mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 08:02:37 +07:00
fbbe83c52b
The firmware download flow for RAM SKU is same for both USB and UART and this patch creates a common function for both driver. Signed-off-by: Tedd Ho-Jeong An <tedd.an@linux.intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
1264 lines
30 KiB
C
1264 lines
30 KiB
C
/*
|
|
*
|
|
* Bluetooth HCI UART driver for Intel devices
|
|
*
|
|
* Copyright (C) 2015 Intel Corporation
|
|
*
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/module.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <net/bluetooth/bluetooth.h>
|
|
#include <net/bluetooth/hci_core.h>
|
|
|
|
#include "hci_uart.h"
|
|
#include "btintel.h"
|
|
|
|
#define STATE_BOOTLOADER 0
|
|
#define STATE_DOWNLOADING 1
|
|
#define STATE_FIRMWARE_LOADED 2
|
|
#define STATE_FIRMWARE_FAILED 3
|
|
#define STATE_BOOTING 4
|
|
#define STATE_LPM_ENABLED 5
|
|
#define STATE_TX_ACTIVE 6
|
|
#define STATE_SUSPENDED 7
|
|
#define STATE_LPM_TRANSACTION 8
|
|
|
|
#define HCI_LPM_WAKE_PKT 0xf0
|
|
#define HCI_LPM_PKT 0xf1
|
|
#define HCI_LPM_MAX_SIZE 10
|
|
#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
|
|
|
|
#define LPM_OP_TX_NOTIFY 0x00
|
|
#define LPM_OP_SUSPEND_ACK 0x02
|
|
#define LPM_OP_RESUME_ACK 0x03
|
|
|
|
#define LPM_SUSPEND_DELAY_MS 1000
|
|
|
|
struct hci_lpm_pkt {
|
|
__u8 opcode;
|
|
__u8 dlen;
|
|
__u8 data[0];
|
|
} __packed;
|
|
|
|
struct intel_device {
|
|
struct list_head list;
|
|
struct platform_device *pdev;
|
|
struct gpio_desc *reset;
|
|
struct hci_uart *hu;
|
|
struct mutex hu_lock;
|
|
int irq;
|
|
};
|
|
|
|
static LIST_HEAD(intel_device_list);
|
|
static DEFINE_MUTEX(intel_device_list_lock);
|
|
|
|
struct intel_data {
|
|
struct sk_buff *rx_skb;
|
|
struct sk_buff_head txq;
|
|
struct work_struct busy_work;
|
|
struct hci_uart *hu;
|
|
unsigned long flags;
|
|
};
|
|
|
|
static u8 intel_convert_speed(unsigned int speed)
|
|
{
|
|
switch (speed) {
|
|
case 9600:
|
|
return 0x00;
|
|
case 19200:
|
|
return 0x01;
|
|
case 38400:
|
|
return 0x02;
|
|
case 57600:
|
|
return 0x03;
|
|
case 115200:
|
|
return 0x04;
|
|
case 230400:
|
|
return 0x05;
|
|
case 460800:
|
|
return 0x06;
|
|
case 921600:
|
|
return 0x07;
|
|
case 1843200:
|
|
return 0x08;
|
|
case 3250000:
|
|
return 0x09;
|
|
case 2000000:
|
|
return 0x0a;
|
|
case 3000000:
|
|
return 0x0b;
|
|
default:
|
|
return 0xff;
|
|
}
|
|
}
|
|
|
|
static int intel_wait_booting(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
int err;
|
|
|
|
err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
|
|
TASK_INTERRUPTIBLE,
|
|
msecs_to_jiffies(1000));
|
|
|
|
if (err == -EINTR) {
|
|
bt_dev_err(hu->hdev, "Device boot interrupted");
|
|
return -EINTR;
|
|
}
|
|
|
|
if (err) {
|
|
bt_dev_err(hu->hdev, "Device boot timeout");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int intel_wait_lpm_transaction(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
int err;
|
|
|
|
err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
|
|
TASK_INTERRUPTIBLE,
|
|
msecs_to_jiffies(1000));
|
|
|
|
if (err == -EINTR) {
|
|
bt_dev_err(hu->hdev, "LPM transaction interrupted");
|
|
return -EINTR;
|
|
}
|
|
|
|
if (err) {
|
|
bt_dev_err(hu->hdev, "LPM transaction timeout");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int intel_lpm_suspend(struct hci_uart *hu)
|
|
{
|
|
static const u8 suspend[] = { 0x01, 0x01, 0x01 };
|
|
struct intel_data *intel = hu->priv;
|
|
struct sk_buff *skb;
|
|
|
|
if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
|
|
test_bit(STATE_SUSPENDED, &intel->flags))
|
|
return 0;
|
|
|
|
if (test_bit(STATE_TX_ACTIVE, &intel->flags))
|
|
return -EAGAIN;
|
|
|
|
bt_dev_dbg(hu->hdev, "Suspending");
|
|
|
|
skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
|
|
if (!skb) {
|
|
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
