mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 07:26:26 +07:00
23c779b9f9
Some regulators need to be configured to pull down a resistor when the regulator is disabled. Add an op (set_pull_down) and a DT property + constraint to support this. Signed-off-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Mark Brown <broonie@kernel.org>
442 lines
16 KiB
C
442 lines
16 KiB
C
/*
|
|
* driver.h -- SoC Regulator driver support.
|
|
*
|
|
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
|
|
*
|
|
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Regulator Driver Interface.
|
|
*/
|
|
|
|
#ifndef __LINUX_REGULATOR_DRIVER_H_
|
|
#define __LINUX_REGULATOR_DRIVER_H_
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
struct regmap;
|
|
struct regulator_dev;
|
|
struct regulator_config;
|
|
struct regulator_init_data;
|
|
struct regulator_enable_gpio;
|
|
|
|
enum regulator_status {
|
|
REGULATOR_STATUS_OFF,
|
|
REGULATOR_STATUS_ON,
|
|
REGULATOR_STATUS_ERROR,
|
|
/* fast/normal/idle/standby are flavors of "on" */
|
|
REGULATOR_STATUS_FAST,
|
|
REGULATOR_STATUS_NORMAL,
|
|
REGULATOR_STATUS_IDLE,
|
|
REGULATOR_STATUS_STANDBY,
|
|
/* The regulator is enabled but not regulating */
|
|
REGULATOR_STATUS_BYPASS,
|
|
/* in case that any other status doesn't apply */
|
|
REGULATOR_STATUS_UNDEFINED,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_linear_range - specify linear voltage ranges
|
|
*
|
|
* Specify a range of voltages for regulator_map_linar_range() and
|
|
* regulator_list_linear_range().
|
|
*
|
|
* @min_uV: Lowest voltage in range
|
|
* @min_sel: Lowest selector for range
|
|
* @max_sel: Highest selector for range
|
|
* @uV_step: Step size
|
|
*/
|
|
struct regulator_linear_range {
|
|
unsigned int min_uV;
|
|
unsigned int min_sel;
|
|
unsigned int max_sel;
|
|
unsigned int uV_step;
|
|
};
|
|
|
|
/* Initialize struct regulator_linear_range */
|
|
#define REGULATOR_LINEAR_RANGE(_min_uV, _min_sel, _max_sel, _step_uV) \
|
|
{ \
|
|
.min_uV = _min_uV, \
|
|
.min_sel = _min_sel, \
|
|
.max_sel = _max_sel, \
|
|
.uV_step = _step_uV, \
|
|
}
|
|
|
|
/**
|
|
* struct regulator_ops - regulator operations.
|
|
*
|
|
* @enable: Configure the regulator as enabled.
|
|
* @disable: Configure the regulator as disabled.
|
|
* @is_enabled: Return 1 if the regulator is enabled, 0 if not.
|
|
* May also return negative errno.
|
|
*
|
|
* @set_voltage: Set the voltage for the regulator within the range specified.
|
|
* The driver should select the voltage closest to min_uV.
|
|
* @set_voltage_sel: Set the voltage for the regulator using the specified
|
|
* selector.
|
|
* @map_voltage: Convert a voltage into a selector
|
|
* @get_voltage: Return the currently configured voltage for the regulator.
|
|
* @get_voltage_sel: Return the currently configured voltage selector for the
|
|
* regulator.
|
|
* @list_voltage: Return one of the supported voltages, in microvolts; zero
|
|
* if the selector indicates a voltage that is unusable on this system;
|
|
* or negative errno. Selectors range from zero to one less than
|
|
* regulator_desc.n_voltages. Voltages may be reported in any order.
|
|
*
|
|
* @set_current_limit: Configure a limit for a current-limited regulator.
|
|
* The driver should select the current closest to max_uA.
|
|
* @get_current_limit: Get the configured limit for a current-limited regulator.
|
|
*
|
|
* @set_mode: Set the configured operating mode for the regulator.
|
|
* @get_mode: Get the configured operating mode for the regulator.
|
|
* @get_status: Return actual (not as-configured) status of regulator, as a
|
|
* REGULATOR_STATUS value (or negative errno)
|
|
* @get_optimum_mode: Get the most efficient operating mode for the regulator
|
|
* when running with the specified parameters.
|
|
* @set_load: Set the load for the regulator.
