linux_dsm_epyc7002/drivers/pci/msi.c
Eric W. Biederman 3b7d1921f4 [PATCH] msi: refactor and move the msi irq_chip into the arch code
It turns out msi_ops was simply not enough to abstract the architecture
specific details of msi.  So I have moved the resposibility of constructing
the struct irq_chip to the architectures, and have two architecture specific
functions arch_setup_msi_irq, and arch_teardown_msi_irq.

For simple architectures those functions can do all of the work.  For
architectures with platform dependencies they can call into the appropriate
platform code.

With this msi.c is finally free of assuming you have an apic, and this
actually takes less code.

The helpers for the architecture specific code are declared in the linux/msi.h
to keep them separate from the msi functions used by drivers in linux/pci.h

Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg KH <greg@kroah.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 07:55:29 -07:00

953 lines
24 KiB
C

/*
* File: msi.c
* Purpose: PCI Message Signaled Interrupt (MSI)
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
*/
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/smp_lock.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/msi.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/smp.h>
#include "pci.h"
#include "msi.h"
static DEFINE_SPINLOCK(msi_lock);
static struct msi_desc* msi_desc[NR_IRQS] = { [0 ... NR_IRQS-1] = NULL };
static kmem_cache_t* msi_cachep;
static int pci_msi_enable = 1;
static int msi_cache_init(void)
{
msi_cachep = kmem_cache_create("msi_cache", sizeof(struct msi_desc),
0, SLAB_HWCACHE_ALIGN, NULL, NULL);
if (!msi_cachep)
return -ENOMEM;
return 0;
}
static void msi_set_mask_bit(unsigned int irq, int flag)
{
struct msi_desc *entry;
entry = msi_desc[irq];
BUG_ON(!entry || !entry->dev);
switch (entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
if (entry->msi_attrib.maskbit) {
int pos;
u32 mask_bits;
pos = (long)entry->mask_base;
pci_read_config_dword(entry->dev, pos, &mask_bits);
mask_bits &= ~(1);
mask_bits |= flag;
pci_write_config_dword(entry->dev, pos, mask_bits);
}
break;
case PCI_CAP_ID_MSIX:
{
int offset = entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET;
writel(flag, entry->mask_base + offset);
break;
}
default:
BUG();
break;
}
}
void read_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_data(irq);
switch(entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
{
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
u16 data;
pci_read_config_dword(dev, msi_lower_address_reg(pos),
&msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_read_config_dword(dev, msi_upper_address_reg(pos),
&msg->address_hi);
pci_read_config_word(dev, msi_data_reg(pos, 1), &data);
} else {
msg->address_hi = 0;
pci_read_config_word(dev, msi_data_reg(pos, 1), &data);
}
msg->data = data;
break;
}
case PCI_CAP_ID_MSIX:
{
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET);
msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET);
msg->data = readl(base + PCI_MSIX_ENTRY_DATA_OFFSET);
break;
}
default:
BUG();
}
}
void write_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = get_irq_data(irq);
switch (entry->msi_attrib.type) {
case PCI_CAP_ID_MSI:
{
struct pci_dev *dev = entry->dev;
int pos = entry->msi_attrib.pos;
pci_write_config_dword(dev, msi_lower_address_reg(pos),
msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_write_config_dword(dev, msi_upper_address_reg(pos),
msg->address_hi);
pci_write_config_word(dev, msi_data_reg(pos, 1),
msg->data);
} else {
pci_write_config_word(dev, msi_data_reg(pos, 0),
msg->data);
}
break;
}
case PCI_CAP_ID_MSIX:
{
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
writel(msg->address_lo,