skb_put_data(skb, suspend, sizeof(suspend));
|
|
hci_skb_pkt_type(skb) = HCI_LPM_PKT;
|
|
|
|
set_bit(STATE_LPM_TRANSACTION, &intel->flags);
|
|
|
|
/* LPM flow is a priority, enqueue packet at list head */
|
|
skb_queue_head(&intel->txq, skb);
|
|
hci_uart_tx_wakeup(hu);
|
|
|
|
intel_wait_lpm_transaction(hu);
|
|
/* Even in case of failure, continue and test the suspended flag */
|
|
|
|
clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
|
|
|
|
if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
|
|
bt_dev_err(hu->hdev, "Device suspend error");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bt_dev_dbg(hu->hdev, "Suspended");
|
|
|
|
hci_uart_set_flow_control(hu, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_lpm_resume(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
struct sk_buff *skb;
|
|
|
|
if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
|
|
!test_bit(STATE_SUSPENDED, &intel->flags))
|
|
return 0;
|
|
|
|
bt_dev_dbg(hu->hdev, "Resuming");
|
|
|
|
hci_uart_set_flow_control(hu, false);
|
|
|
|
skb = bt_skb_alloc(0, GFP_KERNEL);
|
|
if (!skb) {
|
|
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT;
|
|
|
|
set_bit(STATE_LPM_TRANSACTION, &intel->flags);
|
|
|
|
/* LPM flow is a priority, enqueue packet at list head */
|
|
skb_queue_head(&intel->txq, skb);
|
|
hci_uart_tx_wakeup(hu);
|
|
|
|
intel_wait_lpm_transaction(hu);
|
|
/* Even in case of failure, continue and test the suspended flag */
|
|
|
|
clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
|
|
|
|
if (test_bit(STATE_SUSPENDED, &intel->flags)) {
|
|
bt_dev_err(hu->hdev, "Device resume error");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bt_dev_dbg(hu->hdev, "Resumed");
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PM */
|
|
|
|
static int intel_lpm_host_wake(struct hci_uart *hu)
|
|
{
|
|
static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
|
|
struct intel_data *intel = hu->priv;
|
|
struct sk_buff *skb;
|
|
|
|
hci_uart_set_flow_control(hu, false);
|
|
|
|
clear_bit(STATE_SUSPENDED, &intel->flags);
|
|
|
|
skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
|
|
if (!skb) {
|
|
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack));
|
|
hci_skb_pkt_type(skb) = HCI_LPM_PKT;
|
|
|
|
/* LPM flow is a priority, enqueue packet at list head */
|
|
skb_queue_head(&intel->txq, skb);
|
|
hci_uart_tx_wakeup(hu);
|
|
|
|
bt_dev_dbg(hu->hdev, "Resumed by controller");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t intel_irq(int irq, void *dev_id)
|
|
{
|
|
struct intel_device *idev = dev_id;
|
|
|
|
dev_info(&idev->pdev->dev, "hci_intel irq\n");
|
|
|
|
mutex_lock(&idev->hu_lock);
|
|
if (idev->hu)
|
|
intel_lpm_host_wake(idev->hu);
|
|
mutex_unlock(&idev->hu_lock);
|
|
|
|
/* Host/Controller are now LPM resumed, trigger a new delayed suspend */
|
|
pm_runtime_get(&idev->pdev->dev);
|
|
pm_runtime_mark_last_busy(&idev->pdev->dev);
|
|
pm_runtime_put_autosuspend(&idev->pdev->dev);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int intel_set_power(struct hci_uart *hu, bool powered)
|
|
{
|
|
struct list_head *p;
|
|
int err = -ENODEV;
|
|
|
|
if (!hu->tty->dev)
|
|
return err;
|
|
|
|
mutex_lock(&intel_device_list_lock);
|
|
|
|
list_for_each(p, &intel_device_list) {
|
|
struct intel_device *idev = list_entry(p, struct intel_device,
|
|
list);
|
|
|
|
/* tty device and pdev device should share the same parent
|
|
* which is the UART port.
|
|
*/
|
|
if (hu->tty->dev->parent != idev->pdev->dev.parent)
|
|
continue;
|
|
|
|
if (!idev->reset) {
|
|
err = -ENOTSUPP;
|
|
break;
|
|
}
|
|
|
|
BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
|
|
hu, dev_name(&idev->pdev->dev), powered);
|
|
|
|
gpiod_set_value(idev->reset, powered);
|
|
|
|
/* Provide to idev a hu reference which is used to run LPM
|
|
* transactions (lpm suspend/resume) from PM callbacks.
