linux_dsm_epyc7002/drivers/net/sfc/efx.c
Ben Hutchings 8ceee660aa New driver "sfc" for Solarstorm SFC4000 controller.
The driver supports the 10Xpress PHY and XFP modules on our reference
designs SFE4001 and SFE4002 and the SMC models SMC10GPCIe-XFP and
SMC10GPCIe-10BT.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2008-04-29 01:42:43 -04:00

2209 lines
57 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2005-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/crc32.h>
#include <linux/ethtool.h>
#include "net_driver.h"
#include "gmii.h"
#include "ethtool.h"
#include "tx.h"
#include "rx.h"
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "workarounds.h"
#include "mac.h"
#define EFX_MAX_MTU (9 * 1024)
/* RX slow fill workqueue. If memory allocation fails in the fast path,
* a work item is pushed onto this work queue to retry the allocation later,
* to avoid the NIC being starved of RX buffers. Since this is a per cpu
* workqueue, there is nothing to be gained in making it per NIC
*/
static struct workqueue_struct *refill_workqueue;
/**************************************************************************
*
* Configurable values
*
*************************************************************************/
/*
* Enable large receive offload (LRO) aka soft segment reassembly (SSR)
*
* This sets the default for new devices. It can be controlled later
* using ethtool.
*/
static int lro = 1;
module_param(lro, int, 0644);
MODULE_PARM_DESC(lro, "Large receive offload acceleration");
/*
* Use separate channels for TX and RX events
*
* Set this to 1 to use separate channels for TX and RX. It allows us to
* apply a higher level of interrupt moderation to TX events.
*
* This is forced to 0 for MSI interrupt mode as the interrupt vector
* is not written
*/
static unsigned int separate_tx_and_rx_channels = 1;
/* This is the weight assigned to each of the (per-channel) virtual
* NAPI devices.
*/
static int napi_weight = 64;
/* This is the time (in jiffies) between invocations of the hardware
* monitor, which checks for known hardware bugs and resets the
* hardware and driver as necessary.
*/
unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the hardware monitor will trigger a
* reset when it detects an error condition.
*/
static unsigned int monitor_reset = 1;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* The default for RX should strike a balance between increasing the
* round-trip latency and reducing overhead.
*/
static unsigned int rx_irq_mod_usec = 60;
/* Initial interrupt moderation settings. They can be modified after
* module load with ethtool.
*
* This default is chosen to ensure that a 10G link does not go idle
* while a TX queue is stopped after it has become full. A queue is
* restarted when it drops below half full. The time this takes (assuming
* worst case 3 descriptors per packet and 1024 descriptors) is
* 512 / 3 * 1.2 = 205 usec.
*/
static unsigned int tx_irq_mod_usec = 150;
/* This is the first interrupt mode to try out of:
* 0 => MSI-X
* 1 => MSI
* 2 => legacy
*/
static unsigned int interrupt_mode;
/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
* i.e. the number of CPUs among which we may distribute simultaneous
* interrupt handling.
*
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache)
*/
static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444);
MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
/**************************************************************************
*
* Utility functions and prototypes
*
*************************************************************************/
static void efx_remove_channel(struct efx_channel *channel);
static void efx_remove_port(struct efx_nic *efx);
static void efx_fini_napi(struct efx_nic *efx);
static void efx_fini_channels(struct efx_nic *efx);
#define EFX_ASSERT_RESET_SERIALISED(efx) \
do { \
if ((efx->state == STATE_RUNNING) || \
(efx->state == STATE_RESETTING)) \
ASSERT_RTNL(); \
} while (0)
/**************************************************************************
*
* Event queue processing
*
*************************************************************************/
/* Process channel's event queue
*
* This function is responsible for processing the event queue of a
* single channel. The caller must guarantee that this function will
* never be concurrently called more than once on the same channel,
* though different channels may be being processed concurrently.