base + PCI_MSIX_ENTRY_LOWER_ADDR_OFFSET);
writel(msg->address_hi,
base + PCI_MSIX_ENTRY_UPPER_ADDR_OFFSET);
writel(msg->data, base + PCI_MSIX_ENTRY_DATA_OFFSET);
break;
}
default:
BUG();
}
}
void mask_msi_irq(unsigned int irq)
{
msi_set_mask_bit(irq, 1);
}
void unmask_msi_irq(unsigned int irq)
{
msi_set_mask_bit(irq, 0);
}
static int msi_free_irq(struct pci_dev* dev, int irq);
static int msi_init(void)
{
static int status = -ENOMEM;
if (!status)
return status;
if (pci_msi_quirk) {
pci_msi_enable = 0;
printk(KERN_WARNING "PCI: MSI quirk detected. MSI disabled.\n");
status = -EINVAL;
return status;
}
status = msi_cache_init();
if (status < 0) {
pci_msi_enable = 0;
printk(KERN_WARNING "PCI: MSI cache init failed\n");
return status;
}
return status;
}
static struct msi_desc* alloc_msi_entry(void)
{
struct msi_desc *entry;
entry = kmem_cache_zalloc(msi_cachep, GFP_KERNEL);
if (!entry)
return NULL;
entry->link.tail = entry->link.head = 0; /* single message */
entry->dev = NULL;
return entry;
}
static void attach_msi_entry(struct msi_desc *entry, int irq)
{
unsigned long flags;
spin_lock_irqsave(&msi_lock, flags);
msi_desc[irq] = entry;
spin_unlock_irqrestore(&msi_lock, flags);
}
static int create_msi_irq(void)
{
struct msi_desc *entry;
int irq;
entry = alloc_msi_entry();
if (!entry)
return -ENOMEM;
irq = create_irq();
if (irq < 0) {
kmem_cache_free(msi_cachep, entry);
return -EBUSY;
}
set_irq_data(irq, entry);
return irq;
}
static void destroy_msi_irq(unsigned int irq)
{
struct msi_desc *entry;
entry = get_irq_data(irq);
set_irq_chip(irq, NULL);
set_irq_data(irq, NULL);
destroy_irq(irq);
kmem_cache_free(msi_cachep, entry);
}
static void enable_msi_mode(struct pci_dev *dev, int pos, int type)
{
u16 control;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (type == PCI_CAP_ID_MSI) {
/* Set enabled bits to single MSI & enable MSI_enable bit */
msi_enable(control, 1);
pci_write_config_word(dev, msi_control_reg(pos), control);
dev->msi_enabled = 1;
} else {
msix_enable(control);
pci_write_config_word(dev, msi_control_reg(pos), control);
dev->msix_enabled = 1;
}
if (pci_find_capability(dev, PCI_CAP_ID_EXP)) {
/* PCI Express Endpoint device detected */
pci_intx(dev, 0); /* disable intx */
}
}
void disable_msi_mode(struct pci_dev *dev, int pos, int type)
{
u16 control;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (type == PCI_CAP_ID_MSI) {
/* Set enabled bits to single MSI & enable MSI_enable bit */
msi_disable(control);
pci_write_config_word(dev, msi_control_reg(pos), control);
dev->msi_enabled = 0;
} else {
msix_disable(control);
pci_write_config_word(dev, msi_control_reg(pos), control);
dev->msix_enabled = 0;
}
if (pci_find_capability(dev, PCI_CAP_ID_EXP)) {
/* PCI Express Endpoint device detected */
pci_intx(dev, 1); /* enable intx */
}
}
static int msi_lookup_irq(struct pci_dev *dev, int type)
{
int irq;
unsigned long flags;
spin_lock_irqsave(&msi_lock, flags);
for (irq = 0; irq < NR_IRQS; irq++) {
if (!msi_desc[irq] || msi_desc[irq]->dev != dev ||
msi_desc[irq]->msi_attrib.type != type ||
msi_desc[irq]->msi_attrib.default_irq != dev->irq)
continue;
spin_unlock_irqrestore(&msi_lock, flags);
/* This pre-assigned MSI irq for this device
already exits. Override dev->irq with this irq */
dev->irq = irq;
return 0;
}
spin_unlock_irqrestore(&msi_lock, flags);
return -EACCES;
}
void pci_scan_msi_device(struct pci_dev *dev)
{
if (!dev)
return;
}
#ifdef CONFIG_PM
int pci_save_msi_state(struct pci_dev *dev)
{
int pos, i = 0;
u16 control;
struct pci_cap_saved_state *save_state;
u32 *cap;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (pos <= 0 || dev->no_msi)
return 0;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (!(control & PCI_MSI_FLAGS_ENABLE))
return 0;
