mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 06:35:12 +07:00
233eb97fc9
To make it easier to access SOC registers. No functional changes. Signed-off-by: Kalle Valo <kvalo@qca.qualcomm.com>
2550 lines
60 KiB
C
2550 lines
60 KiB
C
/*
|
|
* Copyright (c) 2005-2011 Atheros Communications Inc.
|
|
* Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
|
|
#include "core.h"
|
|
#include "debug.h"
|
|
|
|
#include "targaddrs.h"
|
|
#include "bmi.h"
|
|
|
|
#include "hif.h"
|
|
#include "htc.h"
|
|
|
|
#include "ce.h"
|
|
#include "pci.h"
|
|
|
|
static unsigned int ath10k_target_ps;
|
|
module_param(ath10k_target_ps, uint, 0644);
|
|
MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option");
|
|
|
|
#define QCA988X_2_0_DEVICE_ID (0x003c)
|
|
|
|
static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = {
|
|
{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
|
|
{0}
|
|
};
|
|
|
|
static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
|
|
u32 *data);
|
|
|
|
static void ath10k_pci_process_ce(struct ath10k *ar);
|
|
static int ath10k_pci_post_rx(struct ath10k *ar);
|
|
static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
|
|
int num);
|
|
static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info);
|
|
static void ath10k_pci_stop_ce(struct ath10k *ar);
|
|
static void ath10k_pci_device_reset(struct ath10k *ar);
|
|
static int ath10k_pci_reset_target(struct ath10k *ar);
|
|
static int ath10k_pci_start_intr(struct ath10k *ar);
|
|
static void ath10k_pci_stop_intr(struct ath10k *ar);
|
|
|
|
static const struct ce_attr host_ce_config_wlan[] = {
|
|
/* CE0: host->target HTC control and raw streams */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 16,
|
|
.src_sz_max = 256,
|
|
.dest_nentries = 0,
|
|
},
|
|
|
|
/* CE1: target->host HTT + HTC control */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 0,
|
|
.src_sz_max = 512,
|
|
.dest_nentries = 512,
|
|
},
|
|
|
|
/* CE2: target->host WMI */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 0,
|
|
.src_sz_max = 2048,
|
|
.dest_nentries = 32,
|
|
},
|
|
|
|
/* CE3: host->target WMI */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 32,
|
|
.src_sz_max = 2048,
|
|
.dest_nentries = 0,
|
|
},
|
|
|
|
/* CE4: host->target HTT */
|
|
{
|
|
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
|
|
.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
|
|
.src_sz_max = 256,
|
|
.dest_nentries = 0,
|
|
},
|
|
|
|
/* CE5: unused */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 0,
|
|
.src_sz_max = 0,
|
|
.dest_nentries = 0,
|
|
},
|
|
|
|
/* CE6: target autonomous hif_memcpy */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 0,
|
|
.src_sz_max = 0,
|
|
.dest_nentries = 0,
|
|
},
|
|
|
|
/* CE7: ce_diag, the Diagnostic Window */
|
|
{
|
|
.flags = CE_ATTR_FLAGS,
|
|
.src_nentries = 2,
|
|
.src_sz_max = DIAG_TRANSFER_LIMIT,
|
|
.dest_nentries = 2,
|
|
},
|
|
};
|
|
|
|
/* Target firmware's Copy Engine configuration. */
|
|
static const struct ce_pipe_config target_ce_config_wlan[] = {
|
|
/* CE0: host->target HTC control and raw streams */
|
|
{
|
|
.pipenum = 0,
|
|
.pipedir = PIPEDIR_OUT,
|
|
.nentries = 32,
|
|
.nbytes_max = 256,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE1: target->host HTT + HTC control */
|
|
{
|
|
.pipenum = 1,
|
|
.pipedir = PIPEDIR_IN,
|
|
.nentries = 32,
|
|
.nbytes_max = 512,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE2: target->host WMI */
|
|
{
|
|
.pipenum = 2,
|
|
.pipedir = PIPEDIR_IN,
|
|
.nentries = 32,
|
|
.nbytes_max = 2048,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE3: host->target WMI */
|
|
{
|
|
.pipenum = 3,
|
|
.pipedir = PIPEDIR_OUT,
|
|
.nentries = 32,
|
|
.nbytes_max = 2048,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE4: host->target HTT */
|
|
{
|
|
.pipenum = 4,
|
|
.pipedir = PIPEDIR_OUT,
|
|
.nentries = 256,
|
|
.nbytes_max = 256,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* NB: 50% of src nentries, since tx has 2 frags */
|
|
|
|
/* CE5: unused */
|
|
{
|
|
.pipenum = 5,
|
|
.pipedir = PIPEDIR_OUT,
|
|
.nentries = 32,
|
|
.nbytes_max = 2048,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE6: Reserved for target autonomous hif_memcpy */
|
|
{
|
|
.pipenum = 6,
|
|
.pipedir = PIPEDIR_INOUT,
|
|
.nentries = 32,
|
|
.nbytes_max = 4096,
|
|
.flags = CE_ATTR_FLAGS,
|
|
.reserved = 0,
|
|
},
|
|
|
|
/* CE7 used only by Host */
|
|
};
|
|
|
|
/*
|
|
* Diagnostic read/write access is provided for startup/config/debug usage.
|
|
* Caller must guarantee proper alignment, when applicable, and single user
|
|
* at any moment.
|
|
*/
|
|
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
|
|
int nbytes)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret = 0;
|
|
u32 buf;
|
|
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
|
|
unsigned int id;
|
|
unsigned int flags;
|
|
struct ath10k_ce_pipe *ce_diag;
|
|
/* Host buffer address in CE space */
|
|
u32 ce_data;
|
|
dma_addr_t ce_data_base = 0;
|
|
void *data_buf = NULL;
|
|
int i;
|
|
|
|
/*
|
|
* This code cannot handle reads to non-memory space. Redirect to the
|
|
* register read fn but preserve the multi word read capability of
|
|
* this fn
|
|
*/
|
|
if (address < DRAM_BASE_ADDRESS) {
|
|
if (!IS_ALIGNED(address, 4) ||
|
|
!IS_ALIGNED((unsigned long)data, 4))
|
|
return -EIO;
|
|
|
|
while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access(
|
|
ar, address, (u32 *)data)) == 0)) {
|
|
nbytes -= sizeof(u32);
|
|
address += sizeof(u32);
|
|
data += sizeof(u32);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
ce_diag = ar_pci->ce_diag;
|
|
|
|
/*
|
|
* Allocate a temporary bounce buffer to hold caller's data
|
|
* to be DMA'ed from Target. This guarantees
|
|
* 1) 4-byte alignment
|
|
* 2) Buffer in DMA-able space
|
|
*/
|
|
orig_nbytes = nbytes;
|
|
data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
|
|
orig_nbytes,
|
|
&ce_data_base);
|
|
|
|
if (!data_buf) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
memset(data_buf, 0, orig_nbytes);
|
|
|
|
remaining_bytes = orig_nbytes;
|
|
ce_data = ce_data_base;
|
|
while (remaining_bytes) {
|
|
nbytes = min_t(unsigned int, remaining_bytes,
|
|
DIAG_TRANSFER_LIMIT);
|
|
|
|
ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data);
|
|
if (ret != 0)
|
|
goto done;
|
|
|
|
/* Request CE to send from Target(!) address to Host buffer */
|
|
/*
|
|
* The address supplied by the caller is in the
|
|
* Target CPU virtual address space.
