linux_dsm_epyc7002/Documentation/x86/x86_64/mm.txt
H. Peter Anvin 23deb06821 x86: move x86-specific documentation into Documentation/x86
The current organization of the x86 documentation makes it appear as
if the "i386" documentation doesn't apply to x86-64, which is does.
Thus, move that documentation into Documentation/x86, and move the
x86-64-specific stuff into Documentation/x86/x86_64 with the eventual
goal to move stuff that isn't actually 64-bit specific back into
Documentation/x86.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-05-30 17:19:03 -07:00

30 lines
1.2 KiB
Plaintext

<previous description obsolete, deleted>
Virtual memory map with 4 level page tables:
0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm
hole caused by [48:63] sign extension
ffff800000000000 - ffff80ffffffffff (=40 bits) guard hole
ffff810000000000 - ffffc0ffffffffff (=46 bits) direct mapping of all phys. memory
ffffc10000000000 - ffffc1ffffffffff (=40 bits) hole
ffffc20000000000 - ffffe1ffffffffff (=45 bits) vmalloc/ioremap space
ffffe20000000000 - ffffe2ffffffffff (=40 bits) virtual memory map (1TB)
... unused hole ...
ffffffff80000000 - ffffffff82800000 (=40 MB) kernel text mapping, from phys 0
... unused hole ...
ffffffff88000000 - fffffffffff00000 (=1919 MB) module mapping space
The direct mapping covers all memory in the system up to the highest
memory address (this means in some cases it can also include PCI memory
holes).
vmalloc space is lazily synchronized into the different PML4 pages of
the processes using the page fault handler, with init_level4_pgt as
reference.
Current X86-64 implementations only support 40 bits of address space,
but we support up to 46 bits. This expands into MBZ space in the page tables.
-Andi Kleen, Jul 2004