mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 07:20:53 +07:00
7022672e40
Spelling fixes in arch/parisc/. Signed-off-by: Simon Arlott <simon@fire.lp0.eu> Acked-by: Grant Grundler <grundler@parisc-linux.org> Signed-off-by: Kyle McMartin <kyle@parisc-linux.org>
188 lines
4.7 KiB
C
188 lines
4.7 KiB
C
/*
|
|
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
|
|
*
|
|
* Floating-point emulation code
|
|
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
/*
|
|
* BEGIN_DESC
|
|
*
|
|
* File:
|
|
* @(#) pa/spmath/sfsqrt.c $Revision: 1.1 $
|
|
*
|
|
* Purpose:
|
|
* Single Floating-point Square Root
|
|
*
|
|
* External Interfaces:
|
|
* sgl_fsqrt(srcptr,nullptr,dstptr,status)
|
|
*
|
|
* Internal Interfaces:
|
|
*
|
|
* Theory:
|
|
* <<please update with a overview of the operation of this file>>
|
|
*
|
|
* END_DESC
|
|
*/
|
|
|
|
|
|
#include "float.h"
|
|
#include "sgl_float.h"
|
|
|
|
/*
|
|
* Single Floating-point Square Root
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
unsigned int
|
|
sgl_fsqrt(
|
|
sgl_floating_point *srcptr,
|
|
unsigned int *nullptr,
|
|
sgl_floating_point *dstptr,
|
|
unsigned int *status)
|
|
{
|
|
register unsigned int src, result;
|
|
register int src_exponent;
|
|
register unsigned int newbit, sum;
|
|
register boolean guardbit = FALSE, even_exponent;
|
|
|
|
src = *srcptr;
|
|
/*
|
|
* check source operand for NaN or infinity
|
|
*/
|
|
if ((src_exponent = Sgl_exponent(src)) == SGL_INFINITY_EXPONENT) {
|
|
/*
|
|
* is signaling NaN?
|
|
*/
|
|
if (Sgl_isone_signaling(src)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_set_quiet(src);
|
|
}
|
|
/*
|
|
* Return quiet NaN or positive infinity.
|
|
* Fall through to negative test if negative infinity.
|
|
*/
|
|
if (Sgl_iszero_sign(src) || Sgl_isnotzero_mantissa(src)) {
|
|
*dstptr = src;
|
|
return(NOEXCEPTION);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check for zero source operand
|
|
*/
|
|
if (Sgl_iszero_exponentmantissa(src)) {
|
|
*dstptr = src;
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* check for negative source operand
|
|
*/
|
|
if (Sgl_isone_sign(src)) {
|
|
/* trap if INVALIDTRAP enabled */
|
|
if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION);
|
|
/* make NaN quiet */
|
|
Set_invalidflag();
|
|
Sgl_makequietnan(src);
|
|
*dstptr = src;
|
|
return(NOEXCEPTION);
|
|
}
|
|
|
|
/*
|
|
* Generate result
|
|
*/
|
|
if (src_exponent > 0) {
|
|
even_exponent = Sgl_hidden(src);
|
|
Sgl_clear_signexponent_set_hidden(src);
|
|
}
|
|
else {
|
|
/* normalize operand */
|
|
Sgl_clear_signexponent(src);
|
|
src_exponent++;
|
|
Sgl_normalize(src,src_exponent);
|
|
even_exponent = src_exponent & 1;
|
|
}
|
|
if (even_exponent) {
|
|
/* exponent is even */
|
|
/* Add comment here. Explain why odd exponent needs correction */
|
|
Sgl_leftshiftby1(src);
|
|
}
|
|
/*
|
|
* Add comment here. Explain following algorithm.
|
|
*
|
|
* Trust me, it works.
|
|
*
|
|
*/
|
|
Sgl_setzero(result);
|
|
newbit = 1 << SGL_P;
|
|
while (newbit && Sgl_isnotzero(src)) {
|
|
Sgl_addition(result,newbit,sum);
|
|
if(sum <= Sgl_all(src)) {
|
|
/* update result */
|
|
Sgl_addition(result,(newbit<<1),result);
|
|
Sgl_subtract(src,sum,src);
|
|
}
|
|
Sgl_rightshiftby1(newbit);
|
|
Sgl_leftshiftby1(src);
|
|
}
|
|
/* correct exponent for pre-shift */
|
|
if (even_exponent) {
|
|
Sgl_rightshiftby1(result);
|
|
}
|
|
|
|
/* check for inexact */
|
|
if (Sgl_isnotzero(src)) {
|
|
if (!even_exponent && Sgl_islessthan(result,src))
|
|
Sgl_increment(result);
|
|
guardbit = Sgl_lowmantissa(result);
|
|
Sgl_rightshiftby1(result);
|
|
|
|
/* now round result */
|
|
switch (Rounding_mode()) {
|
|
case ROUNDPLUS:
|
|
Sgl_increment(result);
|
|
break;
|
|
case ROUNDNEAREST:
|
|
/* stickybit is always true, so guardbit
|
|
* is enough to determine rounding */
|
|
if (guardbit) {
|
|
Sgl_increment(result);
|
|
}
|
|
break;
|
|
}
|
|
/* increment result exponent by 1 if mantissa overflowed */
|
|
if (Sgl_isone_hiddenoverflow(result)) src_exponent+=2;
|
|
|
|
if (Is_inexacttrap_enabled()) {
|
|
Sgl_set_exponent(result,
|
|
((src_exponent-SGL_BIAS)>>1)+SGL_BIAS);
|
|
*dstptr = result;
|
|
return(INEXACTEXCEPTION);
|
|
}
|
|
else Set_inexactflag();
|
|
}
|
|
else {
|
|
Sgl_rightshiftby1(result);
|
|
}
|
|
Sgl_set_exponent(result,((src_exponent-SGL_BIAS)>>1)+SGL_BIAS);
|
|
*dstptr = result;
|
|
return(NOEXCEPTION);
|
|
}
|