mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
4780c65904
While the PIT is masked the guest cannot ack the irq, so the reinject logic will never allow the interrupt to be injected. Fix by resetting the reinjection counters on unmask. Unbreaks Xen. Signed-off-by: Avi Kivity <avi@redhat.com>
671 lines
16 KiB
C
671 lines
16 KiB
C
/*
|
|
* 8253/8254 interval timer emulation
|
|
*
|
|
* Copyright (c) 2003-2004 Fabrice Bellard
|
|
* Copyright (c) 2006 Intel Corporation
|
|
* Copyright (c) 2007 Keir Fraser, XenSource Inc
|
|
* Copyright (c) 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Sheng Yang <sheng.yang@intel.com>
|
|
* Based on QEMU and Xen.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "i8254.h"
|
|
|
|
#ifndef CONFIG_X86_64
|
|
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
|
|
#else
|
|
#define mod_64(x, y) ((x) % (y))
|
|
#endif
|
|
|
|
#define RW_STATE_LSB 1
|
|
#define RW_STATE_MSB 2
|
|
#define RW_STATE_WORD0 3
|
|
#define RW_STATE_WORD1 4
|
|
|
|
/* Compute with 96 bit intermediate result: (a*b)/c */
|
|
static u64 muldiv64(u64 a, u32 b, u32 c)
|
|
{
|
|
union {
|
|
u64 ll;
|
|
struct {
|
|
u32 low, high;
|
|
} l;
|
|
} u, res;
|
|
u64 rl, rh;
|
|
|
|
u.ll = a;
|
|
rl = (u64)u.l.low * (u64)b;
|
|
rh = (u64)u.l.high * (u64)b;
|
|
rh += (rl >> 32);
|
|
res.l.high = div64_u64(rh, c);
|
|
res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
|
|
return res.ll;
|
|
}
|
|
|
|
static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
case 4:
|
|
/* XXX: just disable/enable counting */
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 5:
|
|
/* Restart counting on rising edge. */
|
|
if (c->gate < val)
|
|
c->count_load_time = ktime_get();
|
|
break;
|
|
}
|
|
|
|
c->gate = val;
|
|
}
|
|
|
|
static int pit_get_gate(struct kvm *kvm, int channel)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
return kvm->arch.vpit->pit_state.channels[channel].gate;
|
|
}
|
|
|
|
static int pit_get_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int counter;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
case 0:
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
counter = (c->count - d) & 0xffff;
|
|
break;
|
|
case 3:
|
|
/* XXX: may be incorrect for odd counts */
|
|
counter = c->count - (mod_64((2 * d), c->count));
|
|
break;
|
|
default:
|
|
counter = c->count - mod_64(d, c->count);
|
|
break;
|
|
}
|
|
return counter;
|
|
}
|
|
|
|
static int pit_get_out(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
s64 d, t;
|
|
int out;
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
|
|
d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
|
|
|
|
switch (c->mode) {
|
|
default:
|
|
case 0:
|
|
out = (d >= c->count);
|
|
break;
|
|
case 1:
|
|
out = (d < c->count);
|
|
break;
|
|
case 2:
|
|
out = ((mod_64(d, c->count) == 0) && (d != 0));
|
|
break;
|
|
case 3:
|
|
out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
out = (d == c->count);
|
|
break;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static void pit_latch_count(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->count_latched) {
|
|
c->latched_count = pit_get_count(kvm, channel);
|
|
c->count_latched = c->rw_mode;
|
|
}
|
|
}
|
|
|
|
static void pit_latch_status(struct kvm *kvm, int channel)
|
|
{
|
|
struct kvm_kpit_channel_state *c =
|
|
&kvm->arch.vpit->pit_state.channels[channel];
|
|
|
|
WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
|
|
|
|
if (!c->status_latched) {
|
|
/* TODO: Return NULL COUNT (bit 6). */
|
|
c->status = ((pit_get_out(kvm, channel) << 7) |
|
|
(c->rw_mode << 4) |
|
|
(c->mode << 1) |
|
|
c->bcd);
|
|
c->status_latched = 1;
|
|
}
|
|
}
|
|
|
|
static int __pit_timer_fn(struct kvm_kpit_state *ps)
|
|
{
|
|
struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
|
|
struct kvm_kpit_timer *pt = &ps->pit_timer;
|
|
|
|
if (!atomic_inc_and_test(&pt->pending))
|
|
set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