|
|
*
|
|
* In order to use this address with the diagnostic CE,
|
|
* convert it from Target CPU virtual address space
|
|
* to CE address space
|
|
*/
|
|
ath10k_pci_wake(ar);
|
|
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem,
|
|
address);
|
|
ath10k_pci_sleep(ar);
|
|
|
|
ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0,
|
|
0);
|
|
if (ret)
|
|
goto done;
|
|
|
|
i = 0;
|
|
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
|
|
&completed_nbytes,
|
|
&id) != 0) {
|
|
mdelay(1);
|
|
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (nbytes != completed_nbytes) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
if (buf != (u32) address) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
i = 0;
|
|
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
|
|
&completed_nbytes,
|
|
&id, &flags) != 0) {
|
|
mdelay(1);
|
|
|
|
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (nbytes != completed_nbytes) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
if (buf != ce_data) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
remaining_bytes -= nbytes;
|
|
address += nbytes;
|
|
ce_data += nbytes;
|
|
}
|
|
|
|
done:
|
|
if (ret == 0) {
|
|
/* Copy data from allocated DMA buf to caller's buf */
|
|
WARN_ON_ONCE(orig_nbytes & 3);
|
|
for (i = 0; i < orig_nbytes / sizeof(__le32); i++) {
|
|
((u32 *)data)[i] =
|
|
__le32_to_cpu(((__le32 *)data_buf)[i]);
|
|
}
|
|
} else
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n",
|
|
__func__, address);
|
|
|
|
if (data_buf)
|
|
pci_free_consistent(ar_pci->pdev, orig_nbytes,
|
|
data_buf, ce_data_base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Read 4-byte aligned data from Target memory or register */
|
|
static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address,
|
|
u32 *data)
|
|
{
|
|
/* Assume range doesn't cross this boundary */
|
|
if (address >= DRAM_BASE_ADDRESS)
|
|
return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32));
|
|
|
|
ath10k_pci_wake(ar);
|
|
*data = ath10k_pci_read32(ar, address);
|
|
ath10k_pci_sleep(ar);
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
|
|
const void *data, int nbytes)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret = 0;
|
|
u32 buf;
|
|
unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
|
|
unsigned int id;
|
|
unsigned int flags;
|
|
struct ath10k_ce_pipe *ce_diag;
|
|
void *data_buf = NULL;
|
|
u32 ce_data; /* Host buffer address in CE space */
|
|
dma_addr_t ce_data_base = 0;
|
|
int i;
|
|
|
|
ce_diag = ar_pci->ce_diag;
|
|
|
|
/*
|
|
* Allocate a temporary bounce buffer to hold caller's data
|
|
* to be DMA'ed to Target. This guarantees
|
|
* 1) 4-byte alignment
|
|
* 2) Buffer in DMA-able space
|
|
*/
|
|
orig_nbytes = nbytes;
|
|
data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev,
|
|
orig_nbytes,
|
|
&ce_data_base);
|
|
if (!data_buf) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
/* Copy caller's data to allocated DMA buf */
|
|
WARN_ON_ONCE(orig_nbytes & 3);
|
|
for (i = 0; i < orig_nbytes / sizeof(__le32); i++)
|
|
((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]);
|
|
|
|
/*
|
|
* The address supplied by the caller is in the
|
|
* Target CPU virtual address space.
|
|
*
|
|
* In order to use this address with the diagnostic CE,
|
|
* convert it from
|
|
* Target CPU virtual address space
|
|
* to
|
|
* CE address space
|
|
*/
|
|
ath10k_pci_wake(ar);
|
|
address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address);
|
|
ath10k_pci_sleep(ar);
|
|
|
|
remaining_bytes = orig_nbytes;
|
|
ce_data = ce_data_base;
|
|
while (remaining_bytes) {
|
|
/* FIXME: check cast */
|
|
nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
|
|
|
|
/* Set up to receive directly into Target(!) address */
|
|
ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address);
|
|
if (ret != 0)
|
|
goto done;
|
|
|
|
/*
|
|
* Request CE to send caller-supplied data that
|
|
* was copied to bounce buffer to Target(!) address.
|
|
*/
|
|
ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data,
|
|
nbytes, 0, 0);
|
|
if (ret != 0)
|
|
goto done;
|
|
|
|
i = 0;
|
|
while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf,
|
|
&completed_nbytes,
|
|
&id) != 0) {
|
|
mdelay(1);
|
|
|
|
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (nbytes != completed_nbytes) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
if (buf != ce_data) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
i = 0;
|
|
while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf,
|
|
&completed_nbytes,
|
|
&id, &flags) != 0) {
|
|
mdelay(1);
|
|
|
|
if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
|
|
ret = -EBUSY;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (nbytes != completed_nbytes) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
if (buf != address) {
|
|
ret = -EIO;
|
|
goto done;
|
|
}
|
|
|
|
remaining_bytes -= nbytes;
|
|
address += nbytes;
|
|
ce_data += nbytes;
|
|
}
|
|
|
|
done:
|
|
if (data_buf) {
|
|
pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf,
|
|
ce_data_base);
|
|
}
|
|
|
|
if (ret != 0)
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__,
|
|
address);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Write 4B data to Target memory or register */
|
|
static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address,
|
|
u32 data)
|
|
{
|
|
/* Assume range doesn't cross this boundary */
|
|
if (address >= DRAM_BASE_ADDRESS)
|
|
return ath10k_pci_diag_write_mem(ar, address, &data,
|
|
sizeof(u32));
|
|
|
|
ath10k_pci_wake(ar);
|
|
ath10k_pci_write32(ar, address, data);
|
|
ath10k_pci_sleep(ar);
|
|
return 0;
|
|
}
|
|
|
|
static bool ath10k_pci_target_is_awake(struct ath10k *ar)
|
|
{
|
|
void __iomem *mem = ath10k_pci_priv(ar)->mem;
|
|
u32 val;
|
|
val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
RTC_STATE_ADDRESS);
|
|
return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON);
|
|
}
|
|
|
|
static void ath10k_pci_wait(struct ath10k *ar)
|
|
{
|
|
int n = 100;
|
|
|
|
while (n-- && !ath10k_pci_target_is_awake(ar))
|
|
msleep(10);
|
|
|
|
if (n < 0)
|
|
ath10k_warn("Unable to wakeup target\n");
|
|
}
|
|
|
|
int ath10k_do_pci_wake(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
void __iomem *pci_addr = ar_pci->mem;
|
|
int tot_delay = 0;
|
|
int curr_delay = 5;
|
|
|
|
if (atomic_read(&ar_pci->keep_awake_count) == 0) {
|
|
/* Force AWAKE */
|
|
iowrite32(PCIE_SOC_WAKE_V_MASK,
|
|
pci_addr + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
}
|
|
atomic_inc(&ar_pci->keep_awake_count);
|
|
|
|
if (ar_pci->verified_awake)
|
|
return 0;
|
|
|
|
for (;;) {
|
|
if (ath10k_pci_target_is_awake(ar)) {
|
|
ar_pci->verified_awake = true;
|
|
return 0;
|
|
}
|
|
|
|
if (tot_delay > PCIE_WAKE_TIMEOUT) {
|
|
ath10k_warn("target took longer %d us to wake up (awake count %d)\n",
|
|
PCIE_WAKE_TIMEOUT,
|
|
atomic_read(&ar_pci->keep_awake_count));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
udelay(curr_delay);
|
|
tot_delay += curr_delay;
|
|
|
|
if (curr_delay < 50)
|
|
curr_delay += 5;
|
|
}
|
|
}
|
|
|
|
void ath10k_do_pci_sleep(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
void __iomem *pci_addr = ar_pci->mem;
|
|
|
|
if (atomic_dec_and_test(&ar_pci->keep_awake_count)) {
|
|
/* Allow sleep */
|
|
ar_pci->verified_awake = false;
|
|
iowrite32(PCIE_SOC_WAKE_RESET,
|
|
pci_addr + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* FIXME: Handle OOM properly.
|
|
*/
|
|
static inline
|
|
struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info)
|
|
{
|
|
struct ath10k_pci_compl *compl = NULL;
|
|
|
|
spin_lock_bh(&pipe_info->pipe_lock);
|
|
if (list_empty(&pipe_info->compl_free)) {
|
|
ath10k_warn("Completion buffers are full\n");
|
|
goto exit;
|
|
}
|
|
compl = list_first_entry(&pipe_info->compl_free,
|
|
struct ath10k_pci_compl, list);
|
|
list_del(&compl->list);
|
|
exit:
|
|
spin_unlock_bh(&pipe_info->pipe_lock);
|
|
return compl;
|
|
}
|
|
|
|
/* Called by lower (CE) layer when a send to Target completes. */
|
|
static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state)
|
|
{
|
|
struct ath10k *ar = ce_state->ar;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
|
|
struct ath10k_pci_compl *compl;
|
|
void *transfer_context;
|
|
u32 ce_data;
|
|
unsigned int nbytes;
|
|
unsigned int transfer_id;
|
|
|
|
while (ath10k_ce_completed_send_next(ce_state, &transfer_context,
|
|
&ce_data, &nbytes,
|
|
&transfer_id) == 0) {
|
|
compl = get_free_compl(pipe_info);
|
|
if (!compl)
|
|
break;
|
|
|
|
compl->state = ATH10K_PCI_COMPL_SEND;
|
|
compl->ce_state = ce_state;
|
|
compl->pipe_info = pipe_info;
|
|
compl->skb = transfer_context;
|
|
compl->nbytes = nbytes;
|
|
compl->transfer_id = transfer_id;
|
|
compl->flags = 0;
|
|
|
|
/*
|
|
* Add the completion to the processing queue.
