mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 17:55:10 +07:00
04759194dc
- VMAP_STACK support, allowing the kernel stacks to be allocated in the vmalloc space with a guard page for trapping stack overflows. One of the patches introduces THREAD_ALIGN and changes the generic alloc_thread_stack_node() to use this instead of THREAD_SIZE (no functional change for other architectures) - Contiguous PTE hugetlb support re-enabled (after being reverted a couple of times). We now have the semantics agreed in the generic mm layer together with API improvements so that the architecture code can detect between contiguous and non-contiguous huge PTEs - Initial support for persistent memory on ARM: DC CVAP instruction exposed to user space (HWCAP) and the in-kernel pmem API implemented - raid6 improvements for arm64: faster algorithm for the delta syndrome and implementation of the recovery routines using Neon - FP/SIMD refactoring and removal of support for Neon in interrupt context. This is in preparation for full SVE support - PTE accessors converted from inline asm to cmpxchg so that we can use LSE atomics if available (ARMv8.1) - Perf support for Cortex-A35 and A73 - Non-urgent fixes and cleanups -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlmuunYACgkQa9axLQDI XvEH9BAAo8V94GOMkX6HkT+2hjkl7DQ9krjumzmfzLV5AdgHMMzBNozmWKOCzgh0 yaxRcTUju3EyNeKhADr7yLiKDH8fnRPmYEJiVrwfgo7MaPApaCorr7LLIXfPGuxe DTBHw+oxRMjlmaHeATX4PBWfQxAx+vjjhHqv3Qpmvdm4nYqR+0hZomH2BNsu64fk AkSeUCxfCEyzSFIKuQM04M4zhSSZHz1tDxWI0b0RcK73qqEOuYZNkn6qxSKP5J4X b2Y2U8nmxJ5C2fXpDYZaK9shiJ4Vu7X3Ocf/M7hsJzGY5z4dhnmUmxpHROaNiSvo hCx7POYKyAPovps7zMSqcdsujkqOIQO8RHp4zGXx/pIr1RumjIiCY+RGpUYGibvU N4Px5hZNneuHaPZZ+sWjOOdNB28xyzeUp2UK9Bb6uHB+/3xssMAD8Fd/b2ZLnS6a YW3wrZmqA+ckfETsSRibabTs/ayqYHs2SDVwnlDJGtn+4Pw8oQpwGrwokxLQuuw3 uF2sNEPhJz+dcy21q3udYAQE1qOJBlLqTptgP96CHoVqh8X6nYSi5obT7y30ln3n dhpZGOdi6R8YOouxgXS3Wg07pxn444L/VzDw5ku/5DkdryPOZCSRbk/2t8If6oDM 2VD6PCbTx3hsGc7SZ7FdSwIysD2j446u40OMGdH2iLB5jWBwyOM= =vd0/ -----END PGP SIGNATURE----- Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - VMAP_STACK support, allowing the kernel stacks to be allocated in the vmalloc space with a guard page for trapping stack overflows. One of the patches introduces THREAD_ALIGN and changes the generic alloc_thread_stack_node() to use this instead of THREAD_SIZE (no functional change for other architectures) - Contiguous PTE hugetlb support re-enabled (after being reverted a couple of times). We now have the semantics agreed in the generic mm layer together with API improvements so that the architecture code can detect between contiguous and non-contiguous huge PTEs - Initial support for persistent memory on ARM: DC CVAP instruction exposed to user space (HWCAP) and the in-kernel pmem API implemented - raid6 improvements for arm64: faster algorithm for the delta syndrome and implementation of the recovery routines using Neon - FP/SIMD refactoring and removal of support for Neon in interrupt context. This is in preparation for full SVE support - PTE accessors converted from inline asm to cmpxchg so that we can use LSE atomics if available (ARMv8.1) - Perf support for Cortex-A35 and A73 - Non-urgent fixes and cleanups * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits) arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro arm64: introduce separated bits for mm_context_t flags arm64: hugetlb: Cleanup setup_hugepagesz arm64: Re-enable support for contiguous hugepages arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages arm64: hugetlb: Add break-before-make logic for contiguous entries arm64: hugetlb: Spring clean huge pte accessors arm64: hugetlb: Introduce pte_pgprot helper arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores arm64: dma-mapping: Mark atomic_pool as __ro_after_init arm64: dma-mapping: Do not pass data to gen_pool_set_algo() arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect() arm64: Move PTE_RDONLY bit handling out of set_pte_at() kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg() arm64: Convert pte handling from inline asm to using (cmp)xchg arm64: neon/efi: Make EFI fpsimd save/restore variables static ...