|
|
|
|
if (!pt->reinject)
|
|
atomic_set(&pt->pending, 1);
|
|
|
|
if (vcpu0 && waitqueue_active(&vcpu0->wq))
|
|
wake_up_interruptible(&vcpu0->wq);
|
|
|
|
hrtimer_add_expires_ns(&pt->timer, pt->period);
|
|
pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
|
|
if (pt->period)
|
|
ps->channels[0].count_load_time = ktime_get();
|
|
|
|
return (pt->period == 0 ? 0 : 1);
|
|
}
|
|
|
|
int pit_has_pending_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
|
|
if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
|
|
return atomic_read(&pit->pit_state.pit_timer.pending);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
|
|
{
|
|
struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
|
|
irq_ack_notifier);
|
|
spin_lock(&ps->inject_lock);
|
|
if (atomic_dec_return(&ps->pit_timer.pending) < 0)
|
|
atomic_inc(&ps->pit_timer.pending);
|
|
ps->irq_ack = 1;
|
|
spin_unlock(&ps->inject_lock);
|
|
}
|
|
|
|
static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
|
|
{
|
|
struct kvm_kpit_state *ps;
|
|
int restart_timer = 0;
|
|
|
|
ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
|
|
|
|
restart_timer = __pit_timer_fn(ps);
|
|
|
|
if (restart_timer)
|
|
return HRTIMER_RESTART;
|
|
else
|
|
return HRTIMER_NORESTART;
|
|
}
|
|
|
|
void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
struct hrtimer *timer;
|
|
|
|
if (vcpu->vcpu_id != 0 || !pit)
|
|
return;
|
|
|
|
timer = &pit->pit_state.pit_timer.timer;
|
|
if (hrtimer_cancel(timer))
|
|
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void destroy_pit_timer(struct kvm_kpit_timer *pt)
|
|
{
|
|
pr_debug("pit: execute del timer!\n");
|
|
hrtimer_cancel(&pt->timer);
|
|
}
|
|
|
|
static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
|
|
{
|
|
struct kvm_kpit_timer *pt = &ps->pit_timer;
|
|
s64 interval;
|
|
|
|
interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
|
|
|
|
pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
|
|
|
|
/* TODO The new value only affected after the retriggered */
|
|
hrtimer_cancel(&pt->timer);
|
|
pt->period = (is_period == 0) ? 0 : interval;
|
|
pt->timer.function = pit_timer_fn;
|
|
atomic_set(&pt->pending, 0);
|
|
ps->irq_ack = 1;
|
|
|
|
hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
|
|
HRTIMER_MODE_ABS);
|
|
}
|
|
|
|
static void pit_load_count(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
|
|
|
|
WARN_ON(!mutex_is_locked(&ps->lock));
|
|
|
|
pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
|
|
|
|
/*
|
|
* Though spec said the state of 8254 is undefined after power-up,
|
|
* seems some tricky OS like Windows XP depends on IRQ0 interrupt
|
|
* when booting up.
|
|
* So here setting initialize rate for it, and not a specific number
|
|
*/
|
|
if (val == 0)
|
|
val = 0x10000;
|
|
|
|
ps->channels[channel].count_load_time = ktime_get();
|
|
ps->channels[channel].count = val;
|
|
|
|
if (channel != 0)
|
|
return;
|
|
|
|
/* Two types of timer
|
|
* mode 1 is one shot, mode 2 is period, otherwise del timer */
|
|
switch (ps->channels[0].mode) {
|
|
case 1:
|
|
/* FIXME: enhance mode 4 precision */
|
|
case 4:
|
|
create_pit_timer(ps, val, 0);
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
create_pit_timer(ps, val, 1);
|
|
break;
|
|
default:
|
|
destroy_pit_timer(&ps->pit_timer);
|
|
}
|
|
}
|
|
|
|
void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
|
|
{
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
pit_load_count(kvm, channel, val);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
}
|
|
|
|
static void pit_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int channel, access;
|
|
struct kvm_kpit_channel_state *s;
|
|
u32 val = *(u32 *) data;
|
|
|
|
val &= 0xff;
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (val != 0)
|
|
pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
|
|
(unsigned int)addr, len, val);
|
|
|
|
if (addr == 3) {
|
