linux_dsm_epyc7002/drivers/usb/host/xhci.h
Andiry Xu c41136b05d xHCI: Implement AMD PLL quirk
This patch disable the optional PM feature inside the Hudson3 platform under
the following conditions:

1. If an isochronous device is connected to xHCI port and is active;
2. Optional PM feature that powers down the internal Bus PLL when the link is
   in low power state is enabled.

The PM feature needs to be disabled to eliminate PLL startup delays when the
link comes out of low power state. The performance of DMA data transfer could
be impacted if system delay were encountered and in addition to the PLL start
up delays. Disabling the PM would leave room for unpredictable system delays
in order to guarantee uninterrupted data transfer to isochronous audio or
video stream devices that require time sensitive information. If data in an
audio/video stream was interrupted then erratic audio or video performance
may be encountered.

AMD PLL quirk is already implemented in OHCI/EHCI driver. After moving the
quirk code to pci-quirks.c and export them, xHCI driver can call it directly
without having the quirk implementation in itself.

Signed-off-by: Andiry Xu <andiry.xu@amd.com>
Signed-off-by: Sarah Sharp <sarah.a.sharp@linux.intel.com>
2011-04-13 16:57:37 -07:00

1563 lines
53 KiB
C

/*
* xHCI host controller driver
*
* Copyright (C) 2008 Intel Corp.
*
* Author: Sarah Sharp
* Some code borrowed from the Linux EHCI driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __LINUX_XHCI_HCD_H
#define __LINUX_XHCI_HCD_H
#include <linux/usb.h>
#include <linux/timer.h>
#include <linux/kernel.h>
#include <linux/usb/hcd.h>
/* Code sharing between pci-quirks and xhci hcd */
#include "xhci-ext-caps.h"
#include "pci-quirks.h"
/* xHCI PCI Configuration Registers */
#define XHCI_SBRN_OFFSET (0x60)
/* Max number of USB devices for any host controller - limit in section 6.1 */
#define MAX_HC_SLOTS 256
/* Section 5.3.3 - MaxPorts */
#define MAX_HC_PORTS 127
/*
* xHCI register interface.
* This corresponds to the eXtensible Host Controller Interface (xHCI)
* Revision 0.95 specification
*/
/**
* struct xhci_cap_regs - xHCI Host Controller Capability Registers.
* @hc_capbase: length of the capabilities register and HC version number
* @hcs_params1: HCSPARAMS1 - Structural Parameters 1
* @hcs_params2: HCSPARAMS2 - Structural Parameters 2
* @hcs_params3: HCSPARAMS3 - Structural Parameters 3
* @hcc_params: HCCPARAMS - Capability Parameters
* @db_off: DBOFF - Doorbell array offset
* @run_regs_off: RTSOFF - Runtime register space offset
*/
struct xhci_cap_regs {
u32 hc_capbase;
u32 hcs_params1;
u32 hcs_params2;
u32 hcs_params3;
u32 hcc_params;
u32 db_off;
u32 run_regs_off;
/* Reserved up to (CAPLENGTH - 0x1C) */
};
/* hc_capbase bitmasks */
/* bits 7:0 - how long is the Capabilities register */
#define HC_LENGTH(p) XHCI_HC_LENGTH(p)
/* bits 31:16 */
#define HC_VERSION(p) (((p) >> 16) & 0xffff)
/* HCSPARAMS1 - hcs_params1 - bitmasks */
/* bits 0:7, Max Device Slots */
#define HCS_MAX_SLOTS(p) (((p) >> 0) & 0xff)
#define HCS_SLOTS_MASK 0xff
/* bits 8:18, Max Interrupters */
#define HCS_MAX_INTRS(p) (((p) >> 8) & 0x7ff)
/* bits 24:31, Max Ports - max value is 0x7F = 127 ports */
#define HCS_MAX_PORTS(p) (((p) >> 24) & 0x7f)
/* HCSPARAMS2 - hcs_params2 - bitmasks */
/* bits 0:3, frames or uframes that SW needs to queue transactions
* ahead of the HW to meet periodic deadlines */
#define HCS_IST(p) (((p) >> 0) & 0xf)
/* bits 4:7, max number of Event Ring segments */
#define HCS_ERST_MAX(p) (((p) >> 4) & 0xf)
/* bit 26 Scratchpad restore - for save/restore HW state - not used yet */
/* bits 27:31 number of Scratchpad buffers SW must allocate for the HW */
#define HCS_MAX_SCRATCHPAD(p) (((p) >> 27) & 0x1f)
/* HCSPARAMS3 - hcs_params3 - bitmasks */
/* bits 0:7, Max U1 to U0 latency for the roothub ports */
#define HCS_U1_LATENCY(p) (((p) >> 0) & 0xff)
/* bits 16:31, Max U2 to U0 latency for the roothub ports */
#define HCS_U2_LATENCY(p) (((p) >> 16) & 0xffff)
/* HCCPARAMS - hcc_params - bitmasks */
/* true: HC can use 64-bit address pointers */
#define HCC_64BIT_ADDR(p) ((p) & (1 << 0))
/* true: HC can do bandwidth negotiation */
#define HCC_BANDWIDTH_NEG(p) ((p) & (1 << 1))
/* true: HC uses 64-byte Device Context structures
* FIXME 64-byte context structures aren't supported yet.
*/
#define HCC_64BYTE_CONTEXT(p) ((p) & (1 << 2))
/* true: HC has port power switches */
#define HCC_PPC(p) ((p) & (1 << 3))
/* true: HC has port indicators */
#define HCS_INDICATOR(p) ((p) & (1 << 4))
/* true: HC has Light HC Reset Capability */
#define HCC_LIGHT_RESET(p) ((p) & (1 << 5))
/* true: HC supports latency tolerance messaging */
#define HCC_LTC(p) ((p) & (1 << 6))
/* true: no secondary Stream ID Support */
#define HCC_NSS(p) ((p) & (1 << 7))
/* Max size for Primary Stream Arrays - 2^(n+1), where n is bits 12:15 */
#define HCC_MAX_PSA(p) (1 << ((((p) >> 12) & 0xf) + 1))
/* Extended Capabilities pointer from PCI base - section 5.3.6 */
#define HCC_EXT_CAPS(p) XHCI_HCC_EXT_CAPS(p)
/* db_off bitmask - bits 0:1 reserved */
#define DBOFF_MASK (~0x3)
/* run_regs_off bitmask - bits 0:4 reserved */
#define RTSOFF_MASK (~0x1f)
/* Number of registers per port */
#define NUM_PORT_REGS 4
/**
* struct xhci_op_regs - xHCI Host Controller Operational Registers.
* @command: USBCMD - xHC command register
* @status: USBSTS - xHC status register
* @page_size: This indicates the page size that the host controller
* supports. If bit n is set, the HC supports a page size
* of 2^(n+12), up to a 128MB page size.
* 4K is the minimum page size.
* @cmd_ring: CRP - 64-bit Command Ring Pointer
* @dcbaa_ptr: DCBAAP - 64-bit Device Context Base Address Array Pointer
* @config_reg: CONFIG - Configure Register
* @port_status_base: PORTSCn - base address for Port Status and Control
* Each port has a Port Status and Control register,
* followed by a Port Power Management Status and Control
* register, a Port Link Info register, and a reserved
* register.
* @port_power_base: PORTPMSCn - base address for
* Port Power Management Status and Control
* @port_link_base: PORTLIn - base address for Port Link Info (current
* Link PM state and control) for USB 2.1 and USB 3.0
* devices.