|
|
* hu needs to be protected against concurrent removing during
|
|
* these PM ops.
|
|
*/
|
|
mutex_lock(&idev->hu_lock);
|
|
idev->hu = powered ? hu : NULL;
|
|
mutex_unlock(&idev->hu_lock);
|
|
|
|
if (idev->irq < 0)
|
|
break;
|
|
|
|
if (powered && device_can_wakeup(&idev->pdev->dev)) {
|
|
err = devm_request_threaded_irq(&idev->pdev->dev,
|
|
idev->irq, NULL,
|
|
intel_irq,
|
|
IRQF_ONESHOT,
|
|
"bt-host-wake", idev);
|
|
if (err) {
|
|
BT_ERR("hu %p, unable to allocate irq-%d",
|
|
hu, idev->irq);
|
|
break;
|
|
}
|
|
|
|
device_wakeup_enable(&idev->pdev->dev);
|
|
|
|
pm_runtime_set_active(&idev->pdev->dev);
|
|
pm_runtime_use_autosuspend(&idev->pdev->dev);
|
|
pm_runtime_set_autosuspend_delay(&idev->pdev->dev,
|
|
LPM_SUSPEND_DELAY_MS);
|
|
pm_runtime_enable(&idev->pdev->dev);
|
|
} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
|
|
devm_free_irq(&idev->pdev->dev, idev->irq, idev);
|
|
device_wakeup_disable(&idev->pdev->dev);
|
|
|
|
pm_runtime_disable(&idev->pdev->dev);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&intel_device_list_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void intel_busy_work(struct work_struct *work)
|
|
{
|
|
struct list_head *p;
|
|
struct intel_data *intel = container_of(work, struct intel_data,
|
|
busy_work);
|
|
|
|
if (!intel->hu->tty->dev)
|
|
return;
|
|
|
|
/* Link is busy, delay the suspend */
|
|
mutex_lock(&intel_device_list_lock);
|
|
list_for_each(p, &intel_device_list) {
|
|
struct intel_device *idev = list_entry(p, struct intel_device,
|
|
list);
|
|
|
|
if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) {
|
|
pm_runtime_get(&idev->pdev->dev);
|
|
pm_runtime_mark_last_busy(&idev->pdev->dev);
|
|
pm_runtime_put_autosuspend(&idev->pdev->dev);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&intel_device_list_lock);
|
|
}
|
|
|
|
static int intel_open(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel;
|
|
|
|
BT_DBG("hu %p", hu);
|
|
|
|
intel = kzalloc(sizeof(*intel), GFP_KERNEL);
|
|
if (!intel)
|
|
return -ENOMEM;
|
|
|
|
skb_queue_head_init(&intel->txq);
|
|
INIT_WORK(&intel->busy_work, intel_busy_work);
|
|
|
|
intel->hu = hu;
|
|
|
|
hu->priv = intel;
|
|
|
|
if (!intel_set_power(hu, true))
|
|
set_bit(STATE_BOOTING, &intel->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_close(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
|
|
BT_DBG("hu %p", hu);
|
|
|
|
cancel_work_sync(&intel->busy_work);
|
|
|
|
intel_set_power(hu, false);
|
|
|
|
skb_queue_purge(&intel->txq);
|
|
kfree_skb(intel->rx_skb);
|
|
kfree(intel);
|
|
|
|
hu->priv = NULL;
|
|
return 0;
|
|
}
|
|
|
|
static int intel_flush(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
|
|
BT_DBG("hu %p", hu);
|
|
|
|
skb_queue_purge(&intel->txq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct hci_event_hdr *hdr;
|
|
struct hci_ev_cmd_complete *evt;
|
|
|
|
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
|
|
if (!skb)
|
|
return -ENOMEM;
|
|
|
|
hdr = skb_put(skb, sizeof(*hdr));
|
|
hdr->evt = HCI_EV_CMD_COMPLETE;
|
|
hdr->plen = sizeof(*evt) + 1;
|
|
|
|
evt = skb_put(skb, sizeof(*evt));
|
|
evt->ncmd = 0x01;
|
|
evt->opcode = cpu_to_le16(opcode);
|
|
|
|
skb_put_u8(skb, 0x00);
|
|
|
|
hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
|
|
|
|
return hci_recv_frame(hdev, skb);
|
|
}
|
|
|
|
static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
struct hci_dev *hdev = hu->hdev;
|
|
u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
/* This can be the first command sent to the chip, check
|
|
* that the controller is ready.