|
|
*/
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
list_add_tail(&compl->list, &ar_pci->compl_process);
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
}
|
|
|
|
ath10k_pci_process_ce(ar);
|
|
}
|
|
|
|
/* Called by lower (CE) layer when data is received from the Target. */
|
|
static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state)
|
|
{
|
|
struct ath10k *ar = ce_state->ar;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
|
|
struct ath10k_pci_compl *compl;
|
|
struct sk_buff *skb;
|
|
void *transfer_context;
|
|
u32 ce_data;
|
|
unsigned int nbytes;
|
|
unsigned int transfer_id;
|
|
unsigned int flags;
|
|
|
|
while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
|
|
&ce_data, &nbytes, &transfer_id,
|
|
&flags) == 0) {
|
|
compl = get_free_compl(pipe_info);
|
|
if (!compl)
|
|
break;
|
|
|
|
compl->state = ATH10K_PCI_COMPL_RECV;
|
|
compl->ce_state = ce_state;
|
|
compl->pipe_info = pipe_info;
|
|
compl->skb = transfer_context;
|
|
compl->nbytes = nbytes;
|
|
compl->transfer_id = transfer_id;
|
|
compl->flags = flags;
|
|
|
|
skb = transfer_context;
|
|
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
/*
|
|
* Add the completion to the processing queue.
|
|
*/
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
list_add_tail(&compl->list, &ar_pci->compl_process);
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
}
|
|
|
|
ath10k_pci_process_ce(ar);
|
|
}
|
|
|
|
/* Send the first nbytes bytes of the buffer */
|
|
static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id,
|
|
unsigned int transfer_id,
|
|
unsigned int bytes, struct sk_buff *nbuf)
|
|
{
|
|
struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf);
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe_id]);
|
|
struct ath10k_ce_pipe *ce_hdl = pipe_info->ce_hdl;
|
|
unsigned int len;
|
|
u32 flags = 0;
|
|
int ret;
|
|
|
|
len = min(bytes, nbuf->len);
|
|
bytes -= len;
|
|
|
|
if (len & 3)
|
|
ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len);
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI,
|
|
"pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n",
|
|
nbuf->data, (unsigned long long) skb_cb->paddr,
|
|
nbuf->len, len);
|
|
ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
|
|
"ath10k tx: data: ",
|
|
nbuf->data, nbuf->len);
|
|
|
|
ret = ath10k_ce_send(ce_hdl, nbuf, skb_cb->paddr, len, transfer_id,
|
|
flags);
|
|
if (ret)
|
|
ath10k_warn("CE send failed: %p\n", nbuf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
|
|
}
|
|
|
|
static void ath10k_pci_hif_dump_area(struct ath10k *ar)
|
|
{
|
|
u32 reg_dump_area = 0;
|
|
u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
|
|
u32 host_addr;
|
|
int ret;
|
|
u32 i;
|
|
|
|
ath10k_err("firmware crashed!\n");
|
|
ath10k_err("hardware name %s version 0x%x\n",
|
|
ar->hw_params.name, ar->target_version);
|
|
ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major,
|
|
ar->fw_version_minor, ar->fw_version_release,
|
|
ar->fw_version_build);
|
|
|
|
host_addr = host_interest_item_address(HI_ITEM(hi_failure_state));
|
|
if (ath10k_pci_diag_read_mem(ar, host_addr,
|
|
®_dump_area, sizeof(u32)) != 0) {
|
|
ath10k_warn("could not read hi_failure_state\n");
|
|
return;
|
|
}
|
|
|
|
ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area);
|
|
|
|
ret = ath10k_pci_diag_read_mem(ar, reg_dump_area,
|
|
®_dump_values[0],
|
|
REG_DUMP_COUNT_QCA988X * sizeof(u32));
|
|
if (ret != 0) {
|
|
ath10k_err("could not dump FW Dump Area\n");
|
|
return;
|
|
}
|
|
|
|
BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
|
|
|
|
ath10k_err("target Register Dump\n");
|
|
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
|
|
ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
|
|
i,
|
|
reg_dump_values[i],
|
|
reg_dump_values[i + 1],
|
|
reg_dump_values[i + 2],
|
|
reg_dump_values[i + 3]);
|
|
|
|
queue_work(ar->workqueue, &ar->restart_work);
|
|
}
|
|
|
|
static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
|
|
int force)
|
|
{
|
|
if (!force) {
|
|
int resources;
|
|
/*
|
|
* Decide whether to actually poll for completions, or just
|
|
* wait for a later chance.
|
|
* If there seem to be plenty of resources left, then just wait
|
|
* since checking involves reading a CE register, which is a
|
|
* relatively expensive operation.
|
|
*/
|
|
resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
|
|
|
|
/*
|
|
* If at least 50% of the total resources are still available,
|
|
* don't bother checking again yet.
|
|
*/
|
|
if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
|
|
return;
|
|
}
|
|
ath10k_ce_per_engine_service(ar, pipe);
|
|
}
|
|
|
|
static void ath10k_pci_hif_set_callbacks(struct ath10k *ar,
|
|
struct ath10k_hif_cb *callbacks)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
|
|
|
|
memcpy(&ar_pci->msg_callbacks_current, callbacks,
|
|
sizeof(ar_pci->msg_callbacks_current));
|
|
}
|
|
|
|
static int ath10k_pci_start_ce(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_ce_pipe *ce_diag = ar_pci->ce_diag;
|
|
const struct ce_attr *attr;
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
struct ath10k_pci_compl *compl;
|
|
int i, pipe_num, completions, disable_interrupts;
|
|
|
|
spin_lock_init(&ar_pci->compl_lock);
|
|
INIT_LIST_HEAD(&ar_pci->compl_process);
|
|
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
|
|
spin_lock_init(&pipe_info->pipe_lock);
|
|
INIT_LIST_HEAD(&pipe_info->compl_free);
|
|
|
|
/* Handle Diagnostic CE specially */
|
|
if (pipe_info->ce_hdl == ce_diag)
|
|
continue;
|
|
|
|
attr = &host_ce_config_wlan[pipe_num];
|
|
completions = 0;
|
|
|
|
if (attr->src_nentries) {
|
|
disable_interrupts = attr->flags & CE_ATTR_DIS_INTR;
|
|
ath10k_ce_send_cb_register(pipe_info->ce_hdl,
|
|
ath10k_pci_ce_send_done,
|
|
disable_interrupts);
|
|
completions += attr->src_nentries;
|
|
}
|
|
|
|
if (attr->dest_nentries) {
|
|
ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
|
|
ath10k_pci_ce_recv_data);
|
|
completions += attr->dest_nentries;
|
|
}
|
|
|
|
if (completions == 0)
|
|
continue;
|
|
|
|
for (i = 0; i < completions; i++) {
|
|
compl = kmalloc(sizeof(*compl), GFP_KERNEL);
|
|
if (!compl) {
|
|
ath10k_warn("No memory for completion state\n");
|
|
ath10k_pci_stop_ce(ar);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
compl->state = ATH10K_PCI_COMPL_FREE;
|
|
list_add_tail(&compl->list, &pipe_info->compl_free);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_pci_stop_ce(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_compl *compl;
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
ath10k_ce_disable_interrupts(ar);
|
|
|
|
/* Cancel the pending tasklet */
|
|
tasklet_kill(&ar_pci->intr_tq);
|
|
|
|
for (i = 0; i < CE_COUNT; i++)
|
|
tasklet_kill(&ar_pci->pipe_info[i].intr);
|
|
|
|
/* Mark pending completions as aborted, so that upper layers free up
|
|
* their associated resources */
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
list_for_each_entry(compl, &ar_pci->compl_process, list) {
|
|
skb = compl->skb;
|
|
ATH10K_SKB_CB(skb)->is_aborted = true;
|
|
}
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
}
|
|
|
|
static void ath10k_pci_cleanup_ce(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_compl *compl, *tmp;
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
struct sk_buff *netbuf;
|
|
int pipe_num;
|
|
|
|
/* Free pending completions. */
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
if (!list_empty(&ar_pci->compl_process))
|
|
ath10k_warn("pending completions still present! possible memory leaks.\n");
|
|
|
|
list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) {
|
|
list_del(&compl->list);
|
|
netbuf = compl->skb;
|
|
dev_kfree_skb_any(netbuf);
|
|
kfree(compl);
|
|
}
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
|
|
/* Free unused completions for each pipe. */
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
|
|
spin_lock_bh(&pipe_info->pipe_lock);
|
|
list_for_each_entry_safe(compl, tmp,
|
|
&pipe_info->compl_free, list) {
|
|
list_del(&compl->list);
|
|
kfree(compl);
|
|
}
|
|
spin_unlock_bh(&pipe_info->pipe_lock);
|
|
}
|
|
}
|
|
|
|
static void ath10k_pci_process_ce(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ar->hif.priv;
|
|
struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current;
|
|
struct ath10k_pci_compl *compl;
|
|
struct sk_buff *skb;
|
|
unsigned int nbytes;
|
|
int ret, send_done = 0;
|
|
|
|
/* Upper layers aren't ready to handle tx/rx completions in parallel so
|
|
* we must serialize all completion processing. */
|
|
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
if (ar_pci->compl_processing) {
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
return;
|
|
}
|
|
ar_pci->compl_processing = true;
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
|
|
for (;;) {
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
if (list_empty(&ar_pci->compl_process)) {
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
break;
|
|
}
|
|
compl = list_first_entry(&ar_pci->compl_process,
|
|
struct ath10k_pci_compl, list);
|
|
list_del(&compl->list);
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
|
|
switch (compl->state) {
|
|
case ATH10K_PCI_COMPL_SEND:
|
|
cb->tx_completion(ar,
|
|
compl->skb,
|
|
compl->transfer_id);
|
|
send_done = 1;
|
|
break;
|
|
case ATH10K_PCI_COMPL_RECV:
|
|
ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1);
|
|
if (ret) {
|
|
ath10k_warn("Unable to post recv buffer for pipe: %d\n",
|
|
compl->pipe_info->pipe_num);
|
|
break;
|
|
}
|
|
|
|
skb = compl->skb;
|
|
nbytes = compl->nbytes;
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI,
|
|
"ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n",
|
|
skb, nbytes);
|
|
ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL,
|
|
"ath10k rx: ", skb->data, nbytes);
|
|
|
|
if (skb->len + skb_tailroom(skb) >= nbytes) {
|
|
skb_trim(skb, 0);
|
|
skb_put(skb, nbytes);
|
|
cb->rx_completion(ar, skb,
|
|
compl->pipe_info->pipe_num);
|
|
} else {
|
|
ath10k_warn("rxed more than expected (nbytes %d, max %d)",
|
|
nbytes,
|
|
skb->len + skb_tailroom(skb));
|
|
}
|
|
break;
|
|
case ATH10K_PCI_COMPL_FREE:
|
|
ath10k_warn("free completion cannot be processed\n");
|
|
break;
|
|
default:
|
|
ath10k_warn("invalid completion state (%d)\n",
|
|
compl->state);
|
|
break;
|
|
}
|
|
|
|
compl->state = ATH10K_PCI_COMPL_FREE;
|
|
|
|
/*
|
|
* Add completion back to the pipe's free list.
