mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 05:36:27 +07:00
23e26d0577
The patch addresses the compliance test failures while running TDA 2.3.1.1 and TDA 2.3.1.2 of the "PD Communications Engine USB PD Compliance MOI" test plan published in https://www.usb.org/usbc. For a product to be Type-C compliant, it's expected that these tests are run on usb.org certified Type-C compliance tester as mentioned in https://www.usb.org/usbc. While the purpose of TDA 2.3.1.1 and TDA 2.3.1.2 is to verify that the static and dynamic electrical capabilities of a Source meet the requirements for each PDO offered, while doing so, the tests also monitor that the timing of the VBUS waveform versus the messages meets the requirements for Hard Reset defined in PROT-PROC-HR-TSTR as mentioned in step 11 of TDA.2.3.1.1 and step 15 of TDA.2.3.1.2. TDB.2.2.13.1: PROT-PROC-HR-TSTR Procedure and Checks for Tester Originated Hard Reset Purpose: To perform the appropriate protocol checks relating to any circumstance in which the Hard Reset signal is sent by the Tester. UUT is behaving as source: The Tester sends a Hard Reset signal. 1. Check VBUS stays within present valid voltage range for tPSHardReset min (25ms) after last bit of Hard Reset signal. [PROT_PROC_HR_TSTR_1] 2. Check that VBUS starts to fall below present valid voltage range by tPSHardReset max (35ms). [PROT_PROC_HR_TSTR_2] 3. Check that VBUS reaches vSafe0V within tSafe0v max (650 ms). [PROT_PROC_HR_TSTR_3] 4. Check that VBUS starts rising to vSafe5V after a delay of tSrcRecover (0.66s - 1s) from reaching vSafe0V. [PROT_PROC_HR_TSTR_4] 5. Check that VBUS reaches vSafe5V within tSrcTurnOn max (275ms) of rising above vSafe0v max (0.8V). [PROT_PROC_HR_TSTR_5] Power Delivery Compliance Plan 139 6. Check that Source Capabilities are finished sending within tFirstSourceCap max (250ms) of VBUS reaching vSafe5v min. [PROT_PROC_HR_TSTR_6]. This is in line with 7.1.5 Response to Hard Resets of the USB Power Delivery Specification Revision 3.0, Version 1.2, "Hard Reset Signaling indicates a communication failure has occurred and the Source Shall stop driving VCONN, Shall remove Rp from the VCONN pin and Shall drive VBUS to vSafe0V as shown in Figure 7-9. The USB connection May reset during a Hard Reset since the VBUS voltage will be less than vSafe5V for an extended period of time. After establishing the vSafe0V voltage condition on VBUS, the Source Shall wait tSrcRecover before re-applying VCONN and restoring VBUS to vSafe5V. A Source Shall conform to the VCONN timing as specified in [USB Type-C 1.3]." With the above guidelines from the spec in mind, TCPM does not turn off VCONN while entering SRC_HARD_RESET_VBUS_OFF. The patch makes TCPM turn off VCONN while entering SRC_HARD_RESET_VBUS_OFF and turn it back on while entering SRC_HARD_RESET_VBUS_ON along with vbus instead of having VCONN on through hardreset. Also, the spec clearly states that "After establishing the vSafe0V voltage condition on VBUS", the Source Shall wait tSrcRecover before re-applying VCONN and restoring VBUS to vSafe5V. TCPM does not conform to this requirement. If the TCPC driver calls tcpm_vbus_change with vbus off signal, TCPM right away enters SRC_HARD_RESET_VBUS_ON without waiting for tSrcRecover. For TCPC's which are buggy/does not call tcpm_vbus_change, TCPM assumes that the vsafe0v is instantaneous as TCPM only waits tSrcRecover instead of waiting for tSafe0v + tSrcRecover. This patch also fixes this behavior by making sure that TCPM waits for tSrcRecover before transitioning into SRC_HARD_RESET_VBUS_ON when tcpm_vbus_change is called by TCPC. When TCPC does not call tcpm_vbus_change, TCPM assumes the worst case i.e. tSafe0v + tSrcRecover before transitioning into SRC_HARD_RESET_VBUS_ON. Signed-off-by: Badhri Jagan Sridharan <badhri@google.com> Reviewed-by: Guenter Roeck <linux@roeck-us.net> Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com> Cc: stable <stable@kernel.org> Link: https://lore.kernel.org/r/20200817184601.1899929-1-badhri@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.