858 lines
23 KiB
C
858 lines
23 KiB
C
/*
|
|
* Based on arch/arm/mm/fault.c
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995-2004 Russell King
|
|
* Copyright (C) 2012 ARM Ltd.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <linux/extable.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/bug.h>
|
|
#include <asm/cmpxchg.h>
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/exception.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/esr.h>
|
|
#include <asm/sysreg.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include <acpi/ghes.h>
|
|
|
|
struct fault_info {
|
|
int (*fn)(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
int sig;
|
|
int code;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct fault_info fault_info[];
|
|
|
|
static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
|
|
{
|
|
return fault_info + (esr & 63);
|
|
}
|
|
|
|
#ifdef CONFIG_KPROBES
|
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* kprobe_running() needs smp_processor_id() */
|
|
if (!user_mode(regs)) {
|
|
preempt_disable();
|
|
if (kprobe_running() && kprobe_fault_handler(regs, esr))
|
|
ret = 1;
|
|
preempt_enable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static void data_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Data abort info:\n");
|
|
|
|
if (esr & ESR_ELx_ISV) {
|
|
pr_alert(" Access size = %u byte(s)\n",
|
|
1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
|
|
pr_alert(" SSE = %lu, SRT = %lu\n",
|
|
(esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
|
|
(esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
|
|
pr_alert(" SF = %lu, AR = %lu\n",
|
|
(esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
|
|
(esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
|
|
} else {
|
|
pr_alert(" ISV = 0, ISS = 0x%08lu\n", esr & ESR_ELx_ISS_MASK);
|
|
}
|
|
|
|
pr_alert(" CM = %lu, WnR = %lu\n",
|
|
(esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
|
|
(esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Decode mem abort information
|
|
*/
|
|
static void mem_abort_decode(unsigned int esr)
|
|
{
|
|
pr_alert("Mem abort info:\n");
|
|
|
|
pr_alert(" Exception class = %s, IL = %u bits\n",
|
|
esr_get_class_string(esr),
|
|
(esr & ESR_ELx_IL) ? 32 : 16);
|
|
pr_alert(" SET = %lu, FnV = %lu\n",
|
|
(esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
|
|
(esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
|
|
pr_alert(" EA = %lu, S1PTW = %lu\n",
|
|
(esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
|
|
(esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
|
|
|
|
if (esr_is_data_abort(esr))
|
|
data_abort_decode(esr);
|
|
}
|
|
|
|
/*
|
|
* Dump out the page tables associated with 'addr' in the currently active mm.
|
|
*/
|
|
void show_pte(unsigned long addr)
|
|
{
|
|
struct mm_struct *mm;
|
|
pgd_t *pgd;
|
|
|
|
if (addr < TASK_SIZE) {
|
|
/* TTBR0 */
|
|
mm = current->active_mm;
|
|
if (mm == &init_mm) {
|
|
pr_alert("[%016lx] user address but active_mm is swapper\n",
|
|
addr);
|
|
return;
|
|
}
|
|
} else if (addr >= VA_START) {
|
|
/* TTBR1 */
|
|
mm = &init_mm;
|
|
} else {
|
|
pr_alert("[%016lx] address between user and kernel address ranges\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
|
|
mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
|
|
VA_BITS, mm->pgd);
|
|
pgd = pgd_offset(mm, addr);
|
|
pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
|
|
|
|
do {
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
if (pgd_none(*pgd) || pgd_bad(*pgd))
|
|
break;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
pr_cont(", *pud=%016llx", pud_val(*pud));
|
|
if (pud_none(*pud) || pud_bad(*pud))
|
|
break;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
pr_cont(", *pmd=%016llx", pmd_val(*pmd));
|
|
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
|
break;
|
|
|
|
pte = pte_offset_map(pmd, addr);
|
|
pr_cont(", *pte=%016llx", pte_val(*pte));
|
|
pte_unmap(pte);
|
|
} while(0);
|
|
|
|
pr_cont("\n");
|
|
}
|
|
|
|
/*
|
|
* This function sets the access flags (dirty, accessed), as well as write
|
|
* permission, and only to a more permissive setting.