save_state = kzalloc(sizeof(struct pci_cap_saved_state) + sizeof(u32) * 5,
GFP_KERNEL);
if (!save_state) {
printk(KERN_ERR "Out of memory in pci_save_msi_state\n");
return -ENOMEM;
}
cap = &save_state->data[0];
pci_read_config_dword(dev, pos, &cap[i++]);
control = cap[0] >> 16;
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, &cap[i++]);
if (control & PCI_MSI_FLAGS_64BIT) {
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, &cap[i++]);
pci_read_config_dword(dev, pos + PCI_MSI_DATA_64, &cap[i++]);
} else
pci_read_config_dword(dev, pos + PCI_MSI_DATA_32, &cap[i++]);
if (control & PCI_MSI_FLAGS_MASKBIT)
pci_read_config_dword(dev, pos + PCI_MSI_MASK_BIT, &cap[i++]);
save_state->cap_nr = PCI_CAP_ID_MSI;
pci_add_saved_cap(dev, save_state);
return 0;
}
void pci_restore_msi_state(struct pci_dev *dev)
{
int i = 0, pos;
u16 control;
struct pci_cap_saved_state *save_state;
u32 *cap;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_MSI);
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (!save_state || pos <= 0)
return;
cap = &save_state->data[0];
control = cap[i++] >> 16;
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, cap[i++]);
if (control & PCI_MSI_FLAGS_64BIT) {
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, cap[i++]);
pci_write_config_dword(dev, pos + PCI_MSI_DATA_64, cap[i++]);
} else
pci_write_config_dword(dev, pos + PCI_MSI_DATA_32, cap[i++]);
if (control & PCI_MSI_FLAGS_MASKBIT)
pci_write_config_dword(dev, pos + PCI_MSI_MASK_BIT, cap[i++]);
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
enable_msi_mode(dev, pos, PCI_CAP_ID_MSI);
pci_remove_saved_cap(save_state);
kfree(save_state);
}
int pci_save_msix_state(struct pci_dev *dev)
{
int pos;
int temp;
int irq, head, tail = 0;
u16 control;
struct pci_cap_saved_state *save_state;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos <= 0 || dev->no_msi)
return 0;
/* save the capability */
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (!(control & PCI_MSIX_FLAGS_ENABLE))
return 0;
save_state = kzalloc(sizeof(struct pci_cap_saved_state) + sizeof(u16),
GFP_KERNEL);
if (!save_state) {
printk(KERN_ERR "Out of memory in pci_save_msix_state\n");
return -ENOMEM;
}
*((u16 *)&save_state->data[0]) = control;
/* save the table */
temp = dev->irq;
if (msi_lookup_irq(dev, PCI_CAP_ID_MSIX)) {
kfree(save_state);
return -EINVAL;
}
irq = head = dev->irq;
while (head != tail) {
struct msi_desc *entry;
entry = msi_desc[irq];
read_msi_msg(irq, &entry->msg_save);
tail = msi_desc[irq]->link.tail;
irq = tail;
}
dev->irq = temp;
save_state->cap_nr = PCI_CAP_ID_MSIX;
pci_add_saved_cap(dev, save_state);
return 0;
}
void pci_restore_msix_state(struct pci_dev *dev)
{
u16 save;
int pos;
int irq, head, tail = 0;
struct msi_desc *entry;
int temp;
struct pci_cap_saved_state *save_state;
save_state = pci_find_saved_cap(dev, PCI_CAP_ID_MSIX);
if (!save_state)
return;
save = *((u16 *)&save_state->data[0]);
pci_remove_saved_cap(save_state);
kfree(save_state);
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos <= 0)
return;
/* route the table */
temp = dev->irq;
if (msi_lookup_irq(dev, PCI_CAP_ID_MSIX))
return;
irq = head = dev->irq;
while (head != tail) {
entry = msi_desc[irq];
write_msi_msg(irq, &entry->msg_save);
tail = msi_desc[irq]->link.tail;
irq = tail;
}
dev->irq = temp;
pci_write_config_word(dev, msi_control_reg(pos), save);
enable_msi_mode(dev, pos, PCI_CAP_ID_MSIX);
}
#endif
/**
* msi_capability_init - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
*
* Setup the MSI capability structure of device function with a single
* MSI irq, regardless of device function is capable of handling
* multiple messages. A return of zero indicates the successful setup
* of an entry zero with the new MSI irq or non-zero for otherwise.