|
|
*/
|
|
spin_lock_bh(&compl->pipe_info->pipe_lock);
|
|
list_add_tail(&compl->list, &compl->pipe_info->compl_free);
|
|
spin_unlock_bh(&compl->pipe_info->pipe_lock);
|
|
}
|
|
|
|
spin_lock_bh(&ar_pci->compl_lock);
|
|
ar_pci->compl_processing = false;
|
|
spin_unlock_bh(&ar_pci->compl_lock);
|
|
}
|
|
|
|
/* TODO - temporary mapping while we have too few CE's */
|
|
static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar,
|
|
u16 service_id, u8 *ul_pipe,
|
|
u8 *dl_pipe, int *ul_is_polled,
|
|
int *dl_is_polled)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* polling for received messages not supported */
|
|
*dl_is_polled = 0;
|
|
|
|
switch (service_id) {
|
|
case ATH10K_HTC_SVC_ID_HTT_DATA_MSG:
|
|
/*
|
|
* Host->target HTT gets its own pipe, so it can be polled
|
|
* while other pipes are interrupt driven.
|
|
*/
|
|
*ul_pipe = 4;
|
|
/*
|
|
* Use the same target->host pipe for HTC ctrl, HTC raw
|
|
* streams, and HTT.
|
|
*/
|
|
*dl_pipe = 1;
|
|
break;
|
|
|
|
case ATH10K_HTC_SVC_ID_RSVD_CTRL:
|
|
case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS:
|
|
/*
|
|
* Note: HTC_RAW_STREAMS_SVC is currently unused, and
|
|
* HTC_CTRL_RSVD_SVC could share the same pipe as the
|
|
* WMI services. So, if another CE is needed, change
|
|
* this to *ul_pipe = 3, which frees up CE 0.
|
|
*/
|
|
/* *ul_pipe = 3; */
|
|
*ul_pipe = 0;
|
|
*dl_pipe = 1;
|
|
break;
|
|
|
|
case ATH10K_HTC_SVC_ID_WMI_DATA_BK:
|
|
case ATH10K_HTC_SVC_ID_WMI_DATA_BE:
|
|
case ATH10K_HTC_SVC_ID_WMI_DATA_VI:
|
|
case ATH10K_HTC_SVC_ID_WMI_DATA_VO:
|
|
|
|
case ATH10K_HTC_SVC_ID_WMI_CONTROL:
|
|
*ul_pipe = 3;
|
|
*dl_pipe = 2;
|
|
break;
|
|
|
|
/* pipe 5 unused */
|
|
/* pipe 6 reserved */
|
|
/* pipe 7 reserved */
|
|
|
|
default:
|
|
ret = -1;
|
|
break;
|
|
}
|
|
*ul_is_polled =
|
|
(host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
|
|
u8 *ul_pipe, u8 *dl_pipe)
|
|
{
|
|
int ul_is_polled, dl_is_polled;
|
|
|
|
(void)ath10k_pci_hif_map_service_to_pipe(ar,
|
|
ATH10K_HTC_SVC_ID_RSVD_CTRL,
|
|
ul_pipe,
|
|
dl_pipe,
|
|
&ul_is_polled,
|
|
&dl_is_polled);
|
|
}
|
|
|
|
static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info,
|
|
int num)
|
|
{
|
|
struct ath10k *ar = pipe_info->hif_ce_state;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl;
|
|
struct sk_buff *skb;
|
|
dma_addr_t ce_data;
|
|
int i, ret = 0;
|
|
|
|
if (pipe_info->buf_sz == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
skb = dev_alloc_skb(pipe_info->buf_sz);
|
|
if (!skb) {
|
|
ath10k_warn("could not allocate skbuff for pipe %d\n",
|
|
num);
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
|
|
|
|
ce_data = dma_map_single(ar->dev, skb->data,
|
|
skb->len + skb_tailroom(skb),
|
|
DMA_FROM_DEVICE);
|
|
|
|
if (unlikely(dma_mapping_error(ar->dev, ce_data))) {
|
|
ath10k_warn("could not dma map skbuff\n");
|
|
dev_kfree_skb_any(skb);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
|
|
ATH10K_SKB_CB(skb)->paddr = ce_data;
|
|
|
|
pci_dma_sync_single_for_device(ar_pci->pdev, ce_data,
|
|
pipe_info->buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb,
|
|
ce_data);
|
|
if (ret) {
|
|
ath10k_warn("could not enqueue to pipe %d (%d)\n",
|
|
num, ret);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
err:
|
|
ath10k_pci_rx_pipe_cleanup(pipe_info);
|
|
return ret;
|
|
}
|
|
|
|
static int ath10k_pci_post_rx(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
const struct ce_attr *attr;
|
|
int pipe_num, ret = 0;
|
|
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
attr = &host_ce_config_wlan[pipe_num];
|
|
|
|
if (attr->dest_nentries == 0)
|
|
continue;
|
|
|
|
ret = ath10k_pci_post_rx_pipe(pipe_info,
|
|
attr->dest_nentries - 1);
|
|
if (ret) {
|
|
ath10k_warn("Unable to replenish recv buffers for pipe: %d\n",
|
|
pipe_num);
|
|
|
|
for (; pipe_num >= 0; pipe_num--) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
ath10k_pci_rx_pipe_cleanup(pipe_info);
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_hif_start(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret;
|
|
|
|
ret = ath10k_pci_start_ce(ar);
|
|
if (ret) {
|
|
ath10k_warn("could not start CE (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Post buffers once to start things off. */
|
|
ret = ath10k_pci_post_rx(ar);
|
|
if (ret) {
|
|
ath10k_warn("could not post rx pipes (%d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ar_pci->started = 1;
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
|
|
{
|
|
struct ath10k *ar;
|
|
struct ath10k_pci *ar_pci;
|
|
struct ath10k_ce_pipe *ce_hdl;
|
|
u32 buf_sz;
|
|
struct sk_buff *netbuf;
|
|
u32 ce_data;
|
|
|
|
buf_sz = pipe_info->buf_sz;
|
|
|
|
/* Unused Copy Engine */
|
|
if (buf_sz == 0)
|
|
return;
|
|
|
|
ar = pipe_info->hif_ce_state;
|
|
ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (!ar_pci->started)
|
|
return;
|
|
|
|
ce_hdl = pipe_info->ce_hdl;
|
|
|
|
while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf,
|
|
&ce_data) == 0) {
|
|
dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr,
|
|
netbuf->len + skb_tailroom(netbuf),
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb_any(netbuf);
|
|
}
|
|
}
|
|
|
|
static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info)
|
|
{
|
|
struct ath10k *ar;
|
|
struct ath10k_pci *ar_pci;
|
|
struct ath10k_ce_pipe *ce_hdl;
|
|
struct sk_buff *netbuf;
|
|
u32 ce_data;
|
|
unsigned int nbytes;
|
|
unsigned int id;
|
|
u32 buf_sz;
|
|
|
|
buf_sz = pipe_info->buf_sz;
|
|
|
|
/* Unused Copy Engine */
|
|
if (buf_sz == 0)
|
|
return;
|
|
|
|
ar = pipe_info->hif_ce_state;
|
|
ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (!ar_pci->started)
|
|
return;
|
|
|
|
ce_hdl = pipe_info->ce_hdl;
|
|
|
|
while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf,
|
|
&ce_data, &nbytes, &id) == 0) {
|
|
/*
|
|
* Indicate the completion to higer layer to free
|
|
* the buffer
|
|
*/
|
|
ATH10K_SKB_CB(netbuf)->is_aborted = true;
|
|
ar_pci->msg_callbacks_current.tx_completion(ar,
|
|
netbuf,
|
|
id);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cleanup residual buffers for device shutdown:
|
|
* buffers that were enqueued for receive
|
|
* buffers that were to be sent
|
|
* Note: Buffers that had completed but which were
|
|
* not yet processed are on a completion queue. They
|
|
* are handled when the completion thread shuts down.
