mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 02:27:51 +07:00
0779221e71
Before:
1f299fad1e
: ("efi/x86: Limit EFI old memory map to SGI UV machines")
enabling the old EFI memory map on mixed mode systems
disabled EFI runtime services altogether.
Given that efi=old_map is a debug feature designed to work around
firmware problems related to EFI runtime services, and disabling
them can be achieved more straightforwardly using 'noefi' or
'efi=noruntime', it makes more sense to ignore efi=old_map on
mixed mode systems.
Currently, we do neither, and try to use the old memory map in
combination with mixed mode routines, which results in crashes,
so let's fix this by making efi=old_map functional on native
systems only.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
380 lines
9.1 KiB
C
380 lines
9.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* BIOS run time interface routines.
|
|
*
|
|
* Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
|
|
* Copyright (c) Russ Anderson <rja@sgi.com>
|
|
*/
|
|
|
|
#include <linux/efi.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/efi.h>
|
|
#include <linux/io.h>
|
|
#include <asm/uv/bios.h>
|
|
#include <asm/uv/uv_hub.h>
|
|
|
|
unsigned long uv_systab_phys __ro_after_init = EFI_INVALID_TABLE_ADDR;
|
|
|
|
struct uv_systab *uv_systab;
|
|
|
|
static s64 __uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3,
|
|
u64 a4, u64 a5)
|
|
{
|
|
struct uv_systab *tab = uv_systab;
|
|
s64 ret;
|
|
|
|
if (!tab || !tab->function)
|
|
/*
|
|
* BIOS does not support UV systab
|
|
*/
|
|
return BIOS_STATUS_UNIMPLEMENTED;
|
|
|
|
/*
|
|
* If EFI_UV1_MEMMAP is set, we need to fall back to using our old EFI
|
|
* callback method, which uses efi_call() directly, with the kernel page tables:
|
|
*/
|
|
if (unlikely(efi_enabled(EFI_UV1_MEMMAP))) {
|
|
kernel_fpu_begin();
|
|
ret = efi_call((void *)__va(tab->function), (u64)which, a1, a2, a3, a4, a5);
|
|
kernel_fpu_end();
|
|
} else {
|
|
ret = efi_call_virt_pointer(tab, function, (u64)which, a1, a2, a3, a4, a5);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
s64 uv_bios_call(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3, u64 a4, u64 a5)
|
|
{
|
|
s64 ret;
|
|
|
|
if (down_interruptible(&__efi_uv_runtime_lock))
|
|
return BIOS_STATUS_ABORT;
|
|
|
|
ret = __uv_bios_call(which, a1, a2, a3, a4, a5);
|
|
up(&__efi_uv_runtime_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_call);
|
|
|
|
s64 uv_bios_call_irqsave(enum uv_bios_cmd which, u64 a1, u64 a2, u64 a3,
|
|
u64 a4, u64 a5)
|
|
{
|
|
unsigned long bios_flags;
|
|
s64 ret;
|
|
|
|
if (down_interruptible(&__efi_uv_runtime_lock))
|
|
return BIOS_STATUS_ABORT;
|
|
|
|
local_irq_save(bios_flags);
|
|
ret = __uv_bios_call(which, a1, a2, a3, a4, a5);
|
|
local_irq_restore(bios_flags);
|
|
|
|
up(&__efi_uv_runtime_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
long sn_partition_id;
|
|
EXPORT_SYMBOL_GPL(sn_partition_id);
|
|
long sn_coherency_id;
|
|
EXPORT_SYMBOL_GPL(sn_coherency_id);
|
|
long sn_region_size;
|
|
EXPORT_SYMBOL_GPL(sn_region_size);
|
|
long system_serial_number;
|
|
EXPORT_SYMBOL_GPL(system_serial_number);
|
|
int uv_type;
|
|
EXPORT_SYMBOL_GPL(uv_type);
|
|
|
|
|
|
s64 uv_bios_get_sn_info(int fc, int *uvtype, long *partid, long *coher,
|
|
long *region, long *ssn)
|
|
{
|
|
s64 ret;
|
|
u64 v0, v1;
|
|
union partition_info_u part;
|
|
|
|
ret = uv_bios_call_irqsave(UV_BIOS_GET_SN_INFO, fc,
|
|
(u64)(&v0), (u64)(&v1), 0, 0);
|
|
if (ret != BIOS_STATUS_SUCCESS)
|
|
return ret;
|
|
|
|
part.val = v0;
|
|
if (uvtype)
|
|
*uvtype = part.hub_version;
|
|
if (partid)
|
|
*partid = part.partition_id;
|
|
if (coher)
|
|
*coher = part.coherence_id;
|
|
if (region)
|
|
*region = part.region_size;
|
|
if (ssn)
|
|
*ssn = v1;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_get_sn_info);
|
|
|
|
int
|
|
uv_bios_mq_watchlist_alloc(unsigned long addr, unsigned int mq_size,
|
|
unsigned long *intr_mmr_offset)
|
|
{
|
|
u64 watchlist;
|
|
s64 ret;
|
|
|
|
/*
|
|
* bios returns watchlist number or negative error number.