|
|
*
|
|
* It needs to cope with hardware update of the accessed/dirty state by other
|
|
* agents in the system and can safely skip the __sync_icache_dcache() call as,
|
|
* like set_pte_at(), the PTE is never changed from no-exec to exec here.
|
|
*
|
|
* Returns whether or not the PTE actually changed.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
pteval_t old_pteval, pteval;
|
|
|
|
if (pte_same(*ptep, entry))
|
|
return 0;
|
|
|
|
/* only preserve the access flags and write permission */
|
|
pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
|
|
|
|
/*
|
|
* Setting the flags must be done atomically to avoid racing with the
|
|
* hardware update of the access/dirty state. The PTE_RDONLY bit must
|
|
* be set to the most permissive (lowest value) of *ptep and entry
|
|
* (calculated as: a & b == ~(~a | ~b)).
|
|
*/
|
|
pte_val(entry) ^= PTE_RDONLY;
|
|
pteval = READ_ONCE(pte_val(*ptep));
|
|
do {
|
|
old_pteval = pteval;
|
|
pteval ^= PTE_RDONLY;
|
|
pteval |= pte_val(entry);
|
|
pteval ^= PTE_RDONLY;
|
|
pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
|
|
} while (pteval != old_pteval);
|
|
|
|
flush_tlb_fix_spurious_fault(vma, address);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_el1_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
|
|
}
|
|
|
|
static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
|
|
unsigned long addr)
|
|
{
|
|
unsigned int ec = ESR_ELx_EC(esr);
|
|
unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
|
|
|
|
if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
|
|
return false;
|
|
|
|
if (fsc_type == ESR_ELx_FSC_PERM)
|
|
return true;
|
|
|
|
if (addr < USER_DS && system_uses_ttbr0_pan())
|
|
return fsc_type == ESR_ELx_FSC_FAULT &&
|
|
(regs->pstate & PSR_PAN_BIT);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The kernel tried to access some page that wasn't present.
|
|
*/
|
|
static void __do_kernel_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const char *msg;
|
|
|
|
/*
|
|
* Are we prepared to handle this kernel fault?
|
|
* We are almost certainly not prepared to handle instruction faults.
|
|
*/
|
|
if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
|
|
return;
|
|
|
|
/*
|
|
* No handler, we'll have to terminate things with extreme prejudice.
|
|
*/
|
|
bust_spinlocks(1);
|
|
|
|
if (is_permission_fault(esr, regs, addr)) {
|
|
if (esr & ESR_ELx_WNR)
|
|
msg = "write to read-only memory";
|
|
else
|
|
msg = "read from unreadable memory";
|
|
} else if (addr < PAGE_SIZE) {
|
|
msg = "NULL pointer dereference";
|
|
} else {
|
|
msg = "paging request";
|
|
}
|
|
|
|
pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
|
|
addr);
|
|
|
|
mem_abort_decode(esr);
|
|
|
|
show_pte(addr);
|
|
die("Oops", regs, esr);
|
|
bust_spinlocks(0);
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map. User mode
|
|
* accesses just cause a SIGSEGV
|
|
*/
|
|
static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
|
|
unsigned int esr, unsigned int sig, int code,
|
|
struct pt_regs *regs, int fault)
|
|
{
|
|
struct siginfo si;
|
|
const struct fault_info *inf;
|
|
unsigned int lsb = 0;
|
|
|
|
if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
|
|
inf = esr_to_fault_info(esr);
|
|
pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
|
|
tsk->comm, task_pid_nr(tsk), inf->name, sig,
|
|
addr, esr);
|
|
print_vma_addr(KERN_CONT ", in ", regs->pc);
|
|
pr_cont("\n");
|
|
__show_regs(regs);
|
|
}
|
|
|
|
tsk->thread.fault_address = addr;
|
|
tsk->thread.fault_code = esr;
|
|
si.si_signo = sig;
|
|
si.si_errno = 0;
|
|
si.si_code = code;
|
|
si.si_addr = (void __user *)addr;
|
|
/*
|
|
* Either small page or large page may be poisoned.