|
|
*/
|
|
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int pipe_num;
|
|
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
ath10k_pci_rx_pipe_cleanup(pipe_info);
|
|
ath10k_pci_tx_pipe_cleanup(pipe_info);
|
|
}
|
|
}
|
|
|
|
static void ath10k_pci_ce_deinit(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
int pipe_num;
|
|
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
if (pipe_info->ce_hdl) {
|
|
ath10k_ce_deinit(pipe_info->ce_hdl);
|
|
pipe_info->ce_hdl = NULL;
|
|
pipe_info->buf_sz = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ath10k_pci_disable_irqs(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int i;
|
|
|
|
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
|
|
disable_irq(ar_pci->pdev->irq + i);
|
|
}
|
|
|
|
static void ath10k_pci_hif_stop(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
|
|
|
|
/* Irqs are never explicitly re-enabled. They are implicitly re-enabled
|
|
* by ath10k_pci_start_intr(). */
|
|
ath10k_pci_disable_irqs(ar);
|
|
|
|
ath10k_pci_stop_ce(ar);
|
|
|
|
/* At this point, asynchronous threads are stopped, the target should
|
|
* not DMA nor interrupt. We process the leftovers and then free
|
|
* everything else up. */
|
|
|
|
ath10k_pci_process_ce(ar);
|
|
ath10k_pci_cleanup_ce(ar);
|
|
ath10k_pci_buffer_cleanup(ar);
|
|
|
|
ar_pci->started = 0;
|
|
}
|
|
|
|
static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
|
|
void *req, u32 req_len,
|
|
void *resp, u32 *resp_len)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
|
|
struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
|
|
struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
|
|
struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
|
|
dma_addr_t req_paddr = 0;
|
|
dma_addr_t resp_paddr = 0;
|
|
struct bmi_xfer xfer = {};
|
|
void *treq, *tresp = NULL;
|
|
int ret = 0;
|
|
|
|
if (resp && !resp_len)
|
|
return -EINVAL;
|
|
|
|
if (resp && resp_len && *resp_len == 0)
|
|
return -EINVAL;
|
|
|
|
treq = kmemdup(req, req_len, GFP_KERNEL);
|
|
if (!treq)
|
|
return -ENOMEM;
|
|
|
|
req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
|
|
ret = dma_mapping_error(ar->dev, req_paddr);
|
|
if (ret)
|
|
goto err_dma;
|
|
|
|
if (resp && resp_len) {
|
|
tresp = kzalloc(*resp_len, GFP_KERNEL);
|
|
if (!tresp) {
|
|
ret = -ENOMEM;
|
|
goto err_req;
|
|
}
|
|
|
|
resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
|
|
DMA_FROM_DEVICE);
|
|
ret = dma_mapping_error(ar->dev, resp_paddr);
|
|
if (ret)
|
|
goto err_req;
|
|
|
|
xfer.wait_for_resp = true;
|
|
xfer.resp_len = 0;
|
|
|
|
ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr);
|
|
}
|
|
|
|
init_completion(&xfer.done);
|
|
|
|
ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
|
|
if (ret)
|
|
goto err_resp;
|
|
|
|
ret = wait_for_completion_timeout(&xfer.done,
|
|
BMI_COMMUNICATION_TIMEOUT_HZ);
|
|
if (ret <= 0) {
|
|
u32 unused_buffer;
|
|
unsigned int unused_nbytes;
|
|
unsigned int unused_id;
|
|
|
|
ret = -ETIMEDOUT;
|
|
ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
|
|
&unused_nbytes, &unused_id);
|
|
} else {
|
|
/* non-zero means we did not time out */
|
|
ret = 0;
|
|
}
|
|
|
|
err_resp:
|
|
if (resp) {
|
|
u32 unused_buffer;
|
|
|
|
ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
|
|
dma_unmap_single(ar->dev, resp_paddr,
|
|
*resp_len, DMA_FROM_DEVICE);
|
|
}
|
|
err_req:
|
|
dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
|
|
|
|
if (ret == 0 && resp_len) {
|
|
*resp_len = min(*resp_len, xfer.resp_len);
|
|
memcpy(resp, tresp, xfer.resp_len);
|
|
}
|
|
err_dma:
|
|
kfree(treq);
|
|
kfree(tresp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
|
|
{
|
|
struct bmi_xfer *xfer;
|
|
u32 ce_data;
|
|
unsigned int nbytes;
|
|
unsigned int transfer_id;
|
|
|
|
if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data,
|
|
&nbytes, &transfer_id))
|
|
return;
|
|
|
|
if (xfer->wait_for_resp)
|
|
return;
|
|
|
|
complete(&xfer->done);
|
|
}
|
|
|
|
static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
|
|
{
|
|
struct bmi_xfer *xfer;
|
|
u32 ce_data;
|
|
unsigned int nbytes;
|
|
unsigned int transfer_id;
|
|
unsigned int flags;
|
|
|
|
if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
|
|
&nbytes, &transfer_id, &flags))
|
|
return;
|
|
|
|
if (!xfer->wait_for_resp) {
|
|
ath10k_warn("unexpected: BMI data received; ignoring\n");
|
|
return;
|
|
}
|
|
|
|
xfer->resp_len = nbytes;
|
|
complete(&xfer->done);
|
|
}
|
|
|
|
/*
|
|
* Map from service/endpoint to Copy Engine.
|
|
* This table is derived from the CE_PCI TABLE, above.
|
|
* It is passed to the Target at startup for use by firmware.
|
|
*/
|
|
static const struct service_to_pipe target_service_to_ce_map_wlan[] = {
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_VO,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
3,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_VO,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
2,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_BK,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
3,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_BK,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
2,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_BE,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
3,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_BE,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
2,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_VI,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
3,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_DATA_VI,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
2,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_CONTROL,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
3,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_WMI_CONTROL,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
2,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_RSVD_CTRL,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
0, /* could be moved to 3 (share with WMI) */
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_RSVD_CTRL,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
1,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
0,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
1,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
|
|
PIPEDIR_OUT, /* out = UL = host -> target */
|
|
4,
|
|
},
|
|
{
|
|
ATH10K_HTC_SVC_ID_HTT_DATA_MSG,
|
|
PIPEDIR_IN, /* in = DL = target -> host */
|
|
1,
|
|
},
|
|
|
|
/* (Additions here) */
|
|
|
|
{ /* Must be last */
|
|
0,
|
|
0,
|
|
0,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Send an interrupt to the device to wake up the Target CPU
|
|
* so it has an opportunity to notice any changed state.