|
|
*/
|
|
ret = (int)uv_bios_call_irqsave(UV_BIOS_WATCHLIST_ALLOC, addr,
|
|
mq_size, (u64)intr_mmr_offset,
|
|
(u64)&watchlist, 0);
|
|
if (ret < BIOS_STATUS_SUCCESS)
|
|
return ret;
|
|
|
|
return watchlist;
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_mq_watchlist_alloc);
|
|
|
|
int
|
|
uv_bios_mq_watchlist_free(int blade, int watchlist_num)
|
|
{
|
|
return (int)uv_bios_call_irqsave(UV_BIOS_WATCHLIST_FREE,
|
|
blade, watchlist_num, 0, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_mq_watchlist_free);
|
|
|
|
s64
|
|
uv_bios_change_memprotect(u64 paddr, u64 len, enum uv_memprotect perms)
|
|
{
|
|
return uv_bios_call_irqsave(UV_BIOS_MEMPROTECT, paddr, len,
|
|
perms, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_change_memprotect);
|
|
|
|
s64
|
|
uv_bios_reserved_page_pa(u64 buf, u64 *cookie, u64 *addr, u64 *len)
|
|
{
|
|
return uv_bios_call_irqsave(UV_BIOS_GET_PARTITION_ADDR, (u64)cookie,
|
|
(u64)addr, buf, (u64)len, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_reserved_page_pa);
|
|
|
|
s64 uv_bios_freq_base(u64 clock_type, u64 *ticks_per_second)
|
|
{
|
|
return uv_bios_call(UV_BIOS_FREQ_BASE, clock_type,
|
|
(u64)ticks_per_second, 0, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_freq_base);
|
|
|
|
/*
|
|
* uv_bios_set_legacy_vga_target - Set Legacy VGA I/O Target
|
|
* @decode: true to enable target, false to disable target
|
|
* @domain: PCI domain number
|
|
* @bus: PCI bus number
|
|
*
|
|
* Returns:
|
|
* 0: Success
|
|
* -EINVAL: Invalid domain or bus number
|
|
* -ENOSYS: Capability not available
|
|
* -EBUSY: Legacy VGA I/O cannot be retargeted at this time
|
|
*/
|
|
int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus)
|
|
{
|
|
return uv_bios_call(UV_BIOS_SET_LEGACY_VGA_TARGET,
|
|
(u64)decode, (u64)domain, (u64)bus, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(uv_bios_set_legacy_vga_target);
|
|
|
|
int uv_bios_init(void)
|
|
{
|
|
uv_systab = NULL;
|
|
if ((uv_systab_phys == EFI_INVALID_TABLE_ADDR) ||
|
|
!uv_systab_phys || efi_runtime_disabled()) {
|
|
pr_crit("UV: UVsystab: missing\n");
|
|
return -EEXIST;
|
|
}
|
|
|
|
uv_systab = ioremap(uv_systab_phys, sizeof(struct uv_systab));
|
|
if (!uv_systab || strncmp(uv_systab->signature, UV_SYSTAB_SIG, 4)) {
|
|
pr_err("UV: UVsystab: bad signature!\n");
|
|
iounmap(uv_systab);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Starting with UV4 the UV systab size is variable */
|
|
if (uv_systab->revision >= UV_SYSTAB_VERSION_UV4) {
|
|
int size = uv_systab->size;
|
|
|
|
iounmap(uv_systab);
|
|
uv_systab = ioremap(uv_systab_phys, size);
|
|
if (!uv_systab) {
|
|
pr_err("UV: UVsystab: ioremap(%d) failed!\n", size);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
pr_info("UV: UVsystab: Revision:%x\n", uv_systab->revision);
|
|
return 0;
|
|
}
|
|
|
|
static void __init early_code_mapping_set_exec(int executable)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!(__supported_pte_mask & _PAGE_NX))
|
|
return;
|
|
|
|
/* Make EFI service code area executable */
|
|
for_each_efi_memory_desc(md) {
|
|
if (md->type == EFI_RUNTIME_SERVICES_CODE ||
|
|
md->type == EFI_BOOT_SERVICES_CODE)
|
|
efi_set_executable(md, executable);
|
|
}
|
|
}
|
|
|
|
void __init efi_uv1_memmap_phys_epilog(pgd_t *save_pgd)
|
|
{
|
|
/*
|
|
* After the lock is released, the original page table is restored.
