linux_dsm_epyc7002/arch/mips/sgi-ip22/ip28-berr.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

505 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* ip28-berr.c: Bus error handling.
*
* Copyright (C) 2002, 2003 Ladislav Michl (ladis@linux-mips.org)
* Copyright (C) 2005 Peter Fuerst (pf@net.alphadv.de) - IP28
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/signal.h>
#include <linux/seq_file.h>
#include <asm/addrspace.h>
#include <asm/traps.h>
#include <asm/branch.h>
#include <asm/irq_regs.h>
#include <asm/sgi/mc.h>
#include <asm/sgi/hpc3.h>
#include <asm/sgi/ioc.h>
#include <asm/sgi/ip22.h>
#include <asm/r4kcache.h>
#include <linux/uaccess.h>
#include <asm/bootinfo.h>
static unsigned int count_be_is_fixup;
static unsigned int count_be_handler;
static unsigned int count_be_interrupt;
static int debug_be_interrupt;
static unsigned int cpu_err_stat; /* Status reg for CPU */
static unsigned int gio_err_stat; /* Status reg for GIO */
static unsigned int cpu_err_addr; /* Error address reg for CPU */
static unsigned int gio_err_addr; /* Error address reg for GIO */
static unsigned int extio_stat;
static unsigned int hpc3_berr_stat; /* Bus error interrupt status */
struct hpc3_stat {
unsigned long addr;
unsigned int ctrl;
unsigned int cbp;
unsigned int ndptr;
};
static struct {
struct hpc3_stat pbdma[8];
struct hpc3_stat scsi[2];
struct hpc3_stat ethrx, ethtx;
} hpc3;
static struct {
unsigned long err_addr;
struct {
u32 lo;
u32 hi;
} tags[1][2], tagd[4][2], tagi[4][2]; /* Way 0/1 */
} cache_tags;
static inline void save_cache_tags(unsigned busaddr)
{
unsigned long addr = CAC_BASE | busaddr;
int i;
cache_tags.err_addr = addr;
/*
* Starting with a bus-address, save secondary cache (indexed by
* PA[23..18:7..6]) tags first.
*/
addr &= ~1L;
#define tag cache_tags.tags[0]
cache_op(Index_Load_Tag_S, addr);
tag[0].lo = read_c0_taglo(); /* PA[35:18], VA[13:12] */
tag[0].hi = read_c0_taghi(); /* PA[39:36] */
cache_op(Index_Load_Tag_S, addr | 1L);
tag[1].lo = read_c0_taglo(); /* PA[35:18], VA[13:12] */
tag[1].hi = read_c0_taghi(); /* PA[39:36] */
#undef tag
/*
* Save all primary data cache (indexed by VA[13:5]) tags which
* might fit to this bus-address, knowing that VA[11:0] == PA[11:0].
* Saving all tags and evaluating them later is easier and safer
* than relying on VA[13:12] from the secondary cache tags to pick
* matching primary tags here already.
*/
addr &= (0xffL << 56) | ((1 << 12) - 1);
#define tag cache_tags.tagd[i]
for (i = 0; i < 4; ++i, addr += (1 << 12)) {
cache_op(Index_Load_Tag_D, addr);
tag[0].lo = read_c0_taglo(); /* PA[35:12] */
tag[0].hi = read_c0_taghi(); /* PA[39:36] */
cache_op(Index_Load_Tag_D, addr | 1L);
tag[1].lo = read_c0_taglo(); /* PA[35:12] */
tag[1].hi = read_c0_taghi(); /* PA[39:36] */
}
#undef tag
/*
* Save primary instruction cache (indexed by VA[13:6]) tags
* the same way.