**/
static int msi_capability_init(struct pci_dev *dev)
{
int status;
struct msi_desc *entry;
int pos, irq;
u16 control;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
pci_read_config_word(dev, msi_control_reg(pos), &control);
/* MSI Entry Initialization */
irq = create_msi_irq();
if (irq < 0)
return irq;
entry = get_irq_data(irq);
entry->link.head = irq;
entry->link.tail = irq;
entry->msi_attrib.type = PCI_CAP_ID_MSI;
entry->msi_attrib.is_64 = is_64bit_address(control);
entry->msi_attrib.entry_nr = 0;
entry->msi_attrib.maskbit = is_mask_bit_support(control);
entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
entry->msi_attrib.pos = pos;
if (is_mask_bit_support(control)) {
entry->mask_base = (void __iomem *)(long)msi_mask_bits_reg(pos,
is_64bit_address(control));
}
entry->dev = dev;
if (entry->msi_attrib.maskbit) {
unsigned int maskbits, temp;
/* All MSIs are unmasked by default, Mask them all */
pci_read_config_dword(dev,
msi_mask_bits_reg(pos, is_64bit_address(control)),
&maskbits);
temp = (1 << multi_msi_capable(control));
temp = ((temp - 1) & ~temp);
maskbits |= temp;
pci_write_config_dword(dev,
msi_mask_bits_reg(pos, is_64bit_address(control)),
maskbits);
}
/* Configure MSI capability structure */
status = arch_setup_msi_irq(irq, dev);
if (status < 0) {
destroy_msi_irq(irq);
return status;
}
attach_msi_entry(entry, irq);
/* Set MSI enabled bits */
enable_msi_mode(dev, pos, PCI_CAP_ID_MSI);
dev->irq = irq;
return 0;
}
/**
* msix_capability_init - configure device's MSI-X capability
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of struct msix_entry entries
* @nvec: number of @entries
*
* Setup the MSI-X capability structure of device function with a
* single MSI-X irq. A return of zero indicates the successful setup of
* requested MSI-X entries with allocated irqs or non-zero for otherwise.