|
|
*
|
|
* @set_bypass: Set the regulator in bypass mode.
|
|
* @get_bypass: Get the regulator bypass mode state.
|
|
*
|
|
* @enable_time: Time taken for the regulator voltage output voltage to
|
|
* stabilise after being enabled, in microseconds.
|
|
* @set_ramp_delay: Set the ramp delay for the regulator. The driver should
|
|
* select ramp delay equal to or less than(closest) ramp_delay.
|
|
* @set_voltage_time_sel: Time taken for the regulator voltage output voltage
|
|
* to stabilise after being set to a new value, in microseconds.
|
|
* The function provides the from and to voltage selector, the
|
|
* function should return the worst case.
|
|
*
|
|
* @set_suspend_voltage: Set the voltage for the regulator when the system
|
|
* is suspended.
|
|
* @set_suspend_enable: Mark the regulator as enabled when the system is
|
|
* suspended.
|
|
* @set_suspend_disable: Mark the regulator as disabled when the system is
|
|
* suspended.
|
|
* @set_suspend_mode: Set the operating mode for the regulator when the
|
|
* system is suspended.
|
|
*
|
|
* @set_pull_down: Configure the regulator to pull down when the regulator
|
|
* is disabled.
|
|
*
|
|
* This struct describes regulator operations which can be implemented by
|
|
* regulator chip drivers.
|
|
*/
|
|
struct regulator_ops {
|
|
|
|
/* enumerate supported voltages */
|
|
int (*list_voltage) (struct regulator_dev *, unsigned selector);
|
|
|
|
/* get/set regulator voltage */
|
|
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV,
|
|
unsigned *selector);
|
|
int (*map_voltage)(struct regulator_dev *, int min_uV, int max_uV);
|
|
int (*set_voltage_sel) (struct regulator_dev *, unsigned selector);
|
|
int (*get_voltage) (struct regulator_dev *);
|
|
int (*get_voltage_sel) (struct regulator_dev *);
|
|
|
|
/* get/set regulator current */
|
|
int (*set_current_limit) (struct regulator_dev *,
|
|
int min_uA, int max_uA);
|
|
int (*get_current_limit) (struct regulator_dev *);
|
|
|
|
/* enable/disable regulator */
|
|
int (*enable) (struct regulator_dev *);
|
|
int (*disable) (struct regulator_dev *);
|
|
int (*is_enabled) (struct regulator_dev *);
|
|
|
|
/* get/set regulator operating mode (defined in consumer.h) */
|
|
int (*set_mode) (struct regulator_dev *, unsigned int mode);
|
|
unsigned int (*get_mode) (struct regulator_dev *);
|
|
|
|
/* Time taken to enable or set voltage on the regulator */
|
|
int (*enable_time) (struct regulator_dev *);
|
|
int (*set_ramp_delay) (struct regulator_dev *, int ramp_delay);
|
|
int (*set_voltage_time_sel) (struct regulator_dev *,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
|
|
/* report regulator status ... most other accessors report
|
|
* control inputs, this reports results of combining inputs
|
|
* from Linux (and other sources) with the actual load.
|
|
* returns REGULATOR_STATUS_* or negative errno.
|
|
*/
|
|
int (*get_status)(struct regulator_dev *);
|
|
|
|
/* get most efficient regulator operating mode for load */
|
|
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,
|
|
int output_uV, int load_uA);
|
|
/* set the load on the regulator */
|
|
int (*set_load)(struct regulator_dev *, int load_uA);
|
|
|
|
/* control and report on bypass mode */
|
|
int (*set_bypass)(struct regulator_dev *dev, bool enable);
|
|
int (*get_bypass)(struct regulator_dev *dev, bool *enable);
|
|
|
|
/* the operations below are for configuration of regulator state when
|
|
* its parent PMIC enters a global STANDBY/HIBERNATE state */
|
|
|
|
/* set regulator suspend voltage */
|
|
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
|
|
|
|
/* enable/disable regulator in suspend state */
|
|
int (*set_suspend_enable) (struct regulator_dev *);
|
|
int (*set_suspend_disable) (struct regulator_dev *);
|
|
|
|
/* set regulator suspend operating mode (defined in consumer.h) */
|
|
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
|
|
|
|
int (*set_pull_down) (struct regulator_dev *);
|
|
};
|
|
|
|
/*
|
|
* Regulators can either control voltage or current.