*/
struct xhci_op_regs {
u32 command;
u32 status;
u32 page_size;
u32 reserved1;
u32 reserved2;
u32 dev_notification;
u64 cmd_ring;
/* rsvd: offset 0x20-2F */
u32 reserved3[4];
u64 dcbaa_ptr;
u32 config_reg;
/* rsvd: offset 0x3C-3FF */
u32 reserved4[241];
/* port 1 registers, which serve as a base address for other ports */
u32 port_status_base;
u32 port_power_base;
u32 port_link_base;
u32 reserved5;
/* registers for ports 2-255 */
u32 reserved6[NUM_PORT_REGS*254];
};
/* USBCMD - USB command - command bitmasks */
/* start/stop HC execution - do not write unless HC is halted*/
#define CMD_RUN XHCI_CMD_RUN
/* Reset HC - resets internal HC state machine and all registers (except
* PCI config regs). HC does NOT drive a USB reset on the downstream ports.
* The xHCI driver must reinitialize the xHC after setting this bit.
*/
#define CMD_RESET (1 << 1)
/* Event Interrupt Enable - a '1' allows interrupts from the host controller */
#define CMD_EIE XHCI_CMD_EIE
/* Host System Error Interrupt Enable - get out-of-band signal for HC errors */
#define CMD_HSEIE XHCI_CMD_HSEIE
/* bits 4:6 are reserved (and should be preserved on writes). */
/* light reset (port status stays unchanged) - reset completed when this is 0 */
#define CMD_LRESET (1 << 7)
/* host controller save/restore state. */
#define CMD_CSS (1 << 8)
#define CMD_CRS (1 << 9)
/* Enable Wrap Event - '1' means xHC generates an event when MFINDEX wraps. */
#define CMD_EWE XHCI_CMD_EWE
/* MFINDEX power management - '1' means xHC can stop MFINDEX counter if all root
* hubs are in U3 (selective suspend), disconnect, disabled, or powered-off.
* '0' means the xHC can power it off if all ports are in the disconnect,
* disabled, or powered-off state.
*/
#define CMD_PM_INDEX (1 << 11)
/* bits 12:31 are reserved (and should be preserved on writes). */
/* USBSTS - USB status - status bitmasks */
/* HC not running - set to 1 when run/stop bit is cleared. */
#define STS_HALT XHCI_STS_HALT
/* serious error, e.g. PCI parity error. The HC will clear the run/stop bit. */
#define STS_FATAL (1 << 2)
/* event interrupt - clear this prior to clearing any IP flags in IR set*/
#define STS_EINT (1 << 3)
/* port change detect */
#define STS_PORT (1 << 4)
/* bits 5:7 reserved and zeroed */
/* save state status - '1' means xHC is saving state */
#define STS_SAVE (1 << 8)
/* restore state status - '1' means xHC is restoring state */
#define STS_RESTORE (1 << 9)
/* true: save or restore error */
#define STS_SRE (1 << 10)
/* true: Controller Not Ready to accept doorbell or op reg writes after reset */
#define STS_CNR XHCI_STS_CNR
/* true: internal Host Controller Error - SW needs to reset and reinitialize */
#define STS_HCE (1 << 12)
/* bits 13:31 reserved and should be preserved */
/*
* DNCTRL - Device Notification Control Register - dev_notification bitmasks
* Generate a device notification event when the HC sees a transaction with a
* notification type that matches a bit set in this bit field.
*/
#define DEV_NOTE_MASK (0xffff)
#define ENABLE_DEV_NOTE(x) (1 << (x))
/* Most of the device notification types should only be used for debug.
* SW does need to pay attention to function wake notifications.
*/
#define DEV_NOTE_FWAKE ENABLE_DEV_NOTE(1)
/* CRCR - Command Ring Control Register - cmd_ring bitmasks */
/* bit 0 is the command ring cycle state */
/* stop ring operation after completion of the currently executing command */
#define CMD_RING_PAUSE (1 << 1)
/* stop ring immediately - abort the currently executing command */
#define CMD_RING_ABORT (1 << 2)
/* true: command ring is running */
#define CMD_RING_RUNNING (1 << 3)
/* bits 4:5 reserved and should be preserved */
/* Command Ring pointer - bit mask for the lower 32 bits. */
#define CMD_RING_RSVD_BITS (0x3f)
/* CONFIG - Configure Register - config_reg bitmasks */
/* bits 0:7 - maximum number of device slots enabled (NumSlotsEn) */
#define MAX_DEVS(p) ((p) & 0xff)
/* bits 8:31 - reserved and should be preserved */
/* PORTSC - Port Status and Control Register - port_status_base bitmasks */
/* true: device connected */
#define PORT_CONNECT (1 << 0)
/* true: port enabled */
#define PORT_PE (1 << 1)
/* bit 2 reserved and zeroed */
/* true: port has an over-current condition */
#define PORT_OC (1 << 3)
/* true: port reset signaling asserted */
#define PORT_RESET (1 << 4)
/* Port Link State - bits 5:8
* A read gives the current link PM state of the port,
* a write with Link State Write Strobe set sets the link state.
*/
#define PORT_PLS_MASK (0xf << 5)
#define XDEV_U0 (0x0 << 5)
#define XDEV_U3 (0x3 << 5)
#define XDEV_RESUME (0xf << 5)
/* true: port has power (see HCC_PPC) */
#define PORT_POWER (1 << 9)
/* bits 10:13 indicate device speed:
* 0 - undefined speed - port hasn't be initialized by a reset yet
* 1 - full speed
* 2 - low speed
* 3 - high speed
* 4 - super speed
* 5-15 reserved
*/
#define DEV_SPEED_MASK (0xf << 10)
#define XDEV_FS (0x1 << 10)
#define XDEV_LS (0x2 << 10)
#define XDEV_HS (0x3 << 10)
#define XDEV_SS (0x4 << 10)
#define DEV_UNDEFSPEED(p) (((p) & DEV_SPEED_MASK) == (0x0<<10))
#define DEV_FULLSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_FS)
#define DEV_LOWSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_LS)
#define DEV_HIGHSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_HS)
#define DEV_SUPERSPEED(p) (((p) & DEV_SPEED_MASK) == XDEV_SS)
/* Bits 20:23 in the Slot Context are the speed for the device */
#define SLOT_SPEED_FS (XDEV_FS << 10)
#define SLOT_SPEED_LS (XDEV_LS << 10)
#define SLOT_SPEED_HS (XDEV_HS << 10)
#define SLOT_SPEED_SS (XDEV_SS << 10)
/* Port Indicator Control */
#define PORT_LED_OFF (0 << 14)
#define PORT_LED_AMBER (1 << 14)
#define PORT_LED_GREEN (2 << 14)
#define PORT_LED_MASK (3 << 14)
/* Port Link State Write Strobe - set this when changing link state */
#define PORT_LINK_STROBE (1 << 16)
/* true: connect status change */
#define PORT_CSC (1 << 17)
/* true: port enable change */
#define PORT_PEC (1 << 18)
/* true: warm reset for a USB 3.0 device is done. A "hot" reset puts the port
* into an enabled state, and the device into the default state. A "warm" reset
* also resets the link, forcing the device through the link training sequence.
* SW can also look at the Port Reset register to see when warm reset is done.