|
|
*/
|
|
err = intel_wait_booting(hu);
|
|
|
|
clear_bit(STATE_BOOTING, &intel->flags);
|
|
|
|
/* In case of timeout, try to continue anyway */
|
|
if (err && err != -ETIMEDOUT)
|
|
return err;
|
|
|
|
bt_dev_info(hdev, "Change controller speed to %d", speed);
|
|
|
|
speed_cmd[3] = intel_convert_speed(speed);
|
|
if (speed_cmd[3] == 0xff) {
|
|
bt_dev_err(hdev, "Unsupported speed");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Device will not accept speed change if Intel version has not been
|
|
* previously requested.
|
|
*/
|
|
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb)) {
|
|
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
|
|
PTR_ERR(skb));
|
|
return PTR_ERR(skb);
|
|
}
|
|
kfree_skb(skb);
|
|
|
|
skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
|
|
if (!skb) {
|
|
bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
skb_put_data(skb, speed_cmd, sizeof(speed_cmd));
|
|
hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
|
|
|
|
hci_uart_set_flow_control(hu, true);
|
|
|
|
skb_queue_tail(&intel->txq, skb);
|
|
hci_uart_tx_wakeup(hu);
|
|
|
|
/* wait 100ms to change baudrate on controller side */
|
|
msleep(100);
|
|
|
|
hci_uart_set_baudrate(hu, speed);
|
|
hci_uart_set_flow_control(hu, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_setup(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
struct hci_dev *hdev = hu->hdev;
|
|
struct sk_buff *skb;
|
|
struct intel_version ver;
|
|
struct intel_boot_params params;
|
|
struct list_head *p;
|
|
const struct firmware *fw;
|
|
char fwname[64];
|
|
u32 boot_param;
|
|
ktime_t calltime, delta, rettime;
|
|
unsigned long long duration;
|
|
unsigned int init_speed, oper_speed;
|
|
int speed_change = 0;
|
|
int err;
|
|
|
|
bt_dev_dbg(hdev, "start intel_setup");
|
|
|
|
hu->hdev->set_diag = btintel_set_diag;
|
|
hu->hdev->set_bdaddr = btintel_set_bdaddr;
|
|
|
|
/* Set the default boot parameter to 0x0 and it is updated to
|
|
* SKU specific boot parameter after reading Intel_Write_Boot_Params
|
|
* command while downloading the firmware.
|
|
*/
|
|
boot_param = 0x00000000;
|
|
|
|
calltime = ktime_get();
|
|
|
|
if (hu->init_speed)
|
|
init_speed = hu->init_speed;
|
|
else
|
|
init_speed = hu->proto->init_speed;
|
|
|
|
if (hu->oper_speed)
|
|
oper_speed = hu->oper_speed;
|
|
else
|
|
oper_speed = hu->proto->oper_speed;
|
|
|
|
if (oper_speed && init_speed && oper_speed != init_speed)
|
|
speed_change = 1;
|
|
|
|
/* Check that the controller is ready */
|
|
err = intel_wait_booting(hu);
|
|
|
|
clear_bit(STATE_BOOTING, &intel->flags);
|
|
|
|
/* In case of timeout, try to continue anyway */
|
|
if (err && err != -ETIMEDOUT)
|
|
return err;
|
|
|
|
set_bit(STATE_BOOTLOADER, &intel->flags);
|
|
|
|
/* Read the Intel version information to determine if the device
|
|
* is in bootloader mode or if it already has operational firmware
|
|
* loaded.
|
|
*/
|
|
err = btintel_read_version(hdev, &ver);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The hardware platform number has a fixed value of 0x37 and
|
|
* for now only accept this single value.
|
|
*/
|
|
if (ver.hw_platform != 0x37) {
|
|
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
|
|
ver.hw_platform);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check for supported iBT hardware variants of this firmware
|
|
* loading method.
|
|
*
|
|
* This check has been put in place to ensure correct forward
|
|
* compatibility options when newer hardware variants come along.
|
|
*/
|
|
switch (ver.hw_variant) {
|
|
case 0x0b: /* LnP */
|
|
case 0x0c: /* WsP */
|
|
case 0x12: /* ThP */
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
|
|
ver.hw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
btintel_version_info(hdev, &ver);
|
|
|
|
/* The firmware variant determines if the device is in bootloader
|
|
* mode or is running operational firmware. The value 0x06 identifies
|
|
* the bootloader and the value 0x23 identifies the operational
|
|
* firmware.
|
|
*
|
|
* When the operational firmware is already present, then only
|
|
* the check for valid Bluetooth device address is needed. This
|
|
* determines if the device will be added as configured or
|
|
* unconfigured controller.
|
|
*
|
|
* It is not possible to use the Secure Boot Parameters in this
|
|
* case since that command is only available in bootloader mode.