*/
addr &= (0xffL << 56) | ((1 << 12) - 1);
#define tag cache_tags.tagi[i]
for (i = 0; i < 4; ++i, addr += (1 << 12)) {
cache_op(Index_Load_Tag_I, addr);
tag[0].lo = read_c0_taglo(); /* PA[35:12] */
tag[0].hi = read_c0_taghi(); /* PA[39:36] */
cache_op(Index_Load_Tag_I, addr | 1L);
tag[1].lo = read_c0_taglo(); /* PA[35:12] */
tag[1].hi = read_c0_taghi(); /* PA[39:36] */
}
#undef tag
}
#define GIO_ERRMASK 0xff00
#define CPU_ERRMASK 0x3f00
static void save_and_clear_buserr(void)
{
int i;
/* save status registers */
cpu_err_addr = sgimc->cerr;
cpu_err_stat = sgimc->cstat;
gio_err_addr = sgimc->gerr;
gio_err_stat = sgimc->gstat;
extio_stat = sgioc->extio;
hpc3_berr_stat = hpc3c0->bestat;
hpc3.scsi[0].addr = (unsigned long)&hpc3c0->scsi_chan0;
hpc3.scsi[0].ctrl = hpc3c0->scsi_chan0.ctrl; /* HPC3_SCTRL_ACTIVE ? */
hpc3.scsi[0].cbp = hpc3c0->scsi_chan0.cbptr;
hpc3.scsi[0].ndptr = hpc3c0->scsi_chan0.ndptr;
hpc3.scsi[1].addr = (unsigned long)&hpc3c0->scsi_chan1;
hpc3.scsi[1].ctrl = hpc3c0->scsi_chan1.ctrl; /* HPC3_SCTRL_ACTIVE ? */
hpc3.scsi[1].cbp = hpc3c0->scsi_chan1.cbptr;
hpc3.scsi[1].ndptr = hpc3c0->scsi_chan1.ndptr;
hpc3.ethrx.addr = (unsigned long)&hpc3c0->ethregs.rx_cbptr;
hpc3.ethrx.ctrl = hpc3c0->ethregs.rx_ctrl; /* HPC3_ERXCTRL_ACTIVE ? */
hpc3.ethrx.cbp = hpc3c0->ethregs.rx_cbptr;
hpc3.ethrx.ndptr = hpc3c0->ethregs.rx_ndptr;
hpc3.ethtx.addr = (unsigned long)&hpc3c0->ethregs.tx_cbptr;
hpc3.ethtx.ctrl = hpc3c0->ethregs.tx_ctrl; /* HPC3_ETXCTRL_ACTIVE ? */
hpc3.ethtx.cbp = hpc3c0->ethregs.tx_cbptr;
hpc3.ethtx.ndptr = hpc3c0->ethregs.tx_ndptr;
for (i = 0; i < 8; ++i) {
/* HPC3_PDMACTRL_ISACT ? */
hpc3.pbdma[i].addr = (unsigned long)&hpc3c0->pbdma[i];
hpc3.pbdma[i].ctrl = hpc3c0->pbdma[i].pbdma_ctrl;
hpc3.pbdma[i].cbp = hpc3c0->pbdma[i].pbdma_bptr;
hpc3.pbdma[i].ndptr = hpc3c0->pbdma[i].pbdma_dptr;
}
i = 0;
if (gio_err_stat & CPU_ERRMASK)
i = gio_err_addr;
if (cpu_err_stat & CPU_ERRMASK)
i = cpu_err_addr;
save_cache_tags(i);
sgimc->cstat = sgimc->gstat = 0;
}
static void print_cache_tags(void)
{
u32 scb, scw;
int i;
printk(KERN_ERR "Cache tags @ %08x:\n", (unsigned)cache_tags.err_addr);
/* PA[31:12] shifted to PTag0 (PA[35:12]) format */
scw = (cache_tags.err_addr >> 4) & 0x0fffff00;
scb = cache_tags.err_addr & ((1 << 12) - 1) & ~((1 << 5) - 1);
for (i = 0; i < 4; ++i) { /* for each possible VA[13:12] value */
if ((cache_tags.tagd[i][0].lo & 0x0fffff00) != scw &&
(cache_tags.tagd[i][1].lo & 0x0fffff00) != scw)
continue;
printk(KERN_ERR
"D: 0: %08x %08x, 1: %08x %08x (VA[13:5] %04x)\n",
cache_tags.tagd[i][0].hi, cache_tags.tagd[i][0].lo,
cache_tags.tagd[i][1].hi, cache_tags.tagd[i][1].lo,
scb | (1 << 12)*i);
}
scb = cache_tags.err_addr & ((1 << 12) - 1) & ~((1 << 6) - 1);
for (i = 0; i < 4; ++i) { /* for each possible VA[13:12] value */
if ((cache_tags.tagi[i][0].lo & 0x0fffff00) != scw &&
(cache_tags.tagi[i][1].lo & 0x0fffff00) != scw)
continue;
printk(KERN_ERR
"I: 0: %08x %08x, 1: %08x %08x (VA[13:6] %04x)\n",
cache_tags.tagi[i][0].hi, cache_tags.tagi[i][0].lo,
cache_tags.tagi[i][1].hi, cache_tags.tagi[i][1].lo,
scb | (1 << 12)*i);
}