|
|
*/
|
|
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
|
|
{
|
|
int ret;
|
|
u32 core_ctrl;
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS |
|
|
CORE_CTRL_ADDRESS,
|
|
&core_ctrl);
|
|
if (ret) {
|
|
ath10k_warn("Unable to read core ctrl\n");
|
|
return ret;
|
|
}
|
|
|
|
/* A_INUM_FIRMWARE interrupt to Target CPU */
|
|
core_ctrl |= CORE_CTRL_CPU_INTR_MASK;
|
|
|
|
ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS |
|
|
CORE_CTRL_ADDRESS,
|
|
core_ctrl);
|
|
if (ret)
|
|
ath10k_warn("Unable to set interrupt mask\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ath10k_pci_init_config(struct ath10k *ar)
|
|
{
|
|
u32 interconnect_targ_addr;
|
|
u32 pcie_state_targ_addr = 0;
|
|
u32 pipe_cfg_targ_addr = 0;
|
|
u32 svc_to_pipe_map = 0;
|
|
u32 pcie_config_flags = 0;
|
|
u32 ealloc_value;
|
|
u32 ealloc_targ_addr;
|
|
u32 flag2_value;
|
|
u32 flag2_targ_addr;
|
|
int ret = 0;
|
|
|
|
/* Download to Target the CE Config and the service-to-CE map */
|
|
interconnect_targ_addr =
|
|
host_interest_item_address(HI_ITEM(hi_interconnect_state));
|
|
|
|
/* Supply Target-side CE configuration */
|
|
ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr,
|
|
&pcie_state_targ_addr);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to get pcie state addr: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (pcie_state_targ_addr == 0) {
|
|
ret = -EIO;
|
|
ath10k_err("Invalid pcie state addr\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
|
|
offsetof(struct pcie_state,
|
|
pipe_cfg_addr),
|
|
&pipe_cfg_targ_addr);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to get pipe cfg addr: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (pipe_cfg_targ_addr == 0) {
|
|
ret = -EIO;
|
|
ath10k_err("Invalid pipe cfg addr\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
|
|
target_ce_config_wlan,
|
|
sizeof(target_ce_config_wlan));
|
|
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to write pipe cfg: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
|
|
offsetof(struct pcie_state,
|
|
svc_to_pipe_map),
|
|
&svc_to_pipe_map);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to get svc/pipe map: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (svc_to_pipe_map == 0) {
|
|
ret = -EIO;
|
|
ath10k_err("Invalid svc_to_pipe map\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
|
|
target_service_to_ce_map_wlan,
|
|
sizeof(target_service_to_ce_map_wlan));
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to write svc/pipe map: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr +
|
|
offsetof(struct pcie_state,
|
|
config_flags),
|
|
&pcie_config_flags);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to get pcie config_flags: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
|
|
|
|
ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr +
|
|
offsetof(struct pcie_state, config_flags),
|
|
&pcie_config_flags,
|
|
sizeof(pcie_config_flags));
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to write pcie config_flags: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* configure early allocation */
|
|
ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value);
|
|
if (ret != 0) {
|
|
ath10k_err("Faile to get early alloc val: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* first bank is switched to IRAM */
|
|
ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
|
|
HI_EARLY_ALLOC_MAGIC_MASK);
|
|
ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
|
|
HI_EARLY_ALLOC_IRAM_BANKS_MASK);
|
|
|
|
ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to set early alloc val: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Tell Target to proceed with initialization */
|
|
flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
|
|
|
|
ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to get option val: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
flag2_value |= HI_OPTION_EARLY_CFG_DONE;
|
|
|
|
ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value);
|
|
if (ret != 0) {
|
|
ath10k_err("Failed to set option val: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
static int ath10k_pci_ce_init(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct ath10k_pci_pipe *pipe_info;
|
|
const struct ce_attr *attr;
|
|
int pipe_num;
|
|
|
|
for (pipe_num = 0; pipe_num < ar_pci->ce_count; pipe_num++) {
|
|
pipe_info = &ar_pci->pipe_info[pipe_num];
|
|
pipe_info->pipe_num = pipe_num;
|
|
pipe_info->hif_ce_state = ar;
|
|
attr = &host_ce_config_wlan[pipe_num];
|
|
|
|
pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr);
|
|
if (pipe_info->ce_hdl == NULL) {
|
|
ath10k_err("Unable to initialize CE for pipe: %d\n",
|
|
pipe_num);
|
|
|
|
/* It is safe to call it here. It checks if ce_hdl is
|
|
* valid for each pipe */
|
|
ath10k_pci_ce_deinit(ar);
|
|
return -1;
|
|
}
|
|
|
|
if (pipe_num == ar_pci->ce_count - 1) {
|
|
/*
|
|
* Reserve the ultimate CE for
|
|
* diagnostic Window support
|
|
*/
|
|
ar_pci->ce_diag =
|
|
ar_pci->pipe_info[ar_pci->ce_count - 1].ce_hdl;
|
|
continue;
|
|
}
|
|
|
|
pipe_info->buf_sz = (size_t) (attr->src_sz_max);
|
|
}
|
|
|
|
/*
|
|
* Initially, establish CE completion handlers for use with BMI.
|
|
* These are overwritten with generic handlers after we exit BMI phase.
|
|
*/
|
|
pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
|
|
ath10k_ce_send_cb_register(pipe_info->ce_hdl,
|
|
ath10k_pci_bmi_send_done, 0);
|
|
|
|
pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
|
|
ath10k_ce_recv_cb_register(pipe_info->ce_hdl,
|
|
ath10k_pci_bmi_recv_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
u32 fw_indicator_address, fw_indicator;
|
|
|
|
ath10k_pci_wake(ar);
|
|
|
|
fw_indicator_address = ar_pci->fw_indicator_address;
|
|
fw_indicator = ath10k_pci_read32(ar, fw_indicator_address);
|
|
|
|
if (fw_indicator & FW_IND_EVENT_PENDING) {
|
|
/* ACK: clear Target-side pending event */
|
|
ath10k_pci_write32(ar, fw_indicator_address,
|
|
fw_indicator & ~FW_IND_EVENT_PENDING);
|
|
|
|
if (ar_pci->started) {
|
|
ath10k_pci_hif_dump_area(ar);
|
|
} else {
|
|
/*
|
|
* Probable Target failure before we're prepared
|
|
* to handle it. Generally unexpected.
|
|
*/
|
|
ath10k_warn("early firmware event indicated\n");
|
|
}
|
|
}
|
|
|
|
ath10k_pci_sleep(ar);
|
|
}
|
|
|
|
static int ath10k_pci_hif_power_up(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret;
|
|
|
|
ret = ath10k_pci_start_intr(ar);
|
|
if (ret) {
|
|
ath10k_err("could not start interrupt handling (%d)\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Bring the target up cleanly.
|
|
*
|
|
* The target may be in an undefined state with an AUX-powered Target
|
|
* and a Host in WoW mode. If the Host crashes, loses power, or is
|
|
* restarted (without unloading the driver) then the Target is left
|
|
* (aux) powered and running. On a subsequent driver load, the Target
|
|
* is in an unexpected state. We try to catch that here in order to
|
|
* reset the Target and retry the probe.
|
|
*/
|
|
ath10k_pci_device_reset(ar);
|
|
|
|
ret = ath10k_pci_reset_target(ar);
|
|
if (ret)
|
|
goto err_irq;
|
|
|
|
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
|
|
/* Force AWAKE forever */
|
|
ath10k_do_pci_wake(ar);
|
|
|
|
ret = ath10k_pci_ce_init(ar);
|
|
if (ret)
|
|
goto err_ps;
|
|
|
|
ret = ath10k_pci_init_config(ar);
|
|
if (ret)
|
|
goto err_ce;
|
|
|
|
ret = ath10k_pci_wake_target_cpu(ar);
|
|
if (ret) {
|
|
ath10k_err("could not wake up target CPU (%d)\n", ret);
|
|
goto err_ce;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_ce:
|
|
ath10k_pci_ce_deinit(ar);
|
|
err_ps:
|
|
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
|
|
ath10k_do_pci_sleep(ar);
|
|
err_irq:
|
|
ath10k_pci_stop_intr(ar);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static void ath10k_pci_hif_power_down(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
ath10k_pci_stop_intr(ar);
|
|
|
|
ath10k_pci_ce_deinit(ar);
|
|
if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features))
|
|
ath10k_do_pci_sleep(ar);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
#define ATH10K_PCI_PM_CONTROL 0x44
|
|
|
|
static int ath10k_pci_hif_suspend(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct pci_dev *pdev = ar_pci->pdev;
|
|
u32 val;
|
|
|
|
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
|
|
|
|
if ((val & 0x000000ff) != 0x3) {
|
|
pci_save_state(pdev);
|
|
pci_disable_device(pdev);
|
|
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
|
|
(val & 0xffffff00) | 0x03);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_hif_resume(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
struct pci_dev *pdev = ar_pci->pdev;
|
|
u32 val;
|
|
|
|
pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val);
|
|
|
|
if ((val & 0x000000ff) != 0) {
|
|
pci_restore_state(pdev);
|
|
pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL,
|
|
val & 0xffffff00);
|
|
/*
|
|
* Suspend/Resume resets the PCI configuration space,
|
|
* so we have to re-disable the RETRY_TIMEOUT register (0x41)
|
|
* to keep PCI Tx retries from interfering with C3 CPU state
|
|
*/
|
|
pci_read_config_dword(pdev, 0x40, &val);
|
|
|
|
if ((val & 0x0000ff00) != 0)
|
|
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
|
|
.send_head = ath10k_pci_hif_send_head,
|
|
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
|
|
.start = ath10k_pci_hif_start,
|
|
.stop = ath10k_pci_hif_stop,
|
|
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
|
|
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
|
|
.send_complete_check = ath10k_pci_hif_send_complete_check,
|
|
.set_callbacks = ath10k_pci_hif_set_callbacks,
|
|
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
|
|
.power_up = ath10k_pci_hif_power_up,
|
|
.power_down = ath10k_pci_hif_power_down,
|
|
#ifdef CONFIG_PM
|
|
.suspend = ath10k_pci_hif_suspend,
|
|
.resume = ath10k_pci_hif_resume,
|
|
#endif
|
|
};
|
|
|
|
static void ath10k_pci_ce_tasklet(unsigned long ptr)
|
|
{
|
|
struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
|
|
struct ath10k_pci *ar_pci = pipe->ar_pci;
|
|
|
|
ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
|
|
}
|
|
|
|
static void ath10k_msi_err_tasklet(unsigned long data)
|
|
{
|
|
struct ath10k *ar = (struct ath10k *)data;
|
|
|
|
ath10k_pci_fw_interrupt_handler(ar);
|
|
}
|
|
|
|
/*
|
|
* Handler for a per-engine interrupt on a PARTICULAR CE.