**/
static int msix_capability_init(struct pci_dev *dev,
struct msix_entry *entries, int nvec)
{
struct msi_desc *head = NULL, *tail = NULL, *entry = NULL;
int status;
int irq, pos, i, j, nr_entries, temp = 0;
unsigned long phys_addr;
u32 table_offset;
u16 control;
u8 bir;
void __iomem *base;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
/* Request & Map MSI-X table region */
pci_read_config_word(dev, msi_control_reg(pos), &control);
nr_entries = multi_msix_capable(control);
pci_read_config_dword(dev, msix_table_offset_reg(pos), &table_offset);
bir = (u8)(table_offset & PCI_MSIX_FLAGS_BIRMASK);
table_offset &= ~PCI_MSIX_FLAGS_BIRMASK;
phys_addr = pci_resource_start (dev, bir) + table_offset;
base = ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
if (base == NULL)
return -ENOMEM;
/* MSI-X Table Initialization */
for (i = 0; i < nvec; i++) {
irq = create_msi_irq();
if (irq < 0)
break;
entry = get_irq_data(irq);
j = entries[i].entry;
entries[i].vector = irq;
entry->msi_attrib.type = PCI_CAP_ID_MSIX;
entry->msi_attrib.is_64 = 1;
entry->msi_attrib.entry_nr = j;
entry->msi_attrib.maskbit = 1;
entry->msi_attrib.default_irq = dev->irq;
entry->msi_attrib.pos = pos;
entry->dev = dev;
entry->mask_base = base;
if (!head) {
entry->link.head = irq;
entry->link.tail = irq;
head = entry;
} else {
entry->link.head = temp;
entry->link.tail = tail->link.tail;
tail->link.tail = irq;
head->link.head = irq;
}
temp = irq;
tail = entry;
/* Configure MSI-X capability structure */
status = arch_setup_msi_irq(irq, dev);
if (status < 0) {
destroy_msi_irq(irq);
break;
}
attach_msi_entry(entry, irq);
}
if (i != nvec) {
int avail = i - 1;
i--;
for (; i >= 0; i--) {
irq = (entries + i)->vector;
msi_free_irq(dev, irq);
(entries + i)->vector = 0;
}
/* If we had some success report the number of irqs
* we succeeded in setting up.
*/
if (avail <= 0)
avail = -EBUSY;
return avail;
}
/* Set MSI-X enabled bits */
enable_msi_mode(dev, pos, PCI_CAP_ID_MSIX);
return 0;
}
/**
* pci_msi_supported - check whether MSI may be enabled on device
* @dev: pointer to the pci_dev data structure of MSI device function
*
* MSI must be globally enabled and supported by the device and its root
* bus. But, the root bus is not easy to find since some architectures
* have virtual busses on top of the PCI hierarchy (for instance the
* hypertransport bus), while the actual bus where MSI must be supported
* is below. So we test the MSI flag on all parent busses and assume
* that no quirk will ever set the NO_MSI flag on a non-root bus.
**/
static
int pci_msi_supported(struct pci_dev * dev)
{
struct pci_bus *bus;
if (!pci_msi_enable || !dev || dev->no_msi)
return -EINVAL;
/* check MSI flags of all parent busses */
for (bus = dev->bus; bus; bus = bus->parent)
if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
return -EINVAL;
return 0;
}
/**
* pci_enable_msi - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
*
* Setup the MSI capability structure of device function with
* a single MSI irq upon its software driver call to request for
* MSI mode enabled on its hardware device function. A return of zero
* indicates the successful setup of an entry zero with the new MSI
* irq or non-zero for otherwise.