|
|
*/
|
|
if (ver.fw_variant == 0x23) {
|
|
clear_bit(STATE_BOOTLOADER, &intel->flags);
|
|
btintel_check_bdaddr(hdev);
|
|
return 0;
|
|
}
|
|
|
|
/* If the device is not in bootloader mode, then the only possible
|
|
* choice is to return an error and abort the device initialization.
|
|
*/
|
|
if (ver.fw_variant != 0x06) {
|
|
bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
|
|
ver.fw_variant);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Read the secure boot parameters to identify the operating
|
|
* details of the bootloader.
|
|
*/
|
|
err = btintel_read_boot_params(hdev, ¶ms);
|
|
if (err)
|
|
return err;
|
|
|
|
/* It is required that every single firmware fragment is acknowledged
|
|
* with a command complete event. If the boot parameters indicate
|
|
* that this bootloader does not send them, then abort the setup.
|
|
*/
|
|
if (params.limited_cce != 0x00) {
|
|
bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
|
|
params.limited_cce);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* If the OTP has no valid Bluetooth device address, then there will
|
|
* also be no valid address for the operational firmware.
|
|
*/
|
|
if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) {
|
|
bt_dev_info(hdev, "No device address configured");
|
|
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
|
|
}
|
|
|
|
/* With this Intel bootloader only the hardware variant and device
|
|
* revision information are used to select the right firmware for SfP
|
|
* and WsP.
|
|
*
|
|
* The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi.
|
|
*
|
|
* Currently the supported hardware variants are:
|
|
* 11 (0x0b) for iBT 3.0 (LnP/SfP)
|
|
* 12 (0x0c) for iBT 3.5 (WsP)
|
|
*
|
|
* For ThP/JfP and for future SKU's, the FW name varies based on HW
|
|
* variant, HW revision and FW revision, as these are dependent on CNVi
|
|
* and RF Combination.
|
|
*
|
|
* 18 (0x12) for iBT3.5 (ThP/JfP)
|
|
*
|
|
* The firmware file name for these will be
|
|
* ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi.
|
|
*
|
|
*/
|
|
switch (ver.hw_variant) {
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi",
|
|
le16_to_cpu(ver.hw_variant),
|
|
le16_to_cpu(params.dev_revid));
|
|
break;
|
|
case 0x12: /* ThP */
|
|
snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi",
|
|
le16_to_cpu(ver.hw_variant),
|
|
le16_to_cpu(ver.hw_revision),
|
|
le16_to_cpu(ver.fw_revision));
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
|
|
ver.hw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = request_firmware(&fw, fwname, &hdev->dev);
|
|
if (err < 0) {
|
|
bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
|
|
err);
|
|
return err;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Found device firmware: %s", fwname);
|
|
|
|
/* Save the DDC file name for later */
|
|
switch (ver.hw_variant) {
|
|
case 0x0b: /* SfP */
|
|
case 0x0c: /* WsP */
|
|
snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc",
|
|
le16_to_cpu(ver.hw_variant),
|
|
le16_to_cpu(params.dev_revid));
|
|
break;
|
|
case 0x12: /* ThP */
|
|
snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc",
|
|
le16_to_cpu(ver.hw_variant),
|
|
le16_to_cpu(ver.hw_revision),
|
|
le16_to_cpu(ver.fw_revision));
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
|
|
ver.hw_variant);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (fw->size < 644) {
|
|
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
|
|
fw->size);
|
|
err = -EBADF;
|
|
goto done;
|
|
}
|
|
|
|
set_bit(STATE_DOWNLOADING, &intel->flags);
|
|
|
|
/* Start firmware downloading and get boot parameter */
|
|
err = btintel_download_firmware(hdev, fw, &boot_param);
|
|
if (err < 0)
|
|
goto done;
|
|
|
|
set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
|
|
|
|
bt_dev_info(hdev, "Waiting for firmware download to complete");
|
|
|
|
/* Before switching the device into operational mode and with that
|
|
* booting the loaded firmware, wait for the bootloader notification
|
|
* that all fragments have been successfully received.
|
|
*
|
|
* When the event processing receives the notification, then the
|
|
* STATE_DOWNLOADING flag will be cleared.
|
|
*
|
|
* The firmware loading should not take longer than 5 seconds
|
|
* and thus just timeout if that happens and fail the setup
|
|
* of this device.