*/
#define PORT_WRC (1 << 19)
/* true: over-current change */
#define PORT_OCC (1 << 20)
/* true: reset change - 1 to 0 transition of PORT_RESET */
#define PORT_RC (1 << 21)
/* port link status change - set on some port link state transitions:
* Transition Reason
* ------------------------------------------------------------------------------
* - U3 to Resume Wakeup signaling from a device
* - Resume to Recovery to U0 USB 3.0 device resume
* - Resume to U0 USB 2.0 device resume
* - U3 to Recovery to U0 Software resume of USB 3.0 device complete
* - U3 to U0 Software resume of USB 2.0 device complete
* - U2 to U0 L1 resume of USB 2.1 device complete
* - U0 to U0 (???) L1 entry rejection by USB 2.1 device
* - U0 to disabled L1 entry error with USB 2.1 device
* - Any state to inactive Error on USB 3.0 port
*/
#define PORT_PLC (1 << 22)
/* port configure error change - port failed to configure its link partner */
#define PORT_CEC (1 << 23)
/* bit 24 reserved */
/* wake on connect (enable) */
#define PORT_WKCONN_E (1 << 25)
/* wake on disconnect (enable) */
#define PORT_WKDISC_E (1 << 26)
/* wake on over-current (enable) */
#define PORT_WKOC_E (1 << 27)
/* bits 28:29 reserved */
/* true: device is removable - for USB 3.0 roothub emulation */
#define PORT_DEV_REMOVE (1 << 30)
/* Initiate a warm port reset - complete when PORT_WRC is '1' */
#define PORT_WR (1 << 31)
/* We mark duplicate entries with -1 */
#define DUPLICATE_ENTRY ((u8)(-1))
/* Port Power Management Status and Control - port_power_base bitmasks */
/* Inactivity timer value for transitions into U1, in microseconds.
* Timeout can be up to 127us. 0xFF means an infinite timeout.
*/
#define PORT_U1_TIMEOUT(p) ((p) & 0xff)
/* Inactivity timer value for transitions into U2 */
#define PORT_U2_TIMEOUT(p) (((p) & 0xff) << 8)
/* Bits 24:31 for port testing */
/* USB2 Protocol PORTSPMSC */
#define PORT_RWE (1 << 0x3)
/**
* struct xhci_intr_reg - Interrupt Register Set
* @irq_pending: IMAN - Interrupt Management Register. Used to enable
* interrupts and check for pending interrupts.
* @irq_control: IMOD - Interrupt Moderation Register.
* Used to throttle interrupts.
* @erst_size: Number of segments in the Event Ring Segment Table (ERST).
* @erst_base: ERST base address.
* @erst_dequeue: Event ring dequeue pointer.
*
* Each interrupter (defined by a MSI-X vector) has an event ring and an Event
* Ring Segment Table (ERST) associated with it. The event ring is comprised of
* multiple segments of the same size. The HC places events on the ring and
* "updates the Cycle bit in the TRBs to indicate to software the current
* position of the Enqueue Pointer." The HCD (Linux) processes those events and
* updates the dequeue pointer.
*/
struct xhci_intr_reg {
u32 irq_pending;
u32 irq_control;
u32 erst_size;
u32 rsvd;
u64 erst_base;
u64 erst_dequeue;
};
/* irq_pending bitmasks */
#define ER_IRQ_PENDING(p) ((p) & 0x1)
/* bits 2:31 need to be preserved */
/* THIS IS BUGGY - FIXME - IP IS WRITE 1 TO CLEAR */
#define ER_IRQ_CLEAR(p) ((p) & 0xfffffffe)
#define ER_IRQ_ENABLE(p) ((ER_IRQ_CLEAR(p)) | 0x2)
#define ER_IRQ_DISABLE(p) ((ER_IRQ_CLEAR(p)) & ~(0x2))
/* irq_control bitmasks */
/* Minimum interval between interrupts (in 250ns intervals). The interval
* between interrupts will be longer if there are no events on the event ring.
* Default is 4000 (1 ms).
*/
#define ER_IRQ_INTERVAL_MASK (0xffff)
/* Counter used to count down the time to the next interrupt - HW use only */
#define ER_IRQ_COUNTER_MASK (0xffff << 16)
/* erst_size bitmasks */
/* Preserve bits 16:31 of erst_size */
#define ERST_SIZE_MASK (0xffff << 16)
/* erst_dequeue bitmasks */
/* Dequeue ERST Segment Index (DESI) - Segment number (or alias)
* where the current dequeue pointer lies. This is an optional HW hint.
*/
#define ERST_DESI_MASK (0x7)
/* Event Handler Busy (EHB) - is the event ring scheduled to be serviced by
* a work queue (or delayed service routine)?
*/
#define ERST_EHB (1 << 3)
#define ERST_PTR_MASK (0xf)
/**
* struct xhci_run_regs
* @microframe_index:
* MFINDEX - current microframe number
*
* Section 5.5 Host Controller Runtime Registers:
* "Software should read and write these registers using only Dword (32 bit)
* or larger accesses"
*/
struct xhci_run_regs {
u32 microframe_index;
u32 rsvd[7];
struct xhci_intr_reg ir_set[128];
};
/**
* struct doorbell_array
*
* Bits 0 - 7: Endpoint target
* Bits 8 - 15: RsvdZ
* Bits 16 - 31: Stream ID
*
* Section 5.6
*/
struct xhci_doorbell_array {
u32 doorbell[256];
};
#define DB_VALUE(ep, stream) ((((ep) + 1) & 0xff) | ((stream) << 16))
#define DB_VALUE_HOST 0x00000000
/**
* struct xhci_protocol_caps
* @revision: major revision, minor revision, capability ID,
* and next capability pointer.
* @name_string: Four ASCII characters to say which spec this xHC
* follows, typically "USB ".
* @port_info: Port offset, count, and protocol-defined information.
*/
struct xhci_protocol_caps {
u32 revision;
u32 name_string;
u32 port_info;
};
#define XHCI_EXT_PORT_MAJOR(x) (((x) >> 24) & 0xff)
#define XHCI_EXT_PORT_OFF(x) ((x) & 0xff)
#define XHCI_EXT_PORT_COUNT(x) (((x) >> 8) & 0xff)
/**
* struct xhci_container_ctx
* @type: Type of context. Used to calculated offsets to contained contexts.
* @size: Size of the context data
* @bytes: The raw context data given to HW
* @dma: dma address of the bytes
*
* Represents either a Device or Input context. Holds a pointer to the raw
* memory used for the context (bytes) and dma address of it (dma).
*/
struct xhci_container_ctx {
unsigned type;
#define XHCI_CTX_TYPE_DEVICE 0x1
#define XHCI_CTX_TYPE_INPUT 0x2
int size;
u8 *bytes;
dma_addr_t dma;
};
/**
* struct xhci_slot_ctx
* @dev_info: Route string, device speed, hub info, and last valid endpoint
* @dev_info2: Max exit latency for device number, root hub port number
* @tt_info: tt_info is used to construct split transaction tokens
* @dev_state: slot state and device address
*
* Slot Context - section 6.2.1.1. This assumes the HC uses 32-byte context
* structures. If the HC uses 64-byte contexts, there is an additional 32 bytes
* reserved at the end of the slot context for HC internal use.