*/
static inline int efx_process_channel(struct efx_channel *channel, int rx_quota)
{
int rxdmaqs;
struct efx_rx_queue *rx_queue;
if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
!channel->enabled))
return rx_quota;
rxdmaqs = falcon_process_eventq(channel, &rx_quota);
/* Deliver last RX packet. */
if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt,
channel->rx_pkt_csummed);
channel->rx_pkt = NULL;
}
efx_flush_lro(channel);
efx_rx_strategy(channel);
/* Refill descriptor rings as necessary */
rx_queue = &channel->efx->rx_queue[0];
while (rxdmaqs) {
if (rxdmaqs & 0x01)
efx_fast_push_rx_descriptors(rx_queue);
rx_queue++;
rxdmaqs >>= 1;
}
return rx_quota;
}
/* Mark channel as finished processing
*
* Note that since we will not receive further interrupts for this
* channel before we finish processing and call the eventq_read_ack()
* method, there is no need to use the interrupt hold-off timers.
*/
static inline void efx_channel_processed(struct efx_channel *channel)
{
/* Write to EVQ_RPTR_REG. If a new event arrived in a race
* with finishing processing, a new interrupt will be raised.
*/
channel->work_pending = 0;
smp_wmb(); /* Ensure channel updated before any new interrupt. */
falcon_eventq_read_ack(channel);
}
/* NAPI poll handler
*
* NAPI guarantees serialisation of polls of the same device, which
* provides the guarantee required by efx_process_channel().
*/
static int efx_poll(struct napi_struct *napi, int budget)
{
struct efx_channel *channel =
container_of(napi, struct efx_channel, napi_str);
struct net_device *napi_dev = channel->napi_dev;
int unused;
int rx_packets;
EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
channel->channel, raw_smp_processor_id());
unused = efx_process_channel(channel, budget);
rx_packets = (budget - unused);
if (rx_packets < budget) {
/* There is no race here; although napi_disable() will
* only wait for netif_rx_complete(), this isn't a problem
* since efx_channel_processed() will have no effect if
* interrupts have already been disabled.
*/
netif_rx_complete(napi_dev, napi);
efx_channel_processed(channel);
}
return rx_packets;
}
/* Process the eventq of the specified channel immediately on this CPU
*
* Disable hardware generated interrupts, wait for any existing
* processing to finish, then directly poll (and ack ) the eventq.
* Finally reenable NAPI and interrupts.
*
* Since we are touching interrupts the caller should hold the suspend lock
*/
void efx_process_channel_now(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
BUG_ON(!channel->used_flags);
BUG_ON(!channel->enabled);
/* Disable interrupts and wait for ISRs to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
if (channel->has_interrupt && channel->irq)
synchronize_irq(channel->irq);
/* Wait for any NAPI processing to complete */
napi_disable(&channel->napi_str);
/* Poll the channel */
(void) efx_process_channel(channel, efx->type->evq_size);
/* Ack the eventq. This may cause an interrupt to be generated
* when they are reenabled */
efx_channel_processed(channel);
napi_enable(&channel->napi_str);
falcon_enable_interrupts(efx);
}
/* Create event queue
* Event queue memory allocations are done only once. If the channel
* is reset, the memory buffer will be reused; this guards against
* errors during channel reset and also simplifies interrupt handling.
*/
static int efx_probe_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
return falcon_probe_eventq(channel);
}
/* Prepare channel's event queue */
static int efx_init_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
channel->eventq_read_ptr = 0;
return falcon_init_eventq(channel);
}
static void efx_fini_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
falcon_fini_eventq(channel);
}
static void efx_remove_eventq(struct efx_channel *channel)
{
EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
falcon_remove_eventq(channel);
}
/**************************************************************************
*
* Channel handling
*
*************************************************************************/
/* Setup per-NIC RX buffer parameters.
* Calculate the rx buffer allocation parameters required to support
* the current MTU, including padding for header alignment and overruns.