|
|
*/
|
|
err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
|
|
TASK_INTERRUPTIBLE,
|
|
msecs_to_jiffies(5000));
|
|
if (err == -EINTR) {
|
|
bt_dev_err(hdev, "Firmware loading interrupted");
|
|
err = -EINTR;
|
|
goto done;
|
|
}
|
|
|
|
if (err) {
|
|
bt_dev_err(hdev, "Firmware loading timeout");
|
|
err = -ETIMEDOUT;
|
|
goto done;
|
|
}
|
|
|
|
if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
|
|
bt_dev_err(hdev, "Firmware loading failed");
|
|
err = -ENOEXEC;
|
|
goto done;
|
|
}
|
|
|
|
rettime = ktime_get();
|
|
delta = ktime_sub(rettime, calltime);
|
|
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
|
|
|
|
bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
|
|
|
|
done:
|
|
release_firmware(fw);
|
|
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* We need to restore the default speed before Intel reset */
|
|
if (speed_change) {
|
|
err = intel_set_baudrate(hu, init_speed);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
calltime = ktime_get();
|
|
|
|
set_bit(STATE_BOOTING, &intel->flags);
|
|
|
|
err = btintel_send_intel_reset(hdev, boot_param);
|
|
if (err)
|
|
return err;
|
|
|
|
/* The bootloader will not indicate when the device is ready. This
|
|
* is done by the operational firmware sending bootup notification.
|
|
*
|
|
* Booting into operational firmware should not take longer than
|
|
* 1 second. However if that happens, then just fail the setup
|
|
* since something went wrong.
|
|
*/
|
|
bt_dev_info(hdev, "Waiting for device to boot");
|
|
|
|
err = intel_wait_booting(hu);
|
|
if (err)
|
|
return err;
|
|
|
|
clear_bit(STATE_BOOTING, &intel->flags);
|
|
|
|
rettime = ktime_get();
|
|
delta = ktime_sub(rettime, calltime);
|
|
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
|
|
|
|
bt_dev_info(hdev, "Device booted in %llu usecs", duration);
|
|
|
|
/* Enable LPM if matching pdev with wakeup enabled, set TX active
|
|
* until further LPM TX notification.
|
|
*/
|
|
mutex_lock(&intel_device_list_lock);
|
|
list_for_each(p, &intel_device_list) {
|
|
struct intel_device *dev = list_entry(p, struct intel_device,
|
|
list);
|
|
if (!hu->tty->dev)
|
|
break;
|
|
if (hu->tty->dev->parent == dev->pdev->dev.parent) {
|
|
if (device_may_wakeup(&dev->pdev->dev)) {
|
|
set_bit(STATE_LPM_ENABLED, &intel->flags);
|
|
set_bit(STATE_TX_ACTIVE, &intel->flags);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&intel_device_list_lock);
|
|
|
|
/* Ignore errors, device can work without DDC parameters */
|
|
btintel_load_ddc_config(hdev, fwname);
|
|
|
|
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
|
|
if (IS_ERR(skb))
|
|
return PTR_ERR(skb);
|
|
kfree_skb(skb);
|
|
|
|
if (speed_change) {
|
|
err = intel_set_baudrate(hu, oper_speed);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
bt_dev_info(hdev, "Setup complete");
|
|
|
|
clear_bit(STATE_BOOTLOADER, &intel->flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
struct hci_uart *hu = hci_get_drvdata(hdev);
|
|
struct intel_data *intel = hu->priv;
|
|
struct hci_event_hdr *hdr;
|
|
|
|
if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
|
|
!test_bit(STATE_BOOTING, &intel->flags))
|
|
goto recv;
|
|
|
|
hdr = (void *)skb->data;
|
|
|
|
/* When the firmware loading completes the device sends
|
|
* out a vendor specific event indicating the result of
|
|
* the firmware loading.
|
|
*/
|
|
if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
|
|
skb->data[2] == 0x06) {
|
|
if (skb->data[3] != 0x00)
|
|
set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
|
|
|
|
if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
|
|
test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&intel->flags, STATE_DOWNLOADING);
|
|
}
|
|
|
|
/* When switching to the operational firmware the device
|
|
* sends a vendor specific event indicating that the bootup
|
|
* completed.