|
|
*/
|
|
enum regulator_type {
|
|
REGULATOR_VOLTAGE,
|
|
REGULATOR_CURRENT,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_desc - Static regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_config. This
|
|
* structure contains the non-varying parts of the regulator
|
|
* description.
|
|
*
|
|
* @name: Identifying name for the regulator.
|
|
* @supply_name: Identifying the regulator supply
|
|
* @of_match: Name used to identify regulator in DT.
|
|
* @regulators_node: Name of node containing regulator definitions in DT.
|
|
* @of_parse_cb: Optional callback called only if of_match is present.
|
|
* Will be called for each regulator parsed from DT, during
|
|
* init_data parsing.
|
|
* The regulator_config passed as argument to the callback will
|
|
* be a copy of config passed to regulator_register, valid only
|
|
* for this particular call. Callback may freely change the
|
|
* config but it cannot store it for later usage.
|
|
* Callback should return 0 on success or negative ERRNO
|
|
* indicating failure.
|
|
* @id: Numerical identifier for the regulator.
|
|
* @ops: Regulator operations table.
|
|
* @irq: Interrupt number for the regulator.
|
|
* @type: Indicates if the regulator is a voltage or current regulator.
|
|
* @owner: Module providing the regulator, used for refcounting.
|
|
*
|
|
* @continuous_voltage_range: Indicates if the regulator can set any
|
|
* voltage within constrains range.
|
|
* @n_voltages: Number of selectors available for ops.list_voltage().
|
|
*
|
|
* @min_uV: Voltage given by the lowest selector (if linear mapping)
|
|
* @uV_step: Voltage increase with each selector (if linear mapping)
|
|
* @linear_min_sel: Minimal selector for starting linear mapping
|
|
* @fixed_uV: Fixed voltage of rails.
|
|
* @ramp_delay: Time to settle down after voltage change (unit: uV/us)
|
|
* @linear_ranges: A constant table of possible voltage ranges.
|
|
* @n_linear_ranges: Number of entries in the @linear_ranges table.
|
|
* @volt_table: Voltage mapping table (if table based mapping)
|
|
*
|
|
* @vsel_reg: Register for selector when using regulator_regmap_X_voltage_
|
|
* @vsel_mask: Mask for register bitfield used for selector
|
|
* @apply_reg: Register for initiate voltage change on the output when
|
|
* using regulator_set_voltage_sel_regmap
|
|
* @apply_bit: Register bitfield used for initiate voltage change on the
|
|
* output when using regulator_set_voltage_sel_regmap
|
|
* @enable_reg: Register for control when using regmap enable/disable ops
|
|
* @enable_mask: Mask for control when using regmap enable/disable ops
|
|
* @enable_val: Enabling value for control when using regmap enable/disable ops
|
|
* @disable_val: Disabling value for control when using regmap enable/disable ops
|
|
* @enable_is_inverted: A flag to indicate set enable_mask bits to disable
|
|
* when using regulator_enable_regmap and friends APIs.
|
|
* @bypass_reg: Register for control when using regmap set_bypass
|
|
* @bypass_mask: Mask for control when using regmap set_bypass
|
|
* @bypass_val_on: Enabling value for control when using regmap set_bypass
|
|
* @bypass_val_off: Disabling value for control when using regmap set_bypass
|
|
*
|
|
* @enable_time: Time taken for initial enable of regulator (in uS).