**/
int pci_enable_msi(struct pci_dev* dev)
{
int pos, temp, status;
if (pci_msi_supported(dev) < 0)
return -EINVAL;
temp = dev->irq;
status = msi_init();
if (status < 0)
return status;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (!pos)
return -EINVAL;
WARN_ON(!msi_lookup_irq(dev, PCI_CAP_ID_MSI));
/* Check whether driver already requested for MSI-X irqs */
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos > 0 && !msi_lookup_irq(dev, PCI_CAP_ID_MSIX)) {
printk(KERN_INFO "PCI: %s: Can't enable MSI. "
"Device already has MSI-X irq assigned\n",
pci_name(dev));
dev->irq = temp;
return -EINVAL;
}
status = msi_capability_init(dev);
return status;
}
void pci_disable_msi(struct pci_dev* dev)
{
struct msi_desc *entry;
int pos, default_irq;
u16 control;
unsigned long flags;
if (!pci_msi_enable)
return;
if (!dev)
return;
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (!pos)
return;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (!(control & PCI_MSI_FLAGS_ENABLE))
return;
disable_msi_mode(dev, pos, PCI_CAP_ID_MSI);
spin_lock_irqsave(&msi_lock, flags);
entry = msi_desc[dev->irq];
if (!entry || !entry->dev || entry->msi_attrib.type != PCI_CAP_ID_MSI) {
spin_unlock_irqrestore(&msi_lock, flags);
return;
}
if (irq_has_action(dev->irq)) {
spin_unlock_irqrestore(&msi_lock, flags);
printk(KERN_WARNING "PCI: %s: pci_disable_msi() called without "
"free_irq() on MSI irq %d\n",
pci_name(dev), dev->irq);
BUG_ON(irq_has_action(dev->irq));
} else {
default_irq = entry->msi_attrib.default_irq;
spin_unlock_irqrestore(&msi_lock, flags);
msi_free_irq(dev, dev->irq);
/* Restore dev->irq to its default pin-assertion irq */
dev->irq = default_irq;
}
}
static int msi_free_irq(struct pci_dev* dev, int irq)
{
struct msi_desc *entry;
int head, entry_nr, type;
void __iomem *base;
unsigned long flags;
arch_teardown_msi_irq(irq);
spin_lock_irqsave(&msi_lock, flags);
entry = msi_desc[irq];
if (!entry || entry->dev != dev) {
spin_unlock_irqrestore(&msi_lock, flags);
return -EINVAL;
}
type = entry->msi_attrib.type;
entry_nr = entry->msi_attrib.entry_nr;
head = entry->link.head;
base = entry->mask_base;
msi_desc[entry->link.head]->link.tail = entry->link.tail;
msi_desc[entry->link.tail]->link.head = entry->link.head;
entry->dev = NULL;
msi_desc[irq] = NULL;
spin_unlock_irqrestore(&msi_lock, flags);
destroy_msi_irq(irq);
if (type == PCI_CAP_ID_MSIX) {
writel(1, base + entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL_OFFSET);
if (head == irq)
iounmap(base);
}
return 0;
}
/**
* pci_enable_msix - configure device's MSI-X capability structure
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of MSI-X entries
* @nvec: number of MSI-X irqs requested for allocation by device driver
*
* Setup the MSI-X capability structure of device function with the number
* of requested irqs upon its software driver call to request for
* MSI-X mode enabled on its hardware device function. A return of zero
* indicates the successful configuration of MSI-X capability structure
* with new allocated MSI-X irqs. A return of < 0 indicates a failure.
* Or a return of > 0 indicates that driver request is exceeding the number
* of irqs available. Driver should use the returned value to re-send
* its request.
**/
int pci_enable_msix(struct pci_dev* dev, struct msix_entry *entries, int nvec)
{
int status, pos, nr_entries;
int i, j, temp;
u16 control;
if (!entries || pci_msi_supported(dev) < 0)
return -EINVAL;
status = msi_init();
if (status < 0)
return status;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (!pos)
return -EINVAL;
pci_read_config_word(dev, msi_control_reg(pos), &control);