|
|
*/
|
|
} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
|
|
skb->data[2] == 0x02) {
|
|
if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&intel->flags, STATE_BOOTING);
|
|
}
|
|
}
|
|
recv:
|
|
return hci_recv_frame(hdev, skb);
|
|
}
|
|
|
|
static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
|
|
{
|
|
struct hci_uart *hu = hci_get_drvdata(hdev);
|
|
struct intel_data *intel = hu->priv;
|
|
|
|
bt_dev_dbg(hdev, "TX idle notification (%d)", value);
|
|
|
|
if (value) {
|
|
set_bit(STATE_TX_ACTIVE, &intel->flags);
|
|
schedule_work(&intel->busy_work);
|
|
} else {
|
|
clear_bit(STATE_TX_ACTIVE, &intel->flags);
|
|
}
|
|
}
|
|
|
|
static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
|
|
{
|
|
struct hci_lpm_pkt *lpm = (void *)skb->data;
|
|
struct hci_uart *hu = hci_get_drvdata(hdev);
|
|
struct intel_data *intel = hu->priv;
|
|
|
|
switch (lpm->opcode) {
|
|
case LPM_OP_TX_NOTIFY:
|
|
if (lpm->dlen < 1) {
|
|
bt_dev_err(hu->hdev, "Invalid LPM notification packet");
|
|
break;
|
|
}
|
|
intel_recv_lpm_notify(hdev, lpm->data[0]);
|
|
break;
|
|
case LPM_OP_SUSPEND_ACK:
|
|
set_bit(STATE_SUSPENDED, &intel->flags);
|
|
if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
|
|
}
|
|
break;
|
|
case LPM_OP_RESUME_ACK:
|
|
clear_bit(STATE_SUSPENDED, &intel->flags);
|
|
if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
|
|
smp_mb__after_atomic();
|
|
wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
|
|
}
|
|
break;
|
|
default:
|
|
bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
|
|
break;
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define INTEL_RECV_LPM \
|
|
.type = HCI_LPM_PKT, \
|
|
.hlen = HCI_LPM_HDR_SIZE, \
|
|
.loff = 1, \
|
|
.lsize = 1, \
|
|
.maxlen = HCI_LPM_MAX_SIZE
|
|
|
|
static const struct h4_recv_pkt intel_recv_pkts[] = {
|
|
{ H4_RECV_ACL, .recv = hci_recv_frame },
|
|
{ H4_RECV_SCO, .recv = hci_recv_frame },
|
|
{ H4_RECV_EVENT, .recv = intel_recv_event },
|
|
{ INTEL_RECV_LPM, .recv = intel_recv_lpm },
|
|
};
|
|
|
|
static int intel_recv(struct hci_uart *hu, const void *data, int count)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
|
|
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
|
|
return -EUNATCH;
|
|
|
|
intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
|
|
intel_recv_pkts,
|
|
ARRAY_SIZE(intel_recv_pkts));
|
|
if (IS_ERR(intel->rx_skb)) {
|
|
int err = PTR_ERR(intel->rx_skb);
|
|
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
|
|
intel->rx_skb = NULL;
|
|
return err;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
struct list_head *p;
|
|
|
|
BT_DBG("hu %p skb %p", hu, skb);
|
|
|
|
if (!hu->tty->dev)
|
|
goto out_enqueue;
|
|
|
|
/* Be sure our controller is resumed and potential LPM transaction
|
|
* completed before enqueuing any packet.
|
|
*/
|
|
mutex_lock(&intel_device_list_lock);
|
|
list_for_each(p, &intel_device_list) {
|
|
struct intel_device *idev = list_entry(p, struct intel_device,
|
|
list);
|
|
|
|
if (hu->tty->dev->parent == idev->pdev->dev.parent) {
|
|
pm_runtime_get_sync(&idev->pdev->dev);
|
|
pm_runtime_mark_last_busy(&idev->pdev->dev);
|
|
pm_runtime_put_autosuspend(&idev->pdev->dev);
|
|
break;
|
|
}
|
|
}
|
|
mutex_unlock(&intel_device_list_lock);
|
|
out_enqueue:
|
|
skb_queue_tail(&intel->txq, skb);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct sk_buff *intel_dequeue(struct hci_uart *hu)
|
|
{
|
|
struct intel_data *intel = hu->priv;
|
|
struct sk_buff *skb;
|
|
|
|
skb = skb_dequeue(&intel->txq);
|
|
if (!skb)
|
|
return skb;
|
|
|
|
if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
|
|
(hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) {
|
|
struct hci_command_hdr *cmd = (void *)skb->data;
|
|
__u16 opcode = le16_to_cpu(cmd->opcode);
|
|
|
|
/* When the 0xfc01 command is issued to boot into
|
|
* the operational firmware, it will actually not
|
|
* send a command complete event. To keep the flow
|
|
* control working inject that event here.