i = read_c0_config();
scb = i & (1 << 13) ? 7:6; /* scblksize = 2^[7..6] */
scw = ((i >> 16) & 7) + 19 - 1; /* scwaysize = 2^[24..19] / 2 */
i = ((1 << scw) - 1) & ~((1 << scb) - 1);
printk(KERN_ERR "S: 0: %08x %08x, 1: %08x %08x (PA[%u:%u] %05x)\n",
cache_tags.tags[0][0].hi, cache_tags.tags[0][0].lo,
cache_tags.tags[0][1].hi, cache_tags.tags[0][1].lo,
scw-1, scb, i & (unsigned)cache_tags.err_addr);
}
static inline const char *cause_excode_text(int cause)
{
static const char *txt[32] =
{ "Interrupt",
"TLB modification",
"TLB (load or instruction fetch)",
"TLB (store)",
"Address error (load or instruction fetch)",
"Address error (store)",
"Bus error (instruction fetch)",
"Bus error (data: load or store)",
"Syscall",
"Breakpoint",
"Reserved instruction",
"Coprocessor unusable",
"Arithmetic Overflow",
"Trap",
"14",
"Floating-Point",
"16", "17", "18", "19", "20", "21", "22",
"Watch Hi/Lo",
"24", "25", "26", "27", "28", "29", "30", "31",
};
return txt[(cause & 0x7c) >> 2];
}
static void print_buserr(const struct pt_regs *regs)
{
const int field = 2 * sizeof(unsigned long);
int error = 0;
if (extio_stat & EXTIO_MC_BUSERR) {
printk(KERN_ERR "MC Bus Error\n");
error |= 1;
}
if (extio_stat & EXTIO_HPC3_BUSERR) {
printk(KERN_ERR "HPC3 Bus Error 0x%x:<id=0x%x,%s,lane=0x%x>\n",
hpc3_berr_stat,
(hpc3_berr_stat & HPC3_BESTAT_PIDMASK) >>
HPC3_BESTAT_PIDSHIFT,
(hpc3_berr_stat & HPC3_BESTAT_CTYPE) ? "PIO" : "DMA",
hpc3_berr_stat & HPC3_BESTAT_BLMASK);
error |= 2;
}
if (extio_stat & EXTIO_EISA_BUSERR) {
printk(KERN_ERR "EISA Bus Error\n");
error |= 4;
}
if (cpu_err_stat & CPU_ERRMASK) {
printk(KERN_ERR "CPU error 0x%x<%s%s%s%s%s%s> @ 0x%08x\n",
cpu_err_stat,
cpu_err_stat & SGIMC_CSTAT_RD ? "RD " : "",
cpu_err_stat & SGIMC_CSTAT_PAR ? "PAR " : "",
cpu_err_stat & SGIMC_CSTAT_ADDR ? "ADDR " : "",
cpu_err_stat & SGIMC_CSTAT_SYSAD_PAR ? "SYSAD " : "",
cpu_err_stat & SGIMC_CSTAT_SYSCMD_PAR ? "SYSCMD " : "",
cpu_err_stat & SGIMC_CSTAT_BAD_DATA ? "BAD_DATA " : "",
cpu_err_addr);
error |= 8;
}
if (gio_err_stat & GIO_ERRMASK) {
printk(KERN_ERR "GIO error 0x%x:<%s%s%s%s%s%s%s%s> @ 0x%08x\n",
gio_err_stat,
gio_err_stat & SGIMC_GSTAT_RD ? "RD " : "",
gio_err_stat & SGIMC_GSTAT_WR ? "WR " : "",
gio_err_stat & SGIMC_GSTAT_TIME ? "TIME " : "",
gio_err_stat & SGIMC_GSTAT_PROM ? "PROM " : "",
gio_err_stat & SGIMC_GSTAT_ADDR ? "ADDR " : "",
gio_err_stat & SGIMC_GSTAT_BC ? "BC " : "",
gio_err_stat & SGIMC_GSTAT_PIO_RD ? "PIO_RD " : "",
gio_err_stat & SGIMC_GSTAT_PIO_WR ? "PIO_WR " : "",
gio_err_addr);
error |= 16;
}
if (!error)
printk(KERN_ERR "MC: Hmm, didn't find any error condition.\n");
else {
printk(KERN_ERR "CP0: config %08x, "
"MC: cpuctrl0/1: %08x/%05x, giopar: %04x\n"
"MC: cpu/gio_memacc: %08x/%05x, memcfg0/1: %08x/%08x\n",
read_c0_config(),
sgimc->cpuctrl0, sgimc->cpuctrl0, sgimc->giopar,
sgimc->cmacc, sgimc->gmacc,
sgimc->mconfig0, sgimc->mconfig1);
print_cache_tags();
}
printk(KERN_ALERT "%s, epc == %0*lx, ra == %0*lx\n",
cause_excode_text(regs->cp0_cause),
field, regs->cp0_epc, field, regs->regs[31]);
}
/*
* Check, whether MC's (virtual) DMA address caused the bus error.