|
channel = val >> 6;
|
|
if (channel == 3) {
|
|
/* Read-Back Command. */
|
|
for (channel = 0; channel < 3; channel++) {
|
|
s = &pit_state->channels[channel];
|
|
if (val & (2 << channel)) {
|
|
if (!(val & 0x20))
|
|
pit_latch_count(kvm, channel);
|
|
if (!(val & 0x10))
|
|
pit_latch_status(kvm, channel);
|
|
}
|
|
}
|
|
} else {
|
|
/* Select Counter <channel>. */
|
|
s = &pit_state->channels[channel];
|
|
access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
|
|
if (access == 0) {
|
|
pit_latch_count(kvm, channel);
|
|
} else {
|
|
s->rw_mode = access;
|
|
s->read_state = access;
|
|
s->write_state = access;
|
|
s->mode = (val >> 1) & 7;
|
|
if (s->mode > 5)
|
|
s->mode -= 4;
|
|
s->bcd = val & 1;
|
|
}
|
|
}
|
|
} else {
|
|
/* Write Count. */
|
|
s = &pit_state->channels[addr];
|
|
switch (s->write_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
pit_load_count(kvm, addr, val);
|
|
break;
|
|
case RW_STATE_MSB:
|
|
pit_load_count(kvm, addr, val << 8);
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
s->write_latch = val;
|
|
s->write_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
pit_load_count(kvm, addr, s->write_latch | (val << 8));
|
|
s->write_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static void pit_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
int ret, count;
|
|
struct kvm_kpit_channel_state *s;
|
|
|
|
addr &= KVM_PIT_CHANNEL_MASK;
|
|
s = &pit_state->channels[addr];
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
|
|
if (s->status_latched) {
|
|
s->status_latched = 0;
|
|
ret = s->status;
|
|
} else if (s->count_latched) {
|
|
switch (s->count_latched) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
ret = s->latched_count >> 8;
|
|
s->count_latched = 0;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
ret = s->latched_count & 0xff;
|
|
s->count_latched = RW_STATE_MSB;
|
|
break;
|
|
}
|
|
} else {
|
|
switch (s->read_state) {
|
|
default:
|
|
case RW_STATE_LSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
break;
|
|
case RW_STATE_MSB:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
break;
|
|
case RW_STATE_WORD0:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = count & 0xff;
|
|
s->read_state = RW_STATE_WORD1;
|
|
break;
|
|
case RW_STATE_WORD1:
|
|
count = pit_get_count(kvm, addr);
|
|
ret = (count >> 8) & 0xff;
|
|
s->read_state = RW_STATE_WORD0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
|
|
int len, int is_write)
|
|
{
|
|
return ((addr >= KVM_PIT_BASE_ADDRESS) &&
|
|
(addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
|
|
}
|
|
|
|
static void speaker_ioport_write(struct kvm_io_device *this,
|
|
gpa_t addr, int len, const void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
u32 val = *(u32 *) data;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
pit_state->speaker_data_on = (val >> 1) & 1;
|
|
pit_set_gate(kvm, 2, val & 1);
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static void speaker_ioport_read(struct kvm_io_device *this,
|
|
gpa_t addr, int len, void *data)
|
|
{
|
|
struct kvm_pit *pit = (struct kvm_pit *)this->private;
|
|
struct kvm_kpit_state *pit_state = &pit->pit_state;
|
|
struct kvm *kvm = pit->kvm;
|
|
unsigned int refresh_clock;
|
|
int ret;
|
|
|
|
/* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
|
|
refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
|
|
|
|
mutex_lock(&pit_state->lock);
|
|
ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
|
|
(pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
|
|
if (len > sizeof(ret))
|
|
len = sizeof(ret);
|
|
memcpy(data, (char *)&ret, len);
|
|
mutex_unlock(&pit_state->lock);
|
|
}
|
|
|
|
static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
|
|
int len, int is_write)
|
|
{
|
|
return (addr == KVM_SPEAKER_BASE_ADDRESS);
|
|
}
|
|
|
|
void kvm_pit_reset(struct kvm_pit *pit)
|
|
{
|
|
int i;
|
|
struct kvm_kpit_channel_state *c;
|
|
|
|
mutex_lock(&pit->pit_state.lock);
|
|
for (i = 0; i < 3; i++) {
|
|
c = &pit->pit_state.channels[i];
|
|
c->mode = 0xff;
|
|
c->gate = (i != 2);
|
|
pit_load_count(pit->kvm, i, 0);
|
|
}
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
|
|
static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
|
|
{
|
|
struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
|
|
|
|
if (!mask) {
|
|
atomic_set(&pit->pit_state.pit_timer.pending, 0);
|
|
pit->pit_state.irq_ack = 1;
|
|
}
|
|
}
|
|
|
|
struct kvm_pit *kvm_create_pit(struct kvm *kvm)
|
|
{
|
|
struct kvm_pit *pit;
|
|
struct kvm_kpit_state *pit_state;
|
|
|
|
pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
|
|
if (!pit)
|
|
return NULL;
|
|
|
|
pit->irq_source_id = kvm_request_irq_source_id(kvm);
|
|
if (pit->irq_source_id < 0) {
|
|
kfree(pit);
|
|
return NULL;
|
|
}
|
|
|
|
mutex_init(&pit->pit_state.lock);
|
|
mutex_lock(&pit->pit_state.lock);
|
|
spin_lock_init(&pit->pit_state.inject_lock);
|
|
|
|
/* Initialize PIO device */
|
|
pit->dev.read = pit_ioport_read;
|
|
pit->dev.write = pit_ioport_write;
|
|
pit->dev.in_range = pit_in_range;
|
|
pit->dev.private = pit;
|
|
kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
|
|
|
|
pit->speaker_dev.read = speaker_ioport_read;
|
|
pit->speaker_dev.write = speaker_ioport_write;
|
|
pit->speaker_dev.in_range = speaker_in_range;
|
|
pit->speaker_dev.private = pit;
|
|
kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
|
|
|
|
kvm->arch.vpit = pit;
|
|
pit->kvm = kvm;
|
|
|
|
pit_state = &pit->pit_state;
|
|
pit_state->pit = pit;
|
|
hrtimer_init(&pit_state->pit_timer.timer,
|
|
CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
pit_state->irq_ack_notifier.gsi = 0;
|
|
pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
|
|
kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
|
|
pit_state->pit_timer.reinject = true;
|
|
mutex_unlock(&pit->pit_state.lock);
|
|
|
|
kvm_pit_reset(pit);
|
|
|
|
pit->mask_notifier.func = pit_mask_notifer;
|
|
kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
|
|
|
|
return pit;
|
|
}
|
|
|
|
void kvm_free_pit(struct kvm *kvm)
|
|
{
|
|
struct hrtimer *timer;
|
|
|
|
if (kvm->arch.vpit) {
|
|
kvm_unregister_irq_mask_notifier(kvm, 0,
|
|
&kvm->arch.vpit->mask_notifier);
|
|
mutex_lock(&kvm->arch.vpit->pit_state.lock);
|
|
timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
|
|
hrtimer_cancel(timer);
|
|
kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
|
|
mutex_unlock(&kvm->arch.vpit->pit_state.lock);
|
|
kfree(kvm->arch.vpit);
|
|
}
|
|
}
|
|
|
|
static void __inject_pit_timer_intr(struct kvm *kvm)
|
|
{
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
|
|
kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
|
|
mutex_unlock(&kvm->lock);
|
|
|
|
/*
|
|
* Provides NMI watchdog support via Virtual Wire mode.
|
|
* The route is: PIT -> PIC -> LVT0 in NMI mode.
|
|
*
|
|
* Note: Our Virtual Wire implementation is simplified, only
|
|
* propagating PIT interrupts to all VCPUs when they have set
|
|
* LVT0 to NMI delivery. Other PIC interrupts are just sent to
|
|
* VCPU0, and only if its LVT0 is in EXTINT mode.
|
|
*/
|
|
if (kvm->arch.vapics_in_nmi_mode > 0)
|
|
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
|
|
vcpu = kvm->vcpus[i];
|
|
if (vcpu)
|
|
kvm_apic_nmi_wd_deliver(vcpu);
|
|
}
|
|
}
|
|
|
|
void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_pit *pit = vcpu->kvm->arch.vpit;
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct kvm_kpit_state *ps;
|
|
|
|
if (vcpu && pit) {
|
|
int inject = 0;
|
|
ps = &pit->pit_state;
|
|
|
|
/* Try to inject pending interrupts when
|
|
* last one has been acked.
|
|
*/
|
|
spin_lock(&ps->inject_lock);
|
|
if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
|
|
ps->irq_ack = 0;
|
|
inject = 1;
|
|
}
|
|
spin_unlock(&ps->inject_lock);
|
|
if (inject)
|
|
__inject_pit_timer_intr(kvm);
|
|
}
|
|
}
|