|
|
*/
|
|
if (opcode == 0xfc01)
|
|
inject_cmd_complete(hu->hdev, opcode);
|
|
}
|
|
|
|
/* Prepend skb with frame type */
|
|
memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
|
|
|
|
return skb;
|
|
}
|
|
|
|
static const struct hci_uart_proto intel_proto = {
|
|
.id = HCI_UART_INTEL,
|
|
.name = "Intel",
|
|
.manufacturer = 2,
|
|
.init_speed = 115200,
|
|
.oper_speed = 3000000,
|
|
.open = intel_open,
|
|
.close = intel_close,
|
|
.flush = intel_flush,
|
|
.setup = intel_setup,
|
|
.set_baudrate = intel_set_baudrate,
|
|
.recv = intel_recv,
|
|
.enqueue = intel_enqueue,
|
|
.dequeue = intel_dequeue,
|
|
};
|
|
|
|
#ifdef CONFIG_ACPI
|
|
static const struct acpi_device_id intel_acpi_match[] = {
|
|
{ "INT33E1", 0 },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM
|
|
static int intel_suspend_device(struct device *dev)
|
|
{
|
|
struct intel_device *idev = dev_get_drvdata(dev);
|
|
|
|
mutex_lock(&idev->hu_lock);
|
|
if (idev->hu)
|
|
intel_lpm_suspend(idev->hu);
|
|
mutex_unlock(&idev->hu_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_resume_device(struct device *dev)
|
|
{
|
|
struct intel_device *idev = dev_get_drvdata(dev);
|
|
|
|
mutex_lock(&idev->hu_lock);
|
|
if (idev->hu)
|
|
intel_lpm_resume(idev->hu);
|
|
mutex_unlock(&idev->hu_lock);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int intel_suspend(struct device *dev)
|
|
{
|
|
struct intel_device *idev = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev))
|
|
enable_irq_wake(idev->irq);
|
|
|
|
return intel_suspend_device(dev);
|
|
}
|
|
|
|
static int intel_resume(struct device *dev)
|
|
{
|
|
struct intel_device *idev = dev_get_drvdata(dev);
|
|
|
|
if (device_may_wakeup(dev))
|
|
disable_irq_wake(idev->irq);
|
|
|
|
return intel_resume_device(dev);
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops intel_pm_ops = {
|
|
SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
|
|
SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL)
|
|
};
|
|
|
|
static const struct acpi_gpio_params reset_gpios = { 0, 0, false };
|
|
static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false };
|
|
|
|
static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = {
|
|
{ "reset-gpios", &reset_gpios, 1 },
|
|
{ "host-wake-gpios", &host_wake_gpios, 1 },
|
|
{ },
|
|
};
|
|
|
|
static int intel_probe(struct platform_device *pdev)
|
|
{
|
|
struct intel_device *idev;
|
|
int ret;
|
|
|
|
idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
|
|
if (!idev)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&idev->hu_lock);
|
|
|
|
idev->pdev = pdev;
|
|
|
|
ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios);
|
|
if (ret)
|
|
dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n");
|
|
|
|
idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW);
|
|
if (IS_ERR(idev->reset)) {
|
|
dev_err(&pdev->dev, "Unable to retrieve gpio\n");
|
|
return PTR_ERR(idev->reset);
|
|
}
|
|
|
|
idev->irq = platform_get_irq(pdev, 0);
|
|
if (idev->irq < 0) {
|
|
struct gpio_desc *host_wake;
|
|
|
|
dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
|
|
|
|
host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN);
|
|
if (IS_ERR(host_wake)) {
|
|
dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
|
|
goto no_irq;
|
|
}
|
|
|
|
idev->irq = gpiod_to_irq(host_wake);
|
|
if (idev->irq < 0) {
|
|
dev_err(&pdev->dev, "No corresponding irq for gpio\n");
|
|
goto no_irq;
|
|
}
|
|
}
|
|
|
|
/* Only enable wake-up/irq when controller is powered */
|
|
device_set_wakeup_capable(&pdev->dev, true);
|
|
device_wakeup_disable(&pdev->dev);
|
|
|
|
no_irq:
|
|
platform_set_drvdata(pdev, idev);
|
|
|
|
/* Place this instance on the device list */
|
|
mutex_lock(&intel_device_list_lock);
|
|
list_add_tail(&idev->list, &intel_device_list);
|
|
mutex_unlock(&intel_device_list_lock);
|
|
|
|
dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
|
|
desc_to_gpio(idev->reset), idev->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_remove(struct platform_device *pdev)
|
|
{
|
|
struct intel_device *idev = platform_get_drvdata(pdev);
|
|
|
|
device_wakeup_disable(&pdev->dev);
|
|
|
|
mutex_lock(&intel_device_list_lock);
|
|
list_del(&idev->list);
|
|
mutex_unlock(&intel_device_list_lock);
|
|
|
|
dev_info(&pdev->dev, "unregistered.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver intel_driver = {
|
|
.probe = intel_probe,
|
|
.remove = intel_remove,
|
|
.driver = {
|
|
.name = "hci_intel",
|
|
.acpi_match_table = ACPI_PTR(intel_acpi_match),
|
|
.pm = &intel_pm_ops,
|
|
},
|
|
};
|
|
|
|
int __init intel_init(void)
|
|
{
|
|
platform_driver_register(&intel_driver);
|
|
|
|
return hci_uart_register_proto(&intel_proto);
|
|
}
|
|
|
|
int __exit intel_deinit(void)
|
|
{
|
|
platform_driver_unregister(&intel_driver);
|
|
|
|
return hci_uart_unregister_proto(&intel_proto);
|
|
}
|