|
|
* In other words, VM_FAULT_HWPOISON_LARGE and
|
|
* VM_FAULT_HWPOISON are mutually exclusive.
|
|
*/
|
|
if (fault & VM_FAULT_HWPOISON_LARGE)
|
|
lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
|
|
else if (fault & VM_FAULT_HWPOISON)
|
|
lsb = PAGE_SHIFT;
|
|
si.si_addr_lsb = lsb;
|
|
|
|
force_sig_info(sig, &si, tsk);
|
|
}
|
|
|
|
static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
const struct fault_info *inf;
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (user_mode(regs)) {
|
|
inf = esr_to_fault_info(esr);
|
|
__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
|
|
} else
|
|
__do_kernel_fault(addr, esr, regs);
|
|
}
|
|
|
|
#define VM_FAULT_BADMAP 0x010000
|
|
#define VM_FAULT_BADACCESS 0x020000
|
|
|
|
static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
|
|
unsigned int mm_flags, unsigned long vm_flags,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
int fault;
|
|
|
|
vma = find_vma(mm, addr);
|
|
fault = VM_FAULT_BADMAP;
|
|
if (unlikely(!vma))
|
|
goto out;
|
|
if (unlikely(vma->vm_start > addr))
|
|
goto check_stack;
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so we can handle
|
|
* it.
|
|
*/
|
|
good_area:
|
|
/*
|
|
* Check that the permissions on the VMA allow for the fault which
|
|
* occurred.
|
|
*/
|
|
if (!(vma->vm_flags & vm_flags)) {
|
|
fault = VM_FAULT_BADACCESS;
|
|
goto out;
|
|
}
|
|
|
|
return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
|
|
|
|
check_stack:
|
|
if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
|
|
goto good_area;
|
|
out:
|
|
return fault;
|
|
}
|
|
|
|
static bool is_el0_instruction_abort(unsigned int esr)
|
|
{
|
|
return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
|
|
}
|
|
|
|
static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct mm_struct *mm;
|
|
int fault, sig, code, major = 0;
|
|
unsigned long vm_flags = VM_READ | VM_WRITE;
|
|
unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
|
|
|
|
if (notify_page_fault(regs, esr))
|
|
return 0;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
/*
|
|
* If we're in an interrupt or have no user context, we must not take
|
|
* the fault.
|
|
*/
|
|
if (faulthandler_disabled() || !mm)
|
|
goto no_context;
|
|
|
|
if (user_mode(regs))
|
|
mm_flags |= FAULT_FLAG_USER;
|
|
|
|
if (is_el0_instruction_abort(esr)) {
|
|
vm_flags = VM_EXEC;
|
|
} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
|
|
vm_flags = VM_WRITE;
|
|
mm_flags |= FAULT_FLAG_WRITE;
|
|
}
|
|
|
|
if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
|
|
/* regs->orig_addr_limit may be 0 if we entered from EL0 */
|
|
if (regs->orig_addr_limit == KERNEL_DS)
|
|
die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
|
|
|
|
if (is_el1_instruction_abort(esr))
|
|
die("Attempting to execute userspace memory", regs, esr);
|
|
|
|
if (!search_exception_tables(regs->pc))
|
|
die("Accessing user space memory outside uaccess.h routines", regs, esr);
|
|
}
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
|
|
/*
|
|
* As per x86, we may deadlock here. However, since the kernel only
|
|
* validly references user space from well defined areas of the code,
|
|
* we can bug out early if this is from code which shouldn't.