|
|
* @off_on_delay: guard time (in uS), before re-enabling a regulator
|
|
*
|
|
* @of_map_mode: Maps a hardware mode defined in a DeviceTree to a standard mode
|
|
*/
|
|
struct regulator_desc {
|
|
const char *name;
|
|
const char *supply_name;
|
|
const char *of_match;
|
|
const char *regulators_node;
|
|
int (*of_parse_cb)(struct device_node *,
|
|
const struct regulator_desc *,
|
|
struct regulator_config *);
|
|
int id;
|
|
bool continuous_voltage_range;
|
|
unsigned n_voltages;
|
|
const struct regulator_ops *ops;
|
|
int irq;
|
|
enum regulator_type type;
|
|
struct module *owner;
|
|
|
|
unsigned int min_uV;
|
|
unsigned int uV_step;
|
|
unsigned int linear_min_sel;
|
|
int fixed_uV;
|
|
unsigned int ramp_delay;
|
|
|
|
const struct regulator_linear_range *linear_ranges;
|
|
int n_linear_ranges;
|
|
|
|
const unsigned int *volt_table;
|
|
|
|
unsigned int vsel_reg;
|
|
unsigned int vsel_mask;
|
|
unsigned int apply_reg;
|
|
unsigned int apply_bit;
|
|
unsigned int enable_reg;
|
|
unsigned int enable_mask;
|
|
unsigned int enable_val;
|
|
unsigned int disable_val;
|
|
bool enable_is_inverted;
|
|
unsigned int bypass_reg;
|
|
unsigned int bypass_mask;
|
|
unsigned int bypass_val_on;
|
|
unsigned int bypass_val_off;
|
|
|
|
unsigned int enable_time;
|
|
|
|
unsigned int off_on_delay;
|
|
|
|
unsigned int (*of_map_mode)(unsigned int mode);
|
|
};
|
|
|
|
/**
|
|
* struct regulator_config - Dynamic regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_desc. This structure
|
|
* contains the runtime variable parts of the regulator description.
|
|
*
|
|
* @dev: struct device for the regulator
|
|
* @init_data: platform provided init data, passed through by driver
|
|
* @driver_data: private regulator data
|
|
* @of_node: OpenFirmware node to parse for device tree bindings (may be
|
|
* NULL).
|
|
* @regmap: regmap to use for core regmap helpers if dev_get_regmap() is
|
|
* insufficient.
|
|
* @ena_gpio_initialized: GPIO controlling regulator enable was properly
|
|
* initialized, meaning that >= 0 is a valid gpio
|
|
* identifier and < 0 is a non existent gpio.
|
|
* @ena_gpio: GPIO controlling regulator enable.
|
|
* @ena_gpio_invert: Sense for GPIO enable control.
|
|
* @ena_gpio_flags: Flags to use when calling gpio_request_one()
|
|
*/
|
|
struct regulator_config {
|
|
struct device *dev;
|
|
const struct regulator_init_data *init_data;
|
|
void *driver_data;
|
|
struct device_node *of_node;
|
|
struct regmap *regmap;
|
|
|
|
bool ena_gpio_initialized;
|
|
int ena_gpio;
|
|
unsigned int ena_gpio_invert:1;
|
|
unsigned int ena_gpio_flags;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_dev
|
|
*
|
|
* Voltage / Current regulator class device. One for each
|
|
* regulator.
|
|
*
|
|
* This should *not* be used directly by anything except the regulator
|
|
* core and notification injection (which should take the mutex and do
|
|
* no other direct access).
|
|
*/
|
|
struct regulator_dev {
|
|
const struct regulator_desc *desc;
|
|
int exclusive;
|
|
u32 use_count;
|
|
u32 open_count;
|
|
u32 bypass_count;
|
|
|
|
/* lists we belong to */
|
|
struct list_head list; /* list of all regulators */
|
|
|
|
/* lists we own */
|
|
struct list_head consumer_list; /* consumers we supply */
|
|
|
|
struct blocking_notifier_head notifier;
|
|
struct mutex mutex; /* consumer lock */
|
|
struct module *owner;
|
|
struct device dev;
|
|
struct regulation_constraints *constraints;
|
|
struct regulator *supply; /* for tree */
|
|
const char *supply_name;
|
|
struct regmap *regmap;
|
|
|
|
struct delayed_work disable_work;
|
|
int deferred_disables;
|
|
|
|
void *reg_data; /* regulator_dev data */
|
|
|
|
struct dentry *debugfs;
|
|
|
|
struct regulator_enable_gpio *ena_pin;
|
|
unsigned int ena_gpio_state:1;
|
|
|
|
/* time when this regulator was disabled last time */
|
|
unsigned long last_off_jiffy;
|
|
};
|
|
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
struct regulator_dev *
|
|
devm_regulator_register(struct device *dev,
|
|
const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
void regulator_unregister(struct regulator_dev *rdev);
|
|
void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev);
|
|
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev);
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev);
|
|
int rdev_get_id(struct regulator_dev *rdev);
|
|
|
|
int regulator_mode_to_status(unsigned int);
|
|
|
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel);
|
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev);
|
|
int regulator_enable_regmap(struct regulator_dev *rdev);
|
|
int regulator_disable_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable);
|
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable);
|
|
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data);
|
|
|
|
#endif
|