
*
|
|
* For example, variables where, after initialization, some bits are read-only,
|
|
* but other bits may still be modified concurrently. A reader may wish to
|
|
* assert that this is true as follows:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
|
|
* foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
|
|
*
|
|
* Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
|
|
* to access the masked bits only, and KCSAN optimistically assumes it is
|
|
* therefore safe, even in the presence of data races, and marking it with
|
|
* READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
|
|
* it may still be advisable to do so, since we cannot reason about all compiler
|
|
* optimizations when it comes to bit manipulations (on the reader and writer
|
|
* side). If you are sure nothing can go wrong, we can write the above simply
|
|
* as:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
|
|
* foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
|
|
*
|
|
* Another example, where this may be used, is when certain bits of @var may
|
|
* only be modified when holding the appropriate lock, but other bits may still
|
|
* be modified concurrently. Writers, where other bits may change concurrently,
|
|
* could use the assertion as follows:
|
|
*
|
|
* .. code-block:: c
|
|
*
|
|
* spin_lock(&foo_lock);
|
|
* ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
|
|
* old_flags = flags;
|
|
* new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
|
|
* if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
|
|
* spin_unlock(&foo_lock);
|
|
*
|
|
* @var: variable to assert on
|
|
* @mask: only check for modifications to bits set in @mask
|
|
*/
|
|
#define ASSERT_EXCLUSIVE_BITS(var, mask) \
|
|
do { \
|
|
kcsan_set_access_mask(mask); \
|
|
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
|
|
kcsan_set_access_mask(0); \
|
|
kcsan_atomic_next(1); \
|
|
} while (0)
|
|
|
|
#endif /* _LINUX_KCSAN_CHECKS_H */
|