|
|
* This is used in cases where each CE has a private MSI interrupt.
|
|
*/
|
|
static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
|
|
{
|
|
struct ath10k *ar = arg;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
|
|
|
|
if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
|
|
ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* NOTE: We are able to derive ce_id from irq because we
|
|
* use a one-to-one mapping for CE's 0..5.
|
|
* CE's 6 & 7 do not use interrupts at all.
|
|
*
|
|
* This mapping must be kept in sync with the mapping
|
|
* used by firmware.
|
|
*/
|
|
tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
|
|
{
|
|
struct ath10k *ar = arg;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
tasklet_schedule(&ar_pci->msi_fw_err);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Top-level interrupt handler for all PCI interrupts from a Target.
|
|
* When a block of MSI interrupts is allocated, this top-level handler
|
|
* is not used; instead, we directly call the correct sub-handler.
|
|
*/
|
|
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
|
|
{
|
|
struct ath10k *ar = arg;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (ar_pci->num_msi_intrs == 0) {
|
|
/*
|
|
* IMPORTANT: INTR_CLR regiser has to be set after
|
|
* INTR_ENABLE is set to 0, otherwise interrupt can not be
|
|
* really cleared.
|
|
*/
|
|
iowrite32(0, ar_pci->mem +
|
|
(SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
iowrite32(PCIE_INTR_FIRMWARE_MASK |
|
|
PCIE_INTR_CE_MASK_ALL,
|
|
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_CLR_ADDRESS));
|
|
/*
|
|
* IMPORTANT: this extra read transaction is required to
|
|
* flush the posted write buffer.
|
|
*/
|
|
(void) ioread32(ar_pci->mem +
|
|
(SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
}
|
|
|
|
tasklet_schedule(&ar_pci->intr_tq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void ath10k_pci_tasklet(unsigned long data)
|
|
{
|
|
struct ath10k *ar = (struct ath10k *)data;
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
|
|
ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */
|
|
ath10k_ce_per_engine_service_any(ar);
|
|
|
|
if (ar_pci->num_msi_intrs == 0) {
|
|
/* Enable Legacy PCI line interrupts */
|
|
iowrite32(PCIE_INTR_FIRMWARE_MASK |
|
|
PCIE_INTR_CE_MASK_ALL,
|
|
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
/*
|
|
* IMPORTANT: this extra read transaction is required to
|
|
* flush the posted write buffer
|
|
*/
|
|
(void) ioread32(ar_pci->mem +
|
|
(SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
}
|
|
}
|
|
|
|
static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret;
|
|
int i;
|
|
|
|
ret = pci_enable_msi_block(ar_pci->pdev, num);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
|
|
ath10k_pci_msi_fw_handler,
|
|
IRQF_SHARED, "ath10k_pci", ar);
|
|
if (ret) {
|
|
ath10k_warn("request_irq(%d) failed %d\n",
|
|
ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
|
|
|
|
pci_disable_msi(ar_pci->pdev);
|
|
return ret;
|
|
}
|
|
|
|
for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
|
|
ret = request_irq(ar_pci->pdev->irq + i,
|
|
ath10k_pci_per_engine_handler,
|
|
IRQF_SHARED, "ath10k_pci", ar);
|
|
if (ret) {
|
|
ath10k_warn("request_irq(%d) failed %d\n",
|
|
ar_pci->pdev->irq + i, ret);
|
|
|
|
for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
|
|
free_irq(ar_pci->pdev->irq + i, ar);
|
|
|
|
free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
|
|
pci_disable_msi(ar_pci->pdev);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ath10k_info("MSI-X interrupt handling (%d intrs)\n", num);
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_start_intr_msi(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret;
|
|
|
|
ret = pci_enable_msi(ar_pci->pdev);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = request_irq(ar_pci->pdev->irq,
|
|
ath10k_pci_interrupt_handler,
|
|
IRQF_SHARED, "ath10k_pci", ar);
|
|
if (ret < 0) {
|
|
pci_disable_msi(ar_pci->pdev);
|
|
return ret;
|
|
}
|
|
|
|
ath10k_info("MSI interrupt handling\n");
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_start_intr_legacy(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int ret;
|
|
|
|
ret = request_irq(ar_pci->pdev->irq,
|
|
ath10k_pci_interrupt_handler,
|
|
IRQF_SHARED, "ath10k_pci", ar);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Make sure to wake the Target before enabling Legacy
|
|
* Interrupt.
|
|
*/
|
|
iowrite32(PCIE_SOC_WAKE_V_MASK,
|
|
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
|
|
ath10k_pci_wait(ar);
|
|
|
|
/*
|
|
* A potential race occurs here: The CORE_BASE write
|
|
* depends on target correctly decoding AXI address but
|
|
* host won't know when target writes BAR to CORE_CTRL.
|
|
* This write might get lost if target has NOT written BAR.
|
|
* For now, fix the race by repeating the write in below
|
|
* synchronization checking.