*/
static void efx_calc_rx_buffer_params(struct efx_nic *efx)
{
unsigned int order, len;
len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
efx->type->rx_buffer_padding);
/* Calculate page-order */
for (order = 0; ((1u << order) * PAGE_SIZE) < len; ++order)
;
efx->rx_buffer_len = len;
efx->rx_buffer_order = order;
}
static int efx_probe_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc;
EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
rc = efx_probe_eventq(channel);
if (rc)
goto fail1;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_probe_tx_queue(tx_queue);
if (rc)
goto fail2;
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_probe_rx_queue(rx_queue);
if (rc)
goto fail3;
}
channel->n_rx_frm_trunc = 0;
return 0;
fail3:
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
fail2:
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
fail1:
return rc;
}
/* Channels are shutdown and reinitialised whilst the NIC is running
* to propagate configuration changes (mtu, checksum offload), or
* to clear hardware error conditions
*/
static int efx_init_channels(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
struct efx_channel *channel;
int rc = 0;
efx_calc_rx_buffer_params(efx);
/* Initialise the channels */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
rc = efx_init_eventq(channel);
if (rc)
goto err;
efx_for_each_channel_tx_queue(tx_queue, channel) {
rc = efx_init_tx_queue(tx_queue);
if (rc)
goto err;
}
/* The rx buffer allocation strategy is MTU dependent */
efx_rx_strategy(channel);
efx_for_each_channel_rx_queue(rx_queue, channel) {
rc = efx_init_rx_queue(rx_queue);
if (rc)
goto err;
}
WARN_ON(channel->rx_pkt != NULL);
efx_rx_strategy(channel);
}
return 0;
err:
EFX_ERR(efx, "failed to initialise channel %d\n",
channel ? channel->channel : -1);
efx_fini_channels(efx);
return rc;
}
/* This enables event queue processing and packet transmission.
*
* Note that this function is not allowed to fail, since that would
* introduce too much complexity into the suspend/resume path.
*/
static void efx_start_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
if (!(channel->efx->net_dev->flags & IFF_UP))
netif_napi_add(channel->napi_dev, &channel->napi_str,
efx_poll, napi_weight);
channel->work_pending = 0;
channel->enabled = 1;
smp_wmb(); /* ensure channel updated before first interrupt */
napi_enable(&channel->napi_str);
/* Load up RX descriptors */
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fast_push_rx_descriptors(rx_queue);
}
/* This disables event queue processing and packet transmission.
* This function does not guarantee that all queue processing
* (e.g. RX refill) is complete.
*/
static void efx_stop_channel(struct efx_channel *channel)
{
struct efx_rx_queue *rx_queue;
if (!channel->enabled)
return;
EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
channel->enabled = 0;
napi_disable(&channel->napi_str);
/* Ensure that any worker threads have exited or will be no-ops */
efx_for_each_channel_rx_queue(rx_queue, channel) {
spin_lock_bh(&rx_queue->add_lock);
spin_unlock_bh(&rx_queue->add_lock);
}
}
static void efx_fini_channels(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
BUG_ON(efx->port_enabled);
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_fini_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_fini_tx_queue(tx_queue);
}
/* Do the event queues last so that we can handle flush events
* for all DMA queues. */
efx_for_each_channel(channel, efx) {
EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
efx_fini_eventq(channel);
}
}
static void efx_remove_channel(struct efx_channel *channel)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_remove_rx_queue(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_remove_tx_queue(tx_queue);
efx_remove_eventq(channel);
channel->used_flags = 0;
}
void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
{
queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
}
/**************************************************************************
*
* Port handling
*
**************************************************************************/
/* This ensures that the kernel is kept informed (via
* netif_carrier_on/off) of the link status, and also maintains the
* link status's stop on the port's TX queue.