nr_entries = multi_msix_capable(control);
if (nvec > nr_entries)
return -EINVAL;
/* Check for any invalid entries */
for (i = 0; i < nvec; i++) {
if (entries[i].entry >= nr_entries)
return -EINVAL; /* invalid entry */
for (j = i + 1; j < nvec; j++) {
if (entries[i].entry == entries[j].entry)
return -EINVAL; /* duplicate entry */
}
}
temp = dev->irq;
WARN_ON(!msi_lookup_irq(dev, PCI_CAP_ID_MSIX));
/* Check whether driver already requested for MSI irq */
if (pci_find_capability(dev, PCI_CAP_ID_MSI) > 0 &&
!msi_lookup_irq(dev, PCI_CAP_ID_MSI)) {
printk(KERN_INFO "PCI: %s: Can't enable MSI-X. "
"Device already has an MSI irq assigned\n",
pci_name(dev));
dev->irq = temp;
return -EINVAL;
}
status = msix_capability_init(dev, entries, nvec);
return status;
}
void pci_disable_msix(struct pci_dev* dev)
{
int pos, temp;
u16 control;
if (!pci_msi_enable)
return;
if (!dev)
return;
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (!pos)
return;
pci_read_config_word(dev, msi_control_reg(pos), &control);
if (!(control & PCI_MSIX_FLAGS_ENABLE))
return;
disable_msi_mode(dev, pos, PCI_CAP_ID_MSIX);
temp = dev->irq;
if (!msi_lookup_irq(dev, PCI_CAP_ID_MSIX)) {
int irq, head, tail = 0, warning = 0;
unsigned long flags;
irq = head = dev->irq;
dev->irq = temp; /* Restore pin IRQ */
while (head != tail) {
spin_lock_irqsave(&msi_lock, flags);
tail = msi_desc[irq]->link.tail;
spin_unlock_irqrestore(&msi_lock, flags);
if (irq_has_action(irq))
warning = 1;
else if (irq != head) /* Release MSI-X irq */
msi_free_irq(dev, irq);
irq = tail;
}
msi_free_irq(dev, irq);
if (warning) {
printk(KERN_WARNING "PCI: %s: pci_disable_msix() called without "
"free_irq() on all MSI-X irqs\n",
pci_name(dev));
BUG_ON(warning > 0);
}
}
}
/**
* msi_remove_pci_irq_vectors - reclaim MSI(X) irqs to unused state
* @dev: pointer to the pci_dev data structure of MSI(X) device function
*
* Being called during hotplug remove, from which the device function
* is hot-removed. All previous assigned MSI/MSI-X irqs, if
* allocated for this device function, are reclaimed to unused state,
* which may be used later on.
**/
void msi_remove_pci_irq_vectors(struct pci_dev* dev)
{
int pos, temp;
unsigned long flags;
if (!pci_msi_enable || !dev)
return;
temp = dev->irq; /* Save IOAPIC IRQ */
pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (pos > 0 && !msi_lookup_irq(dev, PCI_CAP_ID_MSI)) {
if (irq_has_action(dev->irq)) {
printk(KERN_WARNING "PCI: %s: msi_remove_pci_irq_vectors() "
"called without free_irq() on MSI irq %d\n",
pci_name(dev), dev->irq);
BUG_ON(irq_has_action(dev->irq));
} else /* Release MSI irq assigned to this device */
msi_free_irq(dev, dev->irq);
dev->irq = temp; /* Restore IOAPIC IRQ */
}
pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (pos > 0 && !msi_lookup_irq(dev, PCI_CAP_ID_MSIX)) {
int irq, head, tail = 0, warning = 0;
void __iomem *base = NULL;
irq = head = dev->irq;
while (head != tail) {
spin_lock_irqsave(&msi_lock, flags);
tail = msi_desc[irq]->link.tail;
base = msi_desc[irq]->mask_base;
spin_unlock_irqrestore(&msi_lock, flags);
if (irq_has_action(irq))
warning = 1;
else if (irq != head) /* Release MSI-X irq */
msi_free_irq(dev, irq);
irq = tail;
}
msi_free_irq(dev, irq);
if (warning) {
iounmap(base);
printk(KERN_WARNING "PCI: %s: msi_remove_pci_irq_vectors() "
"called without free_irq() on all MSI-X irqs\n",
pci_name(dev));
BUG_ON(warning > 0);
}
dev->irq = temp; /* Restore IOAPIC IRQ */
}
}
void pci_no_msi(void)
{
pci_msi_enable = 0;
}
EXPORT_SYMBOL(pci_enable_msi);
EXPORT_SYMBOL(pci_disable_msi);
EXPORT_SYMBOL(pci_enable_msix);
EXPORT_SYMBOL(pci_disable_msix);