* See "Virtual DMA Specification", Draft 1.5, Feb 13 1992, SGI
*/
static int addr_is_ram(unsigned long addr, unsigned sz)
{
int i;
for (i = 0; i < boot_mem_map.nr_map; i++) {
unsigned long a = boot_mem_map.map[i].addr;
if (a <= addr && addr+sz <= a+boot_mem_map.map[i].size)
return 1;
}
return 0;
}
static int check_microtlb(u32 hi, u32 lo, unsigned long vaddr)
{
/* This is likely rather similar to correct code ;-) */
vaddr &= 0x7fffffff; /* Doc. states that top bit is ignored */
/* If tlb-entry is valid and VPN-high (bits [30:21] ?) matches... */
if ((lo & 2) && (vaddr >> 21) == ((hi<<1) >> 22)) {
u32 ctl = sgimc->dma_ctrl;
if (ctl & 1) {
unsigned int pgsz = (ctl & 2) ? 14:12; /* 16k:4k */
/* PTEIndex is VPN-low (bits [22:14]/[20:12] ?) */
unsigned long pte = (lo >> 6) << 12; /* PTEBase */
pte += 8*((vaddr >> pgsz) & 0x1ff);
if (addr_is_ram(pte, 8)) {
/*
* Note: Since DMA hardware does look up
* translation on its own, this PTE *must*
* match the TLB/EntryLo-register format !
*/
unsigned long a = *(unsigned long *)
PHYS_TO_XKSEG_UNCACHED(pte);
a = (a & 0x3f) << 6; /* PFN */
a += vaddr & ((1 << pgsz) - 1);
return cpu_err_addr == a;
}
}
}
return 0;
}
static int check_vdma_memaddr(void)
{
if (cpu_err_stat & CPU_ERRMASK) {
u32 a = sgimc->maddronly;
if (!(sgimc->dma_ctrl & 0x100)) /* Xlate-bit clear ? */
return cpu_err_addr == a;
if (check_microtlb(sgimc->dtlb_hi0, sgimc->dtlb_lo0, a) ||
check_microtlb(sgimc->dtlb_hi1, sgimc->dtlb_lo1, a) ||
check_microtlb(sgimc->dtlb_hi2, sgimc->dtlb_lo2, a) ||
check_microtlb(sgimc->dtlb_hi3, sgimc->dtlb_lo3, a))
return 1;
}
return 0;
}
static int check_vdma_gioaddr(void)
{
if (gio_err_stat & GIO_ERRMASK) {
u32 a = sgimc->gio_dma_trans;
a = (sgimc->gmaddronly & ~a) | (sgimc->gio_dma_sbits & a);
return gio_err_addr == a;
}
return 0;
}
/*
* MC sends an interrupt whenever bus or parity errors occur. In addition,
* if the error happened during a CPU read, it also asserts the bus error
* pin on the R4K. Code in bus error handler save the MC bus error registers
* and then clear the interrupt when this happens.