|
|
*/
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
retry:
|
|
down_read(&mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* The above down_read_trylock() might have succeeded in which
|
|
* case, we'll have missed the might_sleep() from down_read().
|
|
*/
|
|
might_sleep();
|
|
#ifdef CONFIG_DEBUG_VM
|
|
if (!user_mode(regs) && !search_exception_tables(regs->pc))
|
|
goto no_context;
|
|
#endif
|
|
}
|
|
|
|
fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
|
|
major |= fault & VM_FAULT_MAJOR;
|
|
|
|
if (fault & VM_FAULT_RETRY) {
|
|
/*
|
|
* If we need to retry but a fatal signal is pending,
|
|
* handle the signal first. We do not need to release
|
|
* the mmap_sem because it would already be released
|
|
* in __lock_page_or_retry in mm/filemap.c.
|
|
*/
|
|
if (fatal_signal_pending(current)) {
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
|
|
* starvation.
|
|
*/
|
|
if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
|
|
mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
|
|
mm_flags |= FAULT_FLAG_TRIED;
|
|
goto retry;
|
|
}
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Handle the "normal" (no error) case first.
|
|
*/
|
|
if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
|
|
VM_FAULT_BADACCESS)))) {
|
|
/*
|
|
* Major/minor page fault accounting is only done
|
|
* once. If we go through a retry, it is extremely
|
|
* likely that the page will be found in page cache at
|
|
* that point.
|
|
*/
|
|
if (major) {
|
|
tsk->maj_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
|
|
addr);
|
|
} else {
|
|
tsk->min_flt++;
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
|
|
addr);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we are in kernel mode at this point, we have no context to
|
|
* handle this fault with.
|
|
*/
|
|
if (!user_mode(regs))
|
|
goto no_context;
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return to
|
|
* userspace (which will retry the fault, or kill us if we got
|
|
* oom-killed).
|
|
*/
|
|
pagefault_out_of_memory();
|
|
return 0;
|
|
}
|
|
|
|
if (fault & VM_FAULT_SIGBUS) {
|
|
/*
|
|
* We had some memory, but were unable to successfully fix up
|
|
* this page fault.
|
|
*/
|
|
sig = SIGBUS;
|
|
code = BUS_ADRERR;
|
|
} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
|
|
sig = SIGBUS;
|
|
code = BUS_MCEERR_AR;
|
|
} else {
|
|
/*
|
|
* Something tried to access memory that isn't in our memory
|
|
* map.
|
|
*/
|
|
sig = SIGSEGV;
|
|
code = fault == VM_FAULT_BADACCESS ?
|
|
SEGV_ACCERR : SEGV_MAPERR;
|
|
}
|
|
|
|
__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
|
|
return 0;
|
|
|
|
no_context:
|
|
__do_kernel_fault(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* First Level Translation Fault Handler
|
|
*
|
|
* We enter here because the first level page table doesn't contain a valid
|
|
* entry for the address.
|
|
*
|
|
* If the address is in kernel space (>= TASK_SIZE), then we are probably
|
|
* faulting in the vmalloc() area.
|
|
*
|
|
* If the init_task's first level page tables contains the relevant entry, we
|
|
* copy the it to this task. If not, we send the process a signal, fixup the
|
|
* exception, or oops the kernel.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
|
|
* or a critical region, and should only copy the information from the master
|
|
* page table, nothing more.
|
|
*/
|
|
static int __kprobes do_translation_fault(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (addr < TASK_SIZE)
|
|
return do_page_fault(addr, esr, regs);
|
|
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
static int do_alignment_fault(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
do_bad_area(addr, esr, regs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This abort handler always returns "fault".
|
|
*/
|
|
static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This abort handler deals with Synchronous External Abort.
|
|
* It calls notifiers, and then returns "fault".
|
|
*/
|
|
static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
|
|
{
|
|
struct siginfo info;
|
|
const struct fault_info *inf;
|
|
int ret = 0;
|
|
|
|
inf = esr_to_fault_info(esr);
|
|
pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
|
|
inf->name, esr, addr);
|
|
|
|
/*
|
|
* Synchronous aborts may interrupt code which had interrupts masked.
|
|
* Before calling out into the wider kernel tell the interested
|
|
* subsystems.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
|
|
if (interrupts_enabled(regs))
|
|
nmi_enter();
|
|
|
|
ret = ghes_notify_sea();
|
|
|
|
if (interrupts_enabled(regs))
|
|
nmi_exit();
|
|
}
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = 0;
|
|
if (esr & ESR_ELx_FnV)
|
|
info.si_addr = NULL;
|
|
else
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("", regs, &info, esr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct fault_info fault_info[] = {
|
|
{ do_bad, SIGBUS, 0, "ttbr address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 1 address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 2 address size fault" },
|
|
{ do_bad, SIGBUS, 0, "level 3 address size fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
|
|
{ do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 8" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 12" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
|
|
{ do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
|
|
{ do_sea, SIGBUS, 0, "synchronous external abort" },
|
|
{ do_bad, SIGBUS, 0, "unknown 17" },
|
|
{ do_bad, SIGBUS, 0, "unknown 18" },
|
|
{ do_bad, SIGBUS, 0, "unknown 19" },
|
|
{ do_sea, SIGBUS, 0, "level 0 (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 1 (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 2 (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 3 (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "synchronous parity or ECC error" },
|
|
{ do_bad, SIGBUS, 0, "unknown 25" },
|
|
{ do_bad, SIGBUS, 0, "unknown 26" },
|
|
{ do_bad, SIGBUS, 0, "unknown 27" },
|
|
{ do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" },
|
|
{ do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" },
|
|
{ do_bad, SIGBUS, 0, "unknown 32" },
|
|
{ do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 34" },
|
|
{ do_bad, SIGBUS, 0, "unknown 35" },
|
|
{ do_bad, SIGBUS, 0, "unknown 36" },
|
|
{ do_bad, SIGBUS, 0, "unknown 37" },
|
|
{ do_bad, SIGBUS, 0, "unknown 38" },
|
|
{ do_bad, SIGBUS, 0, "unknown 39" },
|
|
{ do_bad, SIGBUS, 0, "unknown 40" },
|
|
{ do_bad, SIGBUS, 0, "unknown 41" },
|
|
{ do_bad, SIGBUS, 0, "unknown 42" },
|
|
{ do_bad, SIGBUS, 0, "unknown 43" },
|
|
{ do_bad, SIGBUS, 0, "unknown 44" },
|
|
{ do_bad, SIGBUS, 0, "unknown 45" },
|
|
{ do_bad, SIGBUS, 0, "unknown 46" },
|
|
{ do_bad, SIGBUS, 0, "unknown 47" },
|
|
{ do_bad, SIGBUS, 0, "TLB conflict abort" },
|
|
{ do_bad, SIGBUS, 0, "unknown 49" },
|
|
{ do_bad, SIGBUS, 0, "unknown 50" },
|
|
{ do_bad, SIGBUS, 0, "unknown 51" },
|
|
{ do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" },
|
|
{ do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" },
|
|
{ do_bad, SIGBUS, 0, "unknown 54" },
|
|
{ do_bad, SIGBUS, 0, "unknown 55" },
|
|
{ do_bad, SIGBUS, 0, "unknown 56" },
|
|
{ do_bad, SIGBUS, 0, "unknown 57" },
|
|
{ do_bad, SIGBUS, 0, "unknown 58" },
|
|
{ do_bad, SIGBUS, 0, "unknown 59" },
|
|
{ do_bad, SIGBUS, 0, "unknown 60" },
|
|
{ do_bad, SIGBUS, 0, "section domain fault" },
|
|
{ do_bad, SIGBUS, 0, "page domain fault" },
|
|
{ do_bad, SIGBUS, 0, "unknown 63" },
|
|
};
|
|
|
|
/*
|
|
* Handle Synchronous External Aborts that occur in a guest kernel.
|
|
*
|
|
* The return value will be zero if the SEA was successfully handled
|
|
* and non-zero if there was an error processing the error or there was
|
|
* no error to process.
|
|
*/
|
|
int handle_guest_sea(phys_addr_t addr, unsigned int esr)
|
|
{
|
|
int ret = -ENOENT;
|
|
|
|
if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
|
|
ret = ghes_notify_sea();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Dispatch a data abort to the relevant handler.
|
|
*/
|
|
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = esr_to_fault_info(esr);
|
|
struct siginfo info;
|
|
|
|
if (!inf->fn(addr, esr, regs))
|
|
return;
|
|
|
|
pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
|
|
inf->name, esr, addr);
|
|
|
|
mem_abort_decode(esr);
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("", regs, &info, esr);
|
|
}
|
|
|
|
/*
|
|
* Handle stack alignment exceptions.
|
|
*/
|
|
asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
struct siginfo info;
|
|
struct task_struct *tsk = current;
|
|
|
|
if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
|
|
pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
|
|
tsk->comm, task_pid_nr(tsk),
|
|
esr_get_class_string(esr), (void *)regs->pc,
|
|
(void *)regs->sp);
|
|
|
|
info.si_signo = SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = BUS_ADRALN;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
|
|
}
|
|
|
|
int __init early_brk64(unsigned long addr, unsigned int esr,
|
|
struct pt_regs *regs);
|
|
|
|
/*
|
|
* __refdata because early_brk64 is __init, but the reference to it is
|
|
* clobbered at arch_initcall time.
|
|
* See traps.c and debug-monitors.c:debug_traps_init().
|
|
*/
|
|
static struct fault_info __refdata debug_fault_info[] = {
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
|
|
{ do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
|
|
{ do_bad, SIGBUS, 0, "unknown 3" },
|
|
{ do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
|
|
{ do_bad, SIGTRAP, 0, "aarch32 vector catch" },
|
|
{ early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
|
|
{ do_bad, SIGBUS, 0, "unknown 7" },
|
|
};
|
|
|
|
void __init hook_debug_fault_code(int nr,
|
|
int (*fn)(unsigned long, unsigned int, struct pt_regs *),
|
|
int sig, int code, const char *name)
|
|
{
|
|
BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
|
|
|
|
debug_fault_info[nr].fn = fn;
|
|
debug_fault_info[nr].sig = sig;
|
|
debug_fault_info[nr].code = code;
|
|
debug_fault_info[nr].name = name;
|
|
}
|
|
|
|
asmlinkage int __exception do_debug_exception(unsigned long addr,
|
|
unsigned int esr,
|
|
struct pt_regs *regs)
|
|
{
|
|
const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
|
|
struct siginfo info;
|
|
int rv;
|
|
|
|
/*
|
|
* Tell lockdep we disabled irqs in entry.S. Do nothing if they were
|
|
* already disabled to preserve the last enabled/disabled addresses.
|
|
*/
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_off();
|
|
|
|
if (!inf->fn(addr, esr, regs)) {
|
|
rv = 1;
|
|
} else {
|
|
pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
|
|
inf->name, esr, addr);
|
|
|
|
info.si_signo = inf->sig;
|
|
info.si_errno = 0;
|
|
info.si_code = inf->code;
|
|
info.si_addr = (void __user *)addr;
|
|
arm64_notify_die("", regs, &info, 0);
|
|
rv = 0;
|
|
}
|
|
|
|
if (interrupts_enabled(regs))
|
|
trace_hardirqs_on();
|
|
|
|
return rv;
|
|
}
|
|
NOKPROBE_SYMBOL(do_debug_exception);
|
|
|
|
#ifdef CONFIG_ARM64_PAN
|
|
int cpu_enable_pan(void *__unused)
|
|
{
|
|
/*
|
|
* We modify PSTATE. This won't work from irq context as the PSTATE
|
|
* is discarded once we return from the exception.
|
|
*/
|
|
WARN_ON_ONCE(in_interrupt());
|
|
|
|
config_sctlr_el1(SCTLR_EL1_SPAN, 0);
|
|
asm(SET_PSTATE_PAN(1));
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_ARM64_PAN */
|