*/
static void efx_link_status_changed(struct efx_nic *efx)
{
int carrier_ok;
/* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
* that no events are triggered between unregister_netdev() and the
* driver unloading. A more general condition is that NETDEV_CHANGE
* can only be generated between NETDEV_UP and NETDEV_DOWN */
if (!netif_running(efx->net_dev))
return;
carrier_ok = netif_carrier_ok(efx->net_dev) ? 1 : 0;
if (efx->link_up != carrier_ok) {
efx->n_link_state_changes++;
if (efx->link_up)
netif_carrier_on(efx->net_dev);
else
netif_carrier_off(efx->net_dev);
}
/* Status message for kernel log */
if (efx->link_up) {
struct mii_if_info *gmii = &efx->mii;
unsigned adv, lpa;
/* NONE here means direct XAUI from the controller, with no
* MDIO-attached device we can query. */
if (efx->phy_type != PHY_TYPE_NONE) {
adv = gmii_advertised(gmii);
lpa = gmii_lpa(gmii);
} else {
lpa = GM_LPA_10000 | LPA_DUPLEX;
adv = lpa;
}
EFX_INFO(efx, "link up at %dMbps %s-duplex "
"(adv %04x lpa %04x) (MTU %d)%s\n",
(efx->link_options & GM_LPA_10000 ? 10000 :
(efx->link_options & GM_LPA_1000 ? 1000 :
(efx->link_options & GM_LPA_100 ? 100 :
10))),
(efx->link_options & GM_LPA_DUPLEX ?
"full" : "half"),
adv, lpa,
efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : ""));
} else {
EFX_INFO(efx, "link down\n");
}
}
/* This call reinitialises the MAC to pick up new PHY settings. The
* caller must hold the mac_lock */
static void __efx_reconfigure_port(struct efx_nic *efx)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
raw_smp_processor_id());
falcon_reconfigure_xmac(efx);
/* Inform kernel of loss/gain of carrier */
efx_link_status_changed(efx);
}
/* Reinitialise the MAC to pick up new PHY settings, even if the port is
* disabled. */
void efx_reconfigure_port(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
mutex_lock(&efx->mac_lock);
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
* we don't efx_reconfigure_port() if the port is disabled. Care is taken
* in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
static void efx_reconfigure_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
reconfigure_work);
mutex_lock(&efx->mac_lock);
if (efx->port_enabled)
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
static int efx_probe_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "create port\n");
/* Connect up MAC/PHY operations table and read MAC address */
rc = falcon_probe_port(efx);
if (rc)
goto err;
/* Sanity check MAC address */
if (is_valid_ether_addr(efx->mac_address)) {
memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
} else {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid MAC address %s\n",
print_mac(mac, efx->mac_address));
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
EFX_INFO(efx, "using locally-generated MAC %s\n",
print_mac(mac, efx->net_dev->dev_addr));
}
return 0;
err:
efx_remove_port(efx);
return rc;
}
static int efx_init_port(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "init port\n");
/* Initialise the MAC and PHY */
rc = falcon_init_xmac(efx);
if (rc)
return rc;
efx->port_initialized = 1;
/* Reconfigure port to program MAC registers */
falcon_reconfigure_xmac(efx);
return 0;
}
/* Allow efx_reconfigure_port() to be scheduled, and close the window
* between efx_stop_port and efx_flush_all whereby a previously scheduled
* efx_reconfigure_port() may have been cancelled */
static void efx_start_port(struct efx_nic *efx)
{
EFX_LOG(efx, "start port\n");
BUG_ON(efx->port_enabled);
mutex_lock(&efx->mac_lock);
efx->port_enabled = 1;
__efx_reconfigure_port(efx);
mutex_unlock(&efx->mac_lock);
}
/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
* efx_set_multicast_list() from scheduling efx_reconfigure_work.