*/
struct xhci_slot_ctx {
u32 dev_info;
u32 dev_info2;
u32 tt_info;
u32 dev_state;
/* offset 0x10 to 0x1f reserved for HC internal use */
u32 reserved[4];
};
/* dev_info bitmasks */
/* Route String - 0:19 */
#define ROUTE_STRING_MASK (0xfffff)
/* Device speed - values defined by PORTSC Device Speed field - 20:23 */
#define DEV_SPEED (0xf << 20)
/* bit 24 reserved */
/* Is this LS/FS device connected through a HS hub? - bit 25 */
#define DEV_MTT (0x1 << 25)
/* Set if the device is a hub - bit 26 */
#define DEV_HUB (0x1 << 26)
/* Index of the last valid endpoint context in this device context - 27:31 */
#define LAST_CTX_MASK (0x1f << 27)
#define LAST_CTX(p) ((p) << 27)
#define LAST_CTX_TO_EP_NUM(p) (((p) >> 27) - 1)
#define SLOT_FLAG (1 << 0)
#define EP0_FLAG (1 << 1)
/* dev_info2 bitmasks */
/* Max Exit Latency (ms) - worst case time to wake up all links in dev path */
#define MAX_EXIT (0xffff)
/* Root hub port number that is needed to access the USB device */
#define ROOT_HUB_PORT(p) (((p) & 0xff) << 16)
#define DEVINFO_TO_ROOT_HUB_PORT(p) (((p) >> 16) & 0xff)
/* Maximum number of ports under a hub device */
#define XHCI_MAX_PORTS(p) (((p) & 0xff) << 24)
/* tt_info bitmasks */
/*
* TT Hub Slot ID - for low or full speed devices attached to a high-speed hub
* The Slot ID of the hub that isolates the high speed signaling from
* this low or full-speed device. '0' if attached to root hub port.
*/
#define TT_SLOT (0xff)
/*
* The number of the downstream facing port of the high-speed hub
* '0' if the device is not low or full speed.
*/
#define TT_PORT (0xff << 8)
#define TT_THINK_TIME(p) (((p) & 0x3) << 16)
/* dev_state bitmasks */
/* USB device address - assigned by the HC */
#define DEV_ADDR_MASK (0xff)
/* bits 8:26 reserved */
/* Slot state */
#define SLOT_STATE (0x1f << 27)
#define GET_SLOT_STATE(p) (((p) & (0x1f << 27)) >> 27)
/**
* struct xhci_ep_ctx
* @ep_info: endpoint state, streams, mult, and interval information.
* @ep_info2: information on endpoint type, max packet size, max burst size,
* error count, and whether the HC will force an event for all
* transactions.
* @deq: 64-bit ring dequeue pointer address. If the endpoint only
* defines one stream, this points to the endpoint transfer ring.
* Otherwise, it points to a stream context array, which has a
* ring pointer for each flow.
* @tx_info:
* Average TRB lengths for the endpoint ring and
* max payload within an Endpoint Service Interval Time (ESIT).
*
* Endpoint Context - section 6.2.1.2. This assumes the HC uses 32-byte context
* structures. If the HC uses 64-byte contexts, there is an additional 32 bytes
* reserved at the end of the endpoint context for HC internal use.
*/
struct xhci_ep_ctx {
u32 ep_info;
u32 ep_info2;
u64 deq;
u32 tx_info;
/* offset 0x14 - 0x1f reserved for HC internal use */
u32 reserved[3];
};
/* ep_info bitmasks */
/*
* Endpoint State - bits 0:2
* 0 - disabled
* 1 - running
* 2 - halted due to halt condition - ok to manipulate endpoint ring
* 3 - stopped
* 4 - TRB error
* 5-7 - reserved
*/
#define EP_STATE_MASK (0xf)
#define EP_STATE_DISABLED 0
#define EP_STATE_RUNNING 1
#define EP_STATE_HALTED 2
#define EP_STATE_STOPPED 3
#define EP_STATE_ERROR 4
/* Mult - Max number of burtst within an interval, in EP companion desc. */
#define EP_MULT(p) (((p) & 0x3) << 8)
/* bits 10:14 are Max Primary Streams */
/* bit 15 is Linear Stream Array */
/* Interval - period between requests to an endpoint - 125u increments. */
#define EP_INTERVAL(p) (((p) & 0xff) << 16)
#define EP_INTERVAL_TO_UFRAMES(p) (1 << (((p) >> 16) & 0xff))
#define EP_MAXPSTREAMS_MASK (0x1f << 10)
#define EP_MAXPSTREAMS(p) (((p) << 10) & EP_MAXPSTREAMS_MASK)
/* Endpoint is set up with a Linear Stream Array (vs. Secondary Stream Array) */
#define EP_HAS_LSA (1 << 15)
/* ep_info2 bitmasks */
/*
* Force Event - generate transfer events for all TRBs for this endpoint
* This will tell the HC to ignore the IOC and ISP flags (for debugging only).
*/
#define FORCE_EVENT (0x1)
#define ERROR_COUNT(p) (((p) & 0x3) << 1)
#define CTX_TO_EP_TYPE(p) (((p) >> 3) & 0x7)
#define EP_TYPE(p) ((p) << 3)
#define ISOC_OUT_EP 1
#define BULK_OUT_EP 2
#define INT_OUT_EP 3
#define CTRL_EP 4
#define ISOC_IN_EP 5
#define BULK_IN_EP 6
#define INT_IN_EP 7
/* bit 6 reserved */
/* bit 7 is Host Initiate Disable - for disabling stream selection */
#define MAX_BURST(p) (((p)&0xff) << 8)
#define MAX_PACKET(p) (((p)&0xffff) << 16)
#define MAX_PACKET_MASK (0xffff << 16)
#define MAX_PACKET_DECODED(p) (((p) >> 16) & 0xffff)
/* Get max packet size from ep desc. Bit 10..0 specify the max packet size.
* USB2.0 spec 9.6.6.
*/
#define GET_MAX_PACKET(p) ((p) & 0x7ff)
/* tx_info bitmasks */
#define AVG_TRB_LENGTH_FOR_EP(p) ((p) & 0xffff)
#define MAX_ESIT_PAYLOAD_FOR_EP(p) (((p) & 0xffff) << 16)
/* deq bitmasks */
#define EP_CTX_CYCLE_MASK (1 << 0)
/**
* struct xhci_input_control_context
* Input control context; see section 6.2.5.
*
* @drop_context: set the bit of the endpoint context you want to disable
* @add_context: set the bit of the endpoint context you want to enable
*/
struct xhci_input_control_ctx {
u32 drop_flags;
u32 add_flags;
u32 rsvd2[6];
};
/* Represents everything that is needed to issue a command on the command ring.
* It's useful to pre-allocate these for commands that cannot fail due to
* out-of-memory errors, like freeing streams.
*/
struct xhci_command {
/* Input context for changing device state */
struct xhci_container_ctx *in_ctx;
u32 status;
/* If completion is null, no one is waiting on this command
* and the structure can be freed after the command completes.
*/
struct completion *completion;
union xhci_trb *command_trb;
struct list_head cmd_list;
};
/* drop context bitmasks */
#define DROP_EP(x) (0x1 << x)
/* add context bitmasks */
#define ADD_EP(x) (0x1 << x)
struct xhci_stream_ctx {
/* 64-bit stream ring address, cycle state, and stream type */
u64 stream_ring;
/* offset 0x14 - 0x1f reserved for HC internal use */
u32 reserved[2];
};
/* Stream Context Types (section 6.4.1) - bits 3:1 of stream ctx deq ptr */
#define SCT_FOR_CTX(p) (((p) << 1) & 0x7)
/* Secondary stream array type, dequeue pointer is to a transfer ring */
#define SCT_SEC_TR 0
/* Primary stream array type, dequeue pointer is to a transfer ring */
#define SCT_PRI_TR 1
/* Dequeue pointer is for a secondary stream array (SSA) with 8 entries */
#define SCT_SSA_8 2
#define SCT_SSA_16 3
#define SCT_SSA_32 4
#define SCT_SSA_64 5
#define SCT_SSA_128 6
#define SCT_SSA_256 7
/* Assume no secondary streams for now */
struct xhci_stream_info {
struct xhci_ring **stream_rings;
/* Number of streams, including stream 0 (which drivers can't use) */
unsigned int num_streams;
/* The stream context array may be bigger than
* the number of streams the driver asked for
*/
struct xhci_stream_ctx *stream_ctx_array;
unsigned int num_stream_ctxs;
dma_addr_t ctx_array_dma;
/* For mapping physical TRB addresses to segments in stream rings */
struct radix_tree_root trb_address_map;
struct xhci_command *free_streams_command;
};
#define SMALL_STREAM_ARRAY_SIZE 256
#define MEDIUM_STREAM_ARRAY_SIZE 1024
struct xhci_virt_ep {
struct xhci_ring *ring;
/* Related to endpoints that are configured to use stream IDs only */
struct xhci_stream_info *stream_info;
/* Temporary storage in case the configure endpoint command fails and we
* have to restore the device state to the previous state
*/
struct xhci_ring *new_ring;
unsigned int ep_state;
#define SET_DEQ_PENDING (1 << 0)
#define EP_HALTED (1 << 1) /* For stall handling */
#define EP_HALT_PENDING (1 << 2) /* For URB cancellation */
/* Transitioning the endpoint to using streams, don't enqueue URBs */
#define EP_GETTING_STREAMS (1 << 3)
#define EP_HAS_STREAMS (1 << 4)
/* Transitioning the endpoint to not using streams, don't enqueue URBs */
#define EP_GETTING_NO_STREAMS (1 << 5)
/* ---- Related to URB cancellation ---- */
struct list_head cancelled_td_list;
/* The TRB that was last reported in a stopped endpoint ring */
union xhci_trb *stopped_trb;
struct xhci_td *stopped_td;
unsigned int stopped_stream;
/* Watchdog timer for stop endpoint command to cancel URBs */
struct timer_list stop_cmd_timer;
int stop_cmds_pending;
struct xhci_hcd *xhci;
/* Dequeue pointer and dequeue segment for a submitted Set TR Dequeue
* command. We'll need to update the ring's dequeue segment and dequeue
* pointer after the command completes.
*/
struct xhci_segment *queued_deq_seg;
union xhci_trb *queued_deq_ptr;
/*
* Sometimes the xHC can not process isochronous endpoint ring quickly
* enough, and it will miss some isoc tds on the ring and generate
* a Missed Service Error Event.
* Set skip flag when receive a Missed Service Error Event and
* process the missed tds on the endpoint ring.
*/
bool skip;
};
struct xhci_virt_device {
struct usb_device *udev;
/*
* Commands to the hardware are passed an "input context" that
* tells the hardware what to change in its data structures.
* The hardware will return changes in an "output context" that
* software must allocate for the hardware. We need to keep
* track of input and output contexts separately because
* these commands might fail and we don't trust the hardware.
*/
struct xhci_container_ctx *out_ctx;
/* Used for addressing devices and configuration changes */
struct xhci_container_ctx *in_ctx;
/* Rings saved to ensure old alt settings can be re-instated */
struct xhci_ring **ring_cache;
int num_rings_cached;
/* Store xHC assigned device address */
int address;
#define XHCI_MAX_RINGS_CACHED 31
struct xhci_virt_ep eps[31];
struct completion cmd_completion;
/* Status of the last command issued for this device */
u32 cmd_status;
struct list_head cmd_list;
u8 port;
};
/**
* struct xhci_device_context_array
* @dev_context_ptr array of 64-bit DMA addresses for device contexts
*/
struct xhci_device_context_array {
/* 64-bit device addresses; we only write 32-bit addresses */
u64 dev_context_ptrs[MAX_HC_SLOTS];
/* private xHCD pointers */
dma_addr_t dma;
};
/* TODO: write function to set the 64-bit device DMA address */
/*
* TODO: change this to be dynamically sized at HC mem init time since the HC
* might not be able to handle the maximum number of devices possible.
*/
struct xhci_transfer_event {
/* 64-bit buffer address, or immediate data */
u64 buffer;
u32 transfer_len;
/* This field is interpreted differently based on the type of TRB */
u32 flags;
};
/** Transfer Event bit fields **/
#define TRB_TO_EP_ID(p) (((p) >> 16) & 0x1f)
/* Completion Code - only applicable for some types of TRBs */
#define COMP_CODE_MASK (0xff << 24)
#define GET_COMP_CODE(p) (((p) & COMP_CODE_MASK) >> 24)
#define COMP_SUCCESS 1
/* Data Buffer Error */
#define COMP_DB_ERR 2
/* Babble Detected Error */
#define COMP_BABBLE 3
/* USB Transaction Error */
#define COMP_TX_ERR 4
/* TRB Error - some TRB field is invalid */
#define COMP_TRB_ERR 5
/* Stall Error - USB device is stalled */
#define COMP_STALL 6
/* Resource Error - HC doesn't have memory for that device configuration */
#define COMP_ENOMEM 7
/* Bandwidth Error - not enough room in schedule for this dev config */
#define COMP_BW_ERR 8
/* No Slots Available Error - HC ran out of device slots */
#define COMP_ENOSLOTS 9
/* Invalid Stream Type Error */
#define COMP_STREAM_ERR 10
/* Slot Not Enabled Error - doorbell rung for disabled device slot */
#define COMP_EBADSLT 11
/* Endpoint Not Enabled Error */
#define COMP_EBADEP 12
/* Short Packet */
#define COMP_SHORT_TX 13
/* Ring Underrun - doorbell rung for an empty isoc OUT ep ring */
#define COMP_UNDERRUN 14
/* Ring Overrun - isoc IN ep ring is empty when ep is scheduled to RX */
#define COMP_OVERRUN 15
/* Virtual Function Event Ring Full Error */
#define COMP_VF_FULL 16
/* Parameter Error - Context parameter is invalid */
#define COMP_EINVAL 17
/* Bandwidth Overrun Error - isoc ep exceeded its allocated bandwidth */
#define COMP_BW_OVER 18
/* Context State Error - illegal context state transition requested */
#define COMP_CTX_STATE 19
/* No Ping Response Error - HC didn't get PING_RESPONSE in time to TX */
#define COMP_PING_ERR 20
/* Event Ring is full */
#define COMP_ER_FULL 21
/* Missed Service Error - HC couldn't service an isoc ep within interval */
#define COMP_MISSED_INT 23
/* Successfully stopped command ring */
#define COMP_CMD_STOP 24
/* Successfully aborted current command and stopped command ring */
#define COMP_CMD_ABORT 25
/* Stopped - transfer was terminated by a stop endpoint command */
#define COMP_STOP 26
/* Same as COMP_EP_STOPPED, but the transferred length in the event is invalid */
#define COMP_STOP_INVAL 27
/* Control Abort Error - Debug Capability - control pipe aborted */
#define COMP_DBG_ABORT 28
/* TRB type 29 and 30 reserved */
/* Isoc Buffer Overrun - an isoc IN ep sent more data than could fit in TD */
#define COMP_BUFF_OVER 31
/* Event Lost Error - xHC has an "internal event overrun condition" */
#define COMP_ISSUES 32
/* Undefined Error - reported when other error codes don't apply */
#define COMP_UNKNOWN 33
/* Invalid Stream ID Error */
#define COMP_STRID_ERR 34
/* Secondary Bandwidth Error - may be returned by a Configure Endpoint cmd */
/* FIXME - check for this */
#define COMP_2ND_BW_ERR 35
/* Split Transaction Error */
#define COMP_SPLIT_ERR 36
struct xhci_link_trb {
/* 64-bit segment pointer*/
u64 segment_ptr;
u32 intr_target;
u32 control;
};
/* control bitfields */
#define LINK_TOGGLE (0x1<<1)
/* Command completion event TRB */
struct xhci_event_cmd {
/* Pointer to command TRB, or the value passed by the event data trb */
u64 cmd_trb;
u32 status;
u32 flags;
};
/* flags bitmasks */
/* bits 16:23 are the virtual function ID */
/* bits 24:31 are the slot ID */
#define TRB_TO_SLOT_ID(p) (((p) & (0xff<<24)) >> 24)
#define SLOT_ID_FOR_TRB(p) (((p) & 0xff) << 24)
/* Stop Endpoint TRB - ep_index to endpoint ID for this TRB */
#define TRB_TO_EP_INDEX(p) ((((p) & (0x1f << 16)) >> 16) - 1)
#define EP_ID_FOR_TRB(p) ((((p) + 1) & 0x1f) << 16)
#define SUSPEND_PORT_FOR_TRB(p) (((p) & 1) << 23)
#define TRB_TO_SUSPEND_PORT(p) (((p) & (1 << 23)) >> 23)
#define LAST_EP_INDEX 30
/* Set TR Dequeue Pointer command TRB fields */
#define TRB_TO_STREAM_ID(p) ((((p) & (0xffff << 16)) >> 16))
#define STREAM_ID_FOR_TRB(p) ((((p)) & 0xffff) << 16)
/* Port Status Change Event TRB fields */
/* Port ID - bits 31:24 */
#define GET_PORT_ID(p) (((p) & (0xff << 24)) >> 24)
/* Normal TRB fields */
/* transfer_len bitmasks - bits 0:16 */
#define TRB_LEN(p) ((p) & 0x1ffff)
/* Interrupter Target - which MSI-X vector to target the completion event at */
#define TRB_INTR_TARGET(p) (((p) & 0x3ff) << 22)
#define GET_INTR_TARGET(p) (((p) >> 22) & 0x3ff)
/* Cycle bit - indicates TRB ownership by HC or HCD */
#define TRB_CYCLE (1<<0)
/*
* Force next event data TRB to be evaluated before task switch.
* Used to pass OS data back after a TD completes.
*/
#define TRB_ENT (1<<1)
/* Interrupt on short packet */
#define TRB_ISP (1<<2)
/* Set PCIe no snoop attribute */
#define TRB_NO_SNOOP (1<<3)
/* Chain multiple TRBs into a TD */
#define TRB_CHAIN (1<<4)
/* Interrupt on completion */
#define TRB_IOC (1<<5)
/* The buffer pointer contains immediate data */
#define TRB_IDT (1<<6)
/* Control transfer TRB specific fields */
#define TRB_DIR_IN (1<<16)
/* Isochronous TRB specific fields */
#define TRB_SIA (1<<31)
struct xhci_generic_trb {
u32 field[4];
};
union xhci_trb {
struct xhci_link_trb link;
struct xhci_transfer_event trans_event;
struct xhci_event_cmd event_cmd;
struct xhci_generic_trb generic;
};
/* TRB bit mask */
#define TRB_TYPE_BITMASK (0xfc00)
#define TRB_TYPE(p) ((p) << 10)
#define TRB_FIELD_TO_TYPE(p) (((p) & TRB_TYPE_BITMASK) >> 10)
/* TRB type IDs */
/* bulk, interrupt, isoc scatter/gather, and control data stage */
#define TRB_NORMAL 1
/* setup stage for control transfers */
#define TRB_SETUP 2
/* data stage for control transfers */
#define TRB_DATA 3
/* status stage for control transfers */
#define TRB_STATUS 4
/* isoc transfers */
#define TRB_ISOC 5
/* TRB for linking ring segments */
#define TRB_LINK 6
#define TRB_EVENT_DATA 7
/* Transfer Ring No-op (not for the command ring) */
#define TRB_TR_NOOP 8
/* Command TRBs */
/* Enable Slot Command */
#define TRB_ENABLE_SLOT 9
/* Disable Slot Command */
#define TRB_DISABLE_SLOT 10
/* Address Device Command */
#define TRB_ADDR_DEV 11
/* Configure Endpoint Command */
#define TRB_CONFIG_EP 12
/* Evaluate Context Command */
#define TRB_EVAL_CONTEXT 13
/* Reset Endpoint Command */
#define TRB_RESET_EP 14
/* Stop Transfer Ring Command */
#define TRB_STOP_RING 15
/* Set Transfer Ring Dequeue Pointer Command */
#define TRB_SET_DEQ 16
/* Reset Device Command */
#define TRB_RESET_DEV 17
/* Force Event Command (opt) */
#define TRB_FORCE_EVENT 18
/* Negotiate Bandwidth Command (opt) */
#define TRB_NEG_BANDWIDTH 19
/* Set Latency Tolerance Value Command (opt) */
#define TRB_SET_LT 20
/* Get port bandwidth Command */
#define TRB_GET_BW 21
/* Force Header Command - generate a transaction or link management packet */
#define TRB_FORCE_HEADER 22
/* No-op Command - not for transfer rings */
#define TRB_CMD_NOOP 23
/* TRB IDs 24-31 reserved */
/* Event TRBS */
/* Transfer Event */
#define TRB_TRANSFER 32
/* Command Completion Event */
#define TRB_COMPLETION 33
/* Port Status Change Event */
#define TRB_PORT_STATUS 34
/* Bandwidth Request Event (opt) */
#define TRB_BANDWIDTH_EVENT 35
/* Doorbell Event (opt) */
#define TRB_DOORBELL 36
/* Host Controller Event */
#define TRB_HC_EVENT 37
/* Device Notification Event - device sent function wake notification */
#define TRB_DEV_NOTE 38
/* MFINDEX Wrap Event - microframe counter wrapped */
#define TRB_MFINDEX_WRAP 39
/* TRB IDs 40-47 reserved, 48-63 is vendor-defined */
/* Nec vendor-specific command completion event. */
#define TRB_NEC_CMD_COMP 48
/* Get NEC firmware revision. */
#define TRB_NEC_GET_FW 49
#define NEC_FW_MINOR(p) (((p) >> 0) & 0xff)
#define NEC_FW_MAJOR(p) (((p) >> 8) & 0xff)
/*
* TRBS_PER_SEGMENT must be a multiple of 4,
* since the command ring is 64-byte aligned.
* It must also be greater than 16.
*/
#define TRBS_PER_SEGMENT 64
/* Allow two commands + a link TRB, along with any reserved command TRBs */
#define MAX_RSVD_CMD_TRBS (TRBS_PER_SEGMENT - 3)
#define SEGMENT_SIZE (TRBS_PER_SEGMENT*16)
/* SEGMENT_SHIFT should be log2(SEGMENT_SIZE).
* Change this if you change TRBS_PER_SEGMENT!
*/
#define SEGMENT_SHIFT 10
/* TRB buffer pointers can't cross 64KB boundaries */
#define TRB_MAX_BUFF_SHIFT 16
#define TRB_MAX_BUFF_SIZE (1 << TRB_MAX_BUFF_SHIFT)
struct xhci_segment {
union xhci_trb *trbs;
/* private to HCD */
struct xhci_segment *next;
dma_addr_t dma;
};
struct xhci_td {
struct list_head td_list;
struct list_head cancelled_td_list;
struct urb *urb;
struct xhci_segment *start_seg;
union xhci_trb *first_trb;
union xhci_trb *last_trb;
};
struct xhci_dequeue_state {
struct xhci_segment *new_deq_seg;
union xhci_trb *new_deq_ptr;
int new_cycle_state;
};
struct xhci_ring {
struct xhci_segment *first_seg;
union xhci_trb *enqueue;
struct xhci_segment *enq_seg;
unsigned int enq_updates;
union xhci_trb *dequeue;
struct xhci_segment *deq_seg;
unsigned int deq_updates;
struct list_head td_list;
/*
* Write the cycle state into the TRB cycle field to give ownership of
* the TRB to the host controller (if we are the producer), or to check
* if we own the TRB (if we are the consumer). See section 4.9.1.
*/
u32 cycle_state;
unsigned int stream_id;
};
struct xhci_erst_entry {
/* 64-bit event ring segment address */
u64 seg_addr;
u32 seg_size;
/* Set to zero */
u32 rsvd;
};
struct xhci_erst {
struct xhci_erst_entry *entries;
unsigned int num_entries;
/* xhci->event_ring keeps track of segment dma addresses */
dma_addr_t erst_dma_addr;
/* Num entries the ERST can contain */
unsigned int erst_size;
};
struct xhci_scratchpad {
u64 *sp_array;
dma_addr_t sp_dma;
void **sp_buffers;
dma_addr_t *sp_dma_buffers;
};
struct urb_priv {
int length;
int td_cnt;
struct xhci_td *td[0];
};
/*
* Each segment table entry is 4*32bits long. 1K seems like an ok size:
* (1K bytes * 8bytes/bit) / (4*32 bits) = 64 segment entries in the table,
* meaning 64 ring segments.
* Initial allocated size of the ERST, in number of entries */
#define ERST_NUM_SEGS 1
/* Initial allocated size of the ERST, in number of entries */
#define ERST_SIZE 64
/* Initial number of event segment rings allocated */
#define ERST_ENTRIES 1
/* Poll every 60 seconds */
#define POLL_TIMEOUT 60
/* Stop endpoint command timeout (secs) for URB cancellation watchdog timer */
#define XHCI_STOP_EP_CMD_TIMEOUT 5
/* XXX: Make these module parameters */
struct s3_save {
u32 command;
u32 dev_nt;
u64 dcbaa_ptr;
u32 config_reg;
u32 irq_pending;
u32 irq_control;
u32 erst_size;
u64 erst_base;
u64 erst_dequeue;
};
struct xhci_bus_state {
unsigned long bus_suspended;
unsigned long next_statechange;
/* Port suspend arrays are indexed by the portnum of the fake roothub */
/* ports suspend status arrays - max 31 ports for USB2, 15 for USB3 */
u32 port_c_suspend;
u32 suspended_ports;
unsigned long resume_done[USB_MAXCHILDREN];
};
static inline unsigned int hcd_index(struct usb_hcd *hcd)
{
if (hcd->speed == HCD_USB3)
return 0;
else
return 1;
}
/* There is one ehci_hci structure per controller */
struct xhci_hcd {
struct usb_hcd *main_hcd;
struct usb_hcd *shared_hcd;
/* glue to PCI and HCD framework */
struct xhci_cap_regs __iomem *cap_regs;
struct xhci_op_regs __iomem *op_regs;
struct xhci_run_regs __iomem *run_regs;
struct xhci_doorbell_array __iomem *dba;
/* Our HCD's current interrupter register set */
struct xhci_intr_reg __iomem *ir_set;
/* Cached register copies of read-only HC data */
__u32 hcs_params1;
__u32 hcs_params2;
__u32 hcs_params3;
__u32 hcc_params;
spinlock_t lock;
/* packed release number */
u8 sbrn;
u16 hci_version;
u8 max_slots;
u8 max_interrupters;
u8 max_ports;
u8 isoc_threshold;
int event_ring_max;
int addr_64;
/* 4KB min, 128MB max */
int page_size;
/* Valid values are 12 to 20, inclusive */
int page_shift;
/* msi-x vectors */
int msix_count;
struct msix_entry *msix_entries;
/* data structures */
struct xhci_device_context_array *dcbaa;
struct xhci_ring *cmd_ring;
unsigned int cmd_ring_reserved_trbs;
struct xhci_ring *event_ring;
struct xhci_erst erst;
/* Scratchpad */
struct xhci_scratchpad *scratchpad;
/* slot enabling and address device helpers */
struct completion addr_dev;
int slot_id;
/* Internal mirror of the HW's dcbaa */
struct xhci_virt_device *devs[MAX_HC_SLOTS];
/* DMA pools */
struct dma_pool *device_pool;
struct dma_pool *segment_pool;
struct dma_pool *small_streams_pool;
struct dma_pool *medium_streams_pool;
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
/* Poll the rings - for debugging */
struct timer_list event_ring_timer;
int zombie;
#endif
/* Host controller watchdog timer structures */
unsigned int xhc_state;
u32 command;
struct s3_save s3;
/* Host controller is dying - not responding to commands. "I'm not dead yet!"
*
* xHC interrupts have been disabled and a watchdog timer will (or has already)
* halt the xHCI host, and complete all URBs with an -ESHUTDOWN code. Any code
* that sees this status (other than the timer that set it) should stop touching
* hardware immediately. Interrupt handlers should return immediately when
* they see this status (any time they drop and re-acquire xhci->lock).
* xhci_urb_dequeue() should call usb_hcd_check_unlink_urb() and return without
* putting the TD on the canceled list, etc.
*
* There are no reports of xHCI host controllers that display this issue.
*/
#define XHCI_STATE_DYING (1 << 0)
#define XHCI_STATE_HALTED (1 << 1)
/* Statistics */
int error_bitmask;
unsigned int quirks;
#define XHCI_LINK_TRB_QUIRK (1 << 0)
#define XHCI_RESET_EP_QUIRK (1 << 1)
#define XHCI_NEC_HOST (1 << 2)
#define XHCI_AMD_PLL_FIX (1 << 3)
/* There are two roothubs to keep track of bus suspend info for */
struct xhci_bus_state bus_state[2];
/* Is each xHCI roothub port a USB 3.0, USB 2.0, or USB 1.1 port? */
u8 *port_array;
/* Array of pointers to USB 3.0 PORTSC registers */
u32 __iomem **usb3_ports;
unsigned int num_usb3_ports;
/* Array of pointers to USB 2.0 PORTSC registers */
u32 __iomem **usb2_ports;
unsigned int num_usb2_ports;
};
/* convert between an HCD pointer and the corresponding EHCI_HCD */
static inline struct xhci_hcd *hcd_to_xhci(struct usb_hcd *hcd)
{
return *((struct xhci_hcd **) (hcd->hcd_priv));
}
static inline struct usb_hcd *xhci_to_hcd(struct xhci_hcd *xhci)
{
return xhci->main_hcd;
}
#ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
#define XHCI_DEBUG 1
#else
#define XHCI_DEBUG 0
#endif
#define xhci_dbg(xhci, fmt, args...) \
do { if (XHCI_DEBUG) dev_dbg(xhci_to_hcd(xhci)->self.controller , fmt , ## args); } while (0)
#define xhci_info(xhci, fmt, args...) \
do { if (XHCI_DEBUG) dev_info(xhci_to_hcd(xhci)->self.controller , fmt , ## args); } while (0)
#define xhci_err(xhci, fmt, args...) \
dev_err(xhci_to_hcd(xhci)->self.controller , fmt , ## args)
#define xhci_warn(xhci, fmt, args...) \
dev_warn(xhci_to_hcd(xhci)->self.controller , fmt , ## args)
/* TODO: copied from ehci.h - can be refactored? */
/* xHCI spec says all registers are little endian */
static inline unsigned int xhci_readl(const struct xhci_hcd *xhci,
__u32 __iomem *regs)
{
return readl(regs);
}
static inline void xhci_writel(struct xhci_hcd *xhci,
const unsigned int val, __u32 __iomem *regs)
{
xhci_dbg(xhci,
"`MEM_WRITE_DWORD(3'b000, 32'h%p, 32'h%0x, 4'hf);\n",
regs, val);
writel(val, regs);
}
/*
* Registers should always be accessed with double word or quad word accesses.
*
* Some xHCI implementations may support 64-bit address pointers. Registers
* with 64-bit address pointers should be written to with dword accesses by
* writing the low dword first (ptr[0]), then the high dword (ptr[1]) second.
* xHCI implementations that do not support 64-bit address pointers will ignore
* the high dword, and write order is irrelevant.
*/
static inline u64 xhci_read_64(const struct xhci_hcd *xhci,
__u64 __iomem *regs)
{
__u32 __iomem *ptr = (__u32 __iomem *) regs;
u64 val_lo = readl(ptr);
u64 val_hi = readl(ptr + 1);
return val_lo + (val_hi << 32);
}
static inline void xhci_write_64(struct xhci_hcd *xhci,
const u64 val, __u64 __iomem *regs)
{
__u32 __iomem *ptr = (__u32 __iomem *) regs;
u32 val_lo = lower_32_bits(val);
u32 val_hi = upper_32_bits(val);
xhci_dbg(xhci,
"`MEM_WRITE_DWORD(3'b000, 64'h%p, 64'h%0lx, 4'hf);\n",
regs, (long unsigned int) val);
writel(val_lo, ptr);
writel(val_hi, ptr + 1);
}
static inline int xhci_link_trb_quirk(struct xhci_hcd *xhci)
{
u32 temp = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
return ((HC_VERSION(temp) == 0x95) &&
(xhci->quirks & XHCI_LINK_TRB_QUIRK));
}
/* xHCI debugging */
void xhci_print_ir_set(struct xhci_hcd *xhci, int set_num);
void xhci_print_registers(struct xhci_hcd *xhci);
void xhci_dbg_regs(struct xhci_hcd *xhci);
void xhci_print_run_regs(struct xhci_hcd *xhci);
void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb);
void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb);
void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg);
void xhci_debug_ring(struct xhci_hcd *xhci, struct xhci_ring *ring);
void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst);
void xhci_dbg_cmd_ptrs(struct xhci_hcd *xhci);
void xhci_dbg_ring_ptrs(struct xhci_hcd *xhci, struct xhci_ring *ring);
void xhci_dbg_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int last_ep);
char *xhci_get_slot_state(struct xhci_hcd *xhci,
struct xhci_container_ctx *ctx);
void xhci_dbg_ep_rings(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
struct xhci_virt_ep *ep);
/* xHCI memory management */
void xhci_mem_cleanup(struct xhci_hcd *xhci);
int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags);
void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id);
int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, struct usb_device *udev, gfp_t flags);
int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev);
void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
struct usb_device *udev);
unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc);
unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc);
unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index);
unsigned int xhci_last_valid_endpoint(u32 added_ctxs);
void xhci_endpoint_zero(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev, struct usb_host_endpoint *ep);
void xhci_endpoint_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx,
unsigned int ep_index);
void xhci_slot_copy(struct xhci_hcd *xhci,
struct xhci_container_ctx *in_ctx,
struct xhci_container_ctx *out_ctx);
int xhci_endpoint_init(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev,
struct usb_device *udev, struct usb_host_endpoint *ep,
gfp_t mem_flags);
void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring);
void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
struct xhci_virt_device *virt_dev,
unsigned int ep_index);
struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
unsigned int num_stream_ctxs,
unsigned int num_streams, gfp_t flags);
void xhci_free_stream_info(struct xhci_hcd *xhci,
struct xhci_stream_info *stream_info);
void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
struct xhci_stream_info *stream_info);
void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_ep_ctx *ep_ctx,
struct xhci_virt_ep *ep);
struct xhci_ring *xhci_dma_to_transfer_ring(
struct xhci_virt_ep *ep,
u64 address);
struct xhci_ring *xhci_stream_id_to_ring(
struct xhci_virt_device *dev,
unsigned int ep_index,
unsigned int stream_id);
struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
bool allocate_in_ctx, bool allocate_completion,
gfp_t mem_flags);
void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv);
void xhci_free_command(struct xhci_hcd *xhci,
struct xhci_command *command);
#ifdef CONFIG_PCI
/* xHCI PCI glue */
int xhci_register_pci(void);
void xhci_unregister_pci(void);
#endif
/* xHCI host controller glue */
void xhci_quiesce(struct xhci_hcd *xhci);
int xhci_halt(struct xhci_hcd *xhci);
int xhci_reset(struct xhci_hcd *xhci);
int xhci_init(struct usb_hcd *hcd);
int xhci_run(struct usb_hcd *hcd);
void xhci_stop(struct usb_hcd *hcd);
void xhci_shutdown(struct usb_hcd *hcd);
#ifdef CONFIG_PM
int xhci_suspend(struct xhci_hcd *xhci);
int xhci_resume(struct xhci_hcd *xhci, bool hibernated);
#else
#define xhci_suspend NULL
#define xhci_resume NULL
#endif
int xhci_get_frame(struct usb_hcd *hcd);
irqreturn_t xhci_irq(struct usb_hcd *hcd);
irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd);
int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev);
void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps,
unsigned int num_streams, gfp_t mem_flags);
int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint **eps, unsigned int num_eps,
gfp_t mem_flags);
int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev);
int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
struct usb_tt *tt, gfp_t mem_flags);
int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags);
int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status);
int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep);
int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint *ep);
void xhci_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep);
int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev);
int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev);
/* xHCI ring, segment, TRB, and TD functions */
dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, union xhci_trb *trb);
struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
union xhci_trb *start_trb, union xhci_trb *end_trb,
dma_addr_t suspect_dma);
int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code);
void xhci_ring_cmd_db(struct xhci_hcd *xhci);
int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id);
int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id);
int xhci_queue_vendor_command(struct xhci_hcd *xhci,
u32 field1, u32 field2, u32 field3, u32 field4);
int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index, int suspend);
int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb,
int slot_id, unsigned int ep_index);
int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb,
int slot_id, unsigned int ep_index);
int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, struct urb *urb,
int slot_id, unsigned int ep_index);
int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
struct urb *urb, int slot_id, unsigned int ep_index);
int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id, bool command_must_succeed);
int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
u32 slot_id);
int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
unsigned int ep_index);
int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id);
void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id, struct xhci_td *cur_td,
struct xhci_dequeue_state *state);
void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
unsigned int stream_id,
struct xhci_dequeue_state *deq_state);
void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
struct usb_device *udev, unsigned int ep_index);
void xhci_queue_config_ep_quirk(struct xhci_hcd *xhci,
unsigned int slot_id, unsigned int ep_index,
struct xhci_dequeue_state *deq_state);
void xhci_stop_endpoint_command_watchdog(unsigned long arg);
void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, unsigned int slot_id,
unsigned int ep_index, unsigned int stream_id);
/* xHCI roothub code */
int xhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex,
char *buf, u16 wLength);
int xhci_hub_status_data(struct usb_hcd *hcd, char *buf);
#ifdef CONFIG_PM
int xhci_bus_suspend(struct usb_hcd *hcd);
int xhci_bus_resume(struct usb_hcd *hcd);
#else
#define xhci_bus_suspend NULL
#define xhci_bus_resume NULL
#endif /* CONFIG_PM */
u32 xhci_port_state_to_neutral(u32 state);
int xhci_find_slot_id_by_port(struct usb_hcd *hcd, struct xhci_hcd *xhci,
u16 port);
void xhci_ring_device(struct xhci_hcd *xhci, int slot_id);
/* xHCI contexts */
struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx);
struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx);
struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, struct xhci_container_ctx *ctx, unsigned int ep_index);
#endif /* __LINUX_XHCI_HCD_H */