|
|
*/
|
|
iowrite32(PCIE_INTR_FIRMWARE_MASK |
|
|
PCIE_INTR_CE_MASK_ALL,
|
|
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
iowrite32(PCIE_SOC_WAKE_RESET,
|
|
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
|
|
ath10k_info("legacy interrupt handling\n");
|
|
return 0;
|
|
}
|
|
|
|
static int ath10k_pci_start_intr(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int num = MSI_NUM_REQUEST;
|
|
int ret;
|
|
int i;
|
|
|
|
tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar);
|
|
tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
|
|
(unsigned long) ar);
|
|
|
|
for (i = 0; i < CE_COUNT; i++) {
|
|
ar_pci->pipe_info[i].ar_pci = ar_pci;
|
|
tasklet_init(&ar_pci->pipe_info[i].intr,
|
|
ath10k_pci_ce_tasklet,
|
|
(unsigned long)&ar_pci->pipe_info[i]);
|
|
}
|
|
|
|
if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features))
|
|
num = 1;
|
|
|
|
if (num > 1) {
|
|
ret = ath10k_pci_start_intr_msix(ar, num);
|
|
if (ret == 0)
|
|
goto exit;
|
|
|
|
ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret);
|
|
num = 1;
|
|
}
|
|
|
|
if (num == 1) {
|
|
ret = ath10k_pci_start_intr_msi(ar);
|
|
if (ret == 0)
|
|
goto exit;
|
|
|
|
ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n",
|
|
ret);
|
|
num = 0;
|
|
}
|
|
|
|
ret = ath10k_pci_start_intr_legacy(ar);
|
|
|
|
exit:
|
|
ar_pci->num_msi_intrs = num;
|
|
ar_pci->ce_count = CE_COUNT;
|
|
return ret;
|
|
}
|
|
|
|
static void ath10k_pci_stop_intr(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int i;
|
|
|
|
/* There's at least one interrupt irregardless whether its legacy INTR
|
|
* or MSI or MSI-X */
|
|
for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
|
|
free_irq(ar_pci->pdev->irq + i, ar);
|
|
|
|
if (ar_pci->num_msi_intrs > 0)
|
|
pci_disable_msi(ar_pci->pdev);
|
|
}
|
|
|
|
static int ath10k_pci_reset_target(struct ath10k *ar)
|
|
{
|
|
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
|
|
int wait_limit = 300; /* 3 sec */
|
|
|
|
/* Wait for Target to finish initialization before we proceed. */
|
|
iowrite32(PCIE_SOC_WAKE_V_MASK,
|
|
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
|
|
ath10k_pci_wait(ar);
|
|
|
|
while (wait_limit-- &&
|
|
!(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) &
|
|
FW_IND_INITIALIZED)) {
|
|
if (ar_pci->num_msi_intrs == 0)
|
|
/* Fix potential race by repeating CORE_BASE writes */
|
|
iowrite32(PCIE_INTR_FIRMWARE_MASK |
|
|
PCIE_INTR_CE_MASK_ALL,
|
|
ar_pci->mem + (SOC_CORE_BASE_ADDRESS |
|
|
PCIE_INTR_ENABLE_ADDRESS));
|
|
mdelay(10);
|
|
}
|
|
|
|
if (wait_limit < 0) {
|
|
ath10k_err("Target stalled\n");
|
|
iowrite32(PCIE_SOC_WAKE_RESET,
|
|
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
return -EIO;
|
|
}
|
|
|
|
iowrite32(PCIE_SOC_WAKE_RESET,
|
|
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
|
|
PCIE_SOC_WAKE_ADDRESS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath10k_pci_device_reset(struct ath10k *ar)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
if (!SOC_GLOBAL_RESET_ADDRESS)
|
|
return;
|
|
|
|
ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS,
|
|
PCIE_SOC_WAKE_V_MASK);
|
|
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
|
|
if (ath10k_pci_target_is_awake(ar))
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
/* Put Target, including PCIe, into RESET. */
|
|
val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
|
|
val |= 1;
|
|
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
|
|
|
|
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
|
|
if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
|
|
RTC_STATE_COLD_RESET_MASK)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
/* Pull Target, including PCIe, out of RESET. */
|
|
val &= ~1;
|
|
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
|
|
|
|
for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) {
|
|
if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) &
|
|
RTC_STATE_COLD_RESET_MASK))
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
ath10k_pci_reg_write32(ar, PCIE_SOC_WAKE_ADDRESS, PCIE_SOC_WAKE_RESET);
|
|
}
|
|
|
|
static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) {
|
|
if (!test_bit(i, ar_pci->features))
|
|
continue;
|
|
|
|
switch (i) {
|
|
case ATH10K_PCI_FEATURE_MSI_X:
|
|
ath10k_dbg(ATH10K_DBG_BOOT, "device supports MSI-X\n");
|
|
break;
|
|
case ATH10K_PCI_FEATURE_SOC_POWER_SAVE:
|
|
ath10k_dbg(ATH10K_DBG_BOOT, "QCA98XX SoC power save enabled\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int ath10k_pci_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *pci_dev)
|
|
{
|
|
void __iomem *mem;
|
|
int ret = 0;
|
|
struct ath10k *ar;
|
|
struct ath10k_pci *ar_pci;
|
|
u32 lcr_val, chip_id;
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
|
|
|
|
ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL);
|
|
if (ar_pci == NULL)
|
|
return -ENOMEM;
|
|
|
|
ar_pci->pdev = pdev;
|
|
ar_pci->dev = &pdev->dev;
|
|
|
|
switch (pci_dev->device) {
|
|
case QCA988X_2_0_DEVICE_ID:
|
|
set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features);
|
|
break;
|
|
default:
|
|
ret = -ENODEV;
|
|
ath10k_err("Unkown device ID: %d\n", pci_dev->device);
|
|
goto err_ar_pci;
|
|
}
|
|
|
|
if (ath10k_target_ps)
|
|
set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features);
|
|
|
|
ath10k_pci_dump_features(ar_pci);
|
|
|
|
ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops);
|
|
if (!ar) {
|
|
ath10k_err("ath10k_core_create failed!\n");
|
|
ret = -EINVAL;
|
|
goto err_ar_pci;
|
|
}
|
|
|
|
ar_pci->ar = ar;
|
|
ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS;
|
|
atomic_set(&ar_pci->keep_awake_count, 0);
|
|
|
|
pci_set_drvdata(pdev, ar);
|
|
|
|
/*
|
|
* Without any knowledge of the Host, the Target may have been reset or
|
|
* power cycled and its Config Space may no longer reflect the PCI
|
|
* address space that was assigned earlier by the PCI infrastructure.
|
|
* Refresh it now.
|
|
*/
|
|
ret = pci_assign_resource(pdev, BAR_NUM);
|
|
if (ret) {
|
|
ath10k_err("cannot assign PCI space: %d\n", ret);
|
|
goto err_ar;
|
|
}
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret) {
|
|
ath10k_err("cannot enable PCI device: %d\n", ret);
|
|
goto err_ar;
|
|
}
|
|
|
|
/* Request MMIO resources */
|
|
ret = pci_request_region(pdev, BAR_NUM, "ath");
|
|
if (ret) {
|
|
ath10k_err("PCI MMIO reservation error: %d\n", ret);
|
|
goto err_device;
|
|
}
|
|
|
|
/*
|
|
* Target structures have a limit of 32 bit DMA pointers.
|
|
* DMA pointers can be wider than 32 bits by default on some systems.
|
|
*/
|
|
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
ath10k_err("32-bit DMA not available: %d\n", ret);
|
|
goto err_region;
|
|
}
|
|
|
|
ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
ath10k_err("cannot enable 32-bit consistent DMA\n");
|
|
goto err_region;
|
|
}
|
|
|
|
/* Set bus master bit in PCI_COMMAND to enable DMA */
|
|
pci_set_master(pdev);
|
|
|
|
/*
|
|
* Temporary FIX: disable ASPM
|
|
* Will be removed after the OTP is programmed
|
|
*/
|
|
pci_read_config_dword(pdev, 0x80, &lcr_val);
|
|
pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00));
|
|
|
|
/* Arrange for access to Target SoC registers. */
|
|
mem = pci_iomap(pdev, BAR_NUM, 0);
|
|
if (!mem) {
|
|
ath10k_err("PCI iomap error\n");
|
|
ret = -EIO;
|
|
goto err_master;
|
|
}
|
|
|
|
ar_pci->mem = mem;
|
|
|
|
spin_lock_init(&ar_pci->ce_lock);
|
|
|
|
ret = ath10k_do_pci_wake(ar);
|
|
if (ret) {
|
|
ath10k_err("Failed to get chip id: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
|
|
|
|
ath10k_do_pci_sleep(ar);
|
|
|
|
ath10k_dbg(ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
|
|
|
|
ret = ath10k_core_register(ar, chip_id);
|
|
if (ret) {
|
|
ath10k_err("could not register driver core (%d)\n", ret);
|
|
goto err_iomap;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_iomap:
|
|
pci_iounmap(pdev, mem);
|
|
err_master:
|
|
pci_clear_master(pdev);
|
|
err_region:
|
|
pci_release_region(pdev, BAR_NUM);
|
|
err_device:
|
|
pci_disable_device(pdev);
|
|
err_ar:
|
|
ath10k_core_destroy(ar);
|
|
err_ar_pci:
|
|
/* call HIF PCI free here */
|
|
kfree(ar_pci);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ath10k_pci_remove(struct pci_dev *pdev)
|
|
{
|
|
struct ath10k *ar = pci_get_drvdata(pdev);
|
|
struct ath10k_pci *ar_pci;
|
|
|
|
ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__);
|
|
|
|
if (!ar)
|
|
return;
|
|
|
|
ar_pci = ath10k_pci_priv(ar);
|
|
|
|
if (!ar_pci)
|
|
return;
|
|
|
|
tasklet_kill(&ar_pci->msi_fw_err);
|
|
|
|
ath10k_core_unregister(ar);
|
|
|
|
pci_iounmap(pdev, ar_pci->mem);
|
|
pci_release_region(pdev, BAR_NUM);
|
|
pci_clear_master(pdev);
|
|
pci_disable_device(pdev);
|
|
|
|
ath10k_core_destroy(ar);
|
|
kfree(ar_pci);
|
|
}
|
|
|
|
MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
|
|
|
|
static struct pci_driver ath10k_pci_driver = {
|
|
.name = "ath10k_pci",
|
|
.id_table = ath10k_pci_id_table,
|
|
.probe = ath10k_pci_probe,
|
|
.remove = ath10k_pci_remove,
|
|
};
|
|
|
|
static int __init ath10k_pci_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = pci_register_driver(&ath10k_pci_driver);
|
|
if (ret)
|
|
ath10k_err("pci_register_driver failed [%d]\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
module_init(ath10k_pci_init);
|
|
|
|
static void __exit ath10k_pci_exit(void)
|
|
{
|
|
pci_unregister_driver(&ath10k_pci_driver);
|
|
}
|
|
|
|
module_exit(ath10k_pci_exit);
|
|
|
|
MODULE_AUTHOR("Qualcomm Atheros");
|
|
MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
|
|
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE);
|
|
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
|