*/
static int ip28_be_interrupt(const struct pt_regs *regs)
{
int i;
save_and_clear_buserr();
/*
* Try to find out, whether we got here by a mispredicted speculative
* load/store operation. If so, it's not fatal, we can go on.
*/
/* Any cause other than "Interrupt" (ExcCode 0) is fatal. */
if (regs->cp0_cause & CAUSEF_EXCCODE)
goto mips_be_fatal;
/* Any cause other than "Bus error interrupt" (IP6) is weird. */
if ((regs->cp0_cause & CAUSEF_IP6) != CAUSEF_IP6)
goto mips_be_fatal;
if (extio_stat & (EXTIO_HPC3_BUSERR | EXTIO_EISA_BUSERR))
goto mips_be_fatal;
/* Any state other than "Memory bus error" is fatal. */
if (cpu_err_stat & CPU_ERRMASK & ~SGIMC_CSTAT_ADDR)
goto mips_be_fatal;
/* GIO errors other than timeouts are fatal */
if (gio_err_stat & GIO_ERRMASK & ~SGIMC_GSTAT_TIME)
goto mips_be_fatal;
/*
* Now we have an asynchronous bus error, speculatively or DMA caused.
* Need to search all DMA descriptors for the error address.
*/
for (i = 0; i < sizeof(hpc3)/sizeof(struct hpc3_stat); ++i) {
struct hpc3_stat *hp = (struct hpc3_stat *)&hpc3 + i;
if ((cpu_err_stat & CPU_ERRMASK) &&
(cpu_err_addr == hp->ndptr || cpu_err_addr == hp->cbp))
break;
if ((gio_err_stat & GIO_ERRMASK) &&
(gio_err_addr == hp->ndptr || gio_err_addr == hp->cbp))
break;
}
if (i < sizeof(hpc3)/sizeof(struct hpc3_stat)) {
struct hpc3_stat *hp = (struct hpc3_stat *)&hpc3 + i;
printk(KERN_ERR "at DMA addresses: HPC3 @ %08lx:"
" ctl %08x, ndp %08x, cbp %08x\n",
CPHYSADDR(hp->addr), hp->ctrl, hp->ndptr, hp->cbp);
goto mips_be_fatal;
}
/* Check MC's virtual DMA stuff. */
if (check_vdma_memaddr()) {
printk(KERN_ERR "at GIO DMA: mem address 0x%08x.\n",
sgimc->maddronly);
goto mips_be_fatal;
}
if (check_vdma_gioaddr()) {
printk(KERN_ERR "at GIO DMA: gio address 0x%08x.\n",
sgimc->gmaddronly);
goto mips_be_fatal;
}
/* A speculative bus error... */
if (debug_be_interrupt) {
print_buserr(regs);
printk(KERN_ERR "discarded!\n");
}
return MIPS_BE_DISCARD;
mips_be_fatal:
print_buserr(regs);
return MIPS_BE_FATAL;
}
void ip22_be_interrupt(int irq)
{
struct pt_regs *regs = get_irq_regs();
count_be_interrupt++;
if (ip28_be_interrupt(regs) != MIPS_BE_DISCARD) {
/* Assume it would be too dangerous to continue ... */
die_if_kernel("Oops", regs);
force_sig(SIGBUS, current);
} else if (debug_be_interrupt)
show_regs((struct pt_regs *)regs);
}
static int ip28_be_handler(struct pt_regs *regs, int is_fixup)
{
/*
* We arrive here only in the unusual case of do_be() invocation,
* i.e. by a bus error exception without a bus error interrupt.
*/
if (is_fixup) {
count_be_is_fixup++;
save_and_clear_buserr();
return MIPS_BE_FIXUP;
}
count_be_handler++;
return ip28_be_interrupt(regs);
}
void __init ip22_be_init(void)
{
board_be_handler = ip28_be_handler;
}
int ip28_show_be_info(struct seq_file *m)
{
seq_printf(m, "IP28 be fixups\t\t: %u\n", count_be_is_fixup);
seq_printf(m, "IP28 be interrupts\t: %u\n", count_be_interrupt);
seq_printf(m, "IP28 be handler\t\t: %u\n", count_be_handler);
return 0;
}
static int __init debug_be_setup(char *str)
{
debug_be_interrupt++;
return 1;
}
__setup("ip28_debug_be", debug_be_setup);