|
|
*/
|
|
int pgd_idx, i;
|
|
int nr_pgds;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
|
|
nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
|
|
|
|
for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
|
|
pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
|
|
set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
|
|
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
for (i = 0; i < PTRS_PER_P4D; i++) {
|
|
p4d = p4d_offset(pgd,
|
|
pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
|
|
pud = (pud_t *)p4d_page_vaddr(*p4d);
|
|
pud_free(&init_mm, pud);
|
|
}
|
|
|
|
p4d = (p4d_t *)pgd_page_vaddr(*pgd);
|
|
p4d_free(&init_mm, p4d);
|
|
}
|
|
|
|
kfree(save_pgd);
|
|
|
|
__flush_tlb_all();
|
|
early_code_mapping_set_exec(0);
|
|
}
|
|
|
|
pgd_t * __init efi_uv1_memmap_phys_prolog(void)
|
|
{
|
|
unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
|
|
pgd_t *save_pgd, *pgd_k, *pgd_efi;
|
|
p4d_t *p4d, *p4d_k, *p4d_efi;
|
|
pud_t *pud;
|
|
|
|
int pgd;
|
|
int n_pgds, i, j;
|
|
|
|
early_code_mapping_set_exec(1);
|
|
|
|
n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
|
|
save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
|
|
if (!save_pgd)
|
|
return NULL;
|
|
|
|
/*
|
|
* Build 1:1 identity mapping for UV1 memmap usage. Note that
|
|
* PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
|
|
* it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
|
|
* address X, the pud_index(X) != pud_index(__va(X)), we can only copy
|
|
* PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
|
|
* This means here we can only reuse the PMD tables of the direct mapping.
|
|
*/
|
|
for (pgd = 0; pgd < n_pgds; pgd++) {
|
|
addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
|
|
vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
|
|
pgd_efi = pgd_offset_k(addr_pgd);
|
|
save_pgd[pgd] = *pgd_efi;
|
|
|
|
p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
|
|
if (!p4d) {
|
|
pr_err("Failed to allocate p4d table!\n");
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < PTRS_PER_P4D; i++) {
|
|
addr_p4d = addr_pgd + i * P4D_SIZE;
|
|
p4d_efi = p4d + p4d_index(addr_p4d);
|
|
|
|
pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
|
|
if (!pud) {
|
|
pr_err("Failed to allocate pud table!\n");
|
|
goto out;
|
|
}
|
|
|
|
for (j = 0; j < PTRS_PER_PUD; j++) {
|
|
addr_pud = addr_p4d + j * PUD_SIZE;
|
|
|
|
if (addr_pud > (max_pfn << PAGE_SHIFT))
|
|
break;
|
|
|
|
vaddr = (unsigned long)__va(addr_pud);
|
|
|
|
pgd_k = pgd_offset_k(vaddr);
|
|
p4d_k = p4d_offset(pgd_k, vaddr);
|
|
pud[j] = *pud_offset(p4d_k, vaddr);
|
|
}
|
|
}
|
|
pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
|
|
}
|
|
|
|
__flush_tlb_all();
|
|
return save_pgd;
|
|
out:
|
|
efi_uv1_memmap_phys_epilog(save_pgd);
|
|
return NULL;
|
|
}
|
|
|
|
void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
|
|
u32 type, u64 attribute)
|
|
{
|
|
unsigned long last_map_pfn;
|
|
|
|
if (type == EFI_MEMORY_MAPPED_IO)
|
|
return ioremap(phys_addr, size);
|
|
|
|
last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
|
|
if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
|
|
unsigned long top = last_map_pfn << PAGE_SHIFT;
|
|
efi_ioremap(top, size - (top - phys_addr), type, attribute);
|
|
}
|
|
|
|
if (!(attribute & EFI_MEMORY_WB))
|
|
efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
|
|
|
|
return (void __iomem *)__va(phys_addr);
|
|
}
|
|
|
|
static int __init arch_parse_efi_cmdline(char *str)
|
|
{
|
|
if (!str) {
|
|
pr_warn("need at least one option\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!efi_is_mixed() && parse_option_str(str, "old_map"))
|
|
set_bit(EFI_UV1_MEMMAP, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
early_param("efi", arch_parse_efi_cmdline);
|