* efx_reconfigure_work can still be scheduled via NAPI processing
* until efx_flush_all() is called */
static void efx_stop_port(struct efx_nic *efx)
{
EFX_LOG(efx, "stop port\n");
mutex_lock(&efx->mac_lock);
efx->port_enabled = 0;
mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */
if (NET_DEV_REGISTERED(efx)) {
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_fini_port(struct efx_nic *efx)
{
EFX_LOG(efx, "shut down port\n");
if (!efx->port_initialized)
return;
falcon_fini_xmac(efx);
efx->port_initialized = 0;
efx->link_up = 0;
efx_link_status_changed(efx);
}
static void efx_remove_port(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying port\n");
falcon_remove_port(efx);
}
/**************************************************************************
*
* NIC handling
*
**************************************************************************/
/* This configures the PCI device to enable I/O and DMA. */
static int efx_init_io(struct efx_nic *efx)
{
struct pci_dev *pci_dev = efx->pci_dev;
dma_addr_t dma_mask = efx->type->max_dma_mask;
int rc;
EFX_LOG(efx, "initialising I/O\n");
rc = pci_enable_device(pci_dev);
if (rc) {
EFX_ERR(efx, "failed to enable PCI device\n");
goto fail1;
}
pci_set_master(pci_dev);
/* Set the PCI DMA mask. Try all possibilities from our
* genuine mask down to 32 bits, because some architectures
* (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
* masks event though they reject 46 bit masks.
*/
while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) &&
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
break;
dma_mask >>= 1;
}
if (rc) {
EFX_ERR(efx, "could not find a suitable DMA mask\n");
goto fail2;
}
EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
if (rc) {
/* pci_set_consistent_dma_mask() is not *allowed* to
* fail with a mask that pci_set_dma_mask() accepted,
* but just in case...
*/
EFX_ERR(efx, "failed to set consistent DMA mask\n");
goto fail2;
}
efx->membase_phys = pci_resource_start(efx->pci_dev,
efx->type->mem_bar);
rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
if (rc) {
EFX_ERR(efx, "request for memory BAR failed\n");
rc = -EIO;
goto fail3;
}
efx->membase = ioremap_nocache(efx->membase_phys,
efx->type->mem_map_size);
if (!efx->membase) {
EFX_ERR(efx, "could not map memory BAR %d at %lx+%x\n",
efx->type->mem_bar, efx->membase_phys,
efx->type->mem_map_size);
rc = -ENOMEM;
goto fail4;
}
EFX_LOG(efx, "memory BAR %u at %lx+%x (virtual %p)\n",
efx->type->mem_bar, efx->membase_phys, efx->type->mem_map_size,
efx->membase);
return 0;
fail4:
release_mem_region(efx->membase_phys, efx->type->mem_map_size);
fail3:
efx->membase_phys = 0UL;
fail2:
pci_disable_device(efx->pci_dev);
fail1:
return rc;
}
static void efx_fini_io(struct efx_nic *efx)
{
EFX_LOG(efx, "shutting down I/O\n");
if (efx->membase) {
iounmap(efx->membase);
efx->membase = NULL;
}
if (efx->membase_phys) {
pci_release_region(efx->pci_dev, efx->type->mem_bar);
efx->membase_phys = 0UL;
}
pci_disable_device(efx->pci_dev);
}
/* Probe the number and type of interrupts we are able to obtain. */
static void efx_probe_interrupts(struct efx_nic *efx)
{
int max_channel = efx->type->phys_addr_channels - 1;
struct msix_entry xentries[EFX_MAX_CHANNELS];
int rc, i;
if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
BUG_ON(!pci_find_capability(efx->pci_dev, PCI_CAP_ID_MSIX));
efx->rss_queues = rss_cpus ? rss_cpus : num_online_cpus();
efx->rss_queues = min(efx->rss_queues, max_channel + 1);
efx->rss_queues = min(efx->rss_queues, EFX_MAX_CHANNELS);
/* Request maximum number of MSI interrupts, and fill out
* the channel interrupt information the allowed allocation */
for (i = 0; i < efx->rss_queues; i++)
xentries[i].entry = i;
rc = pci_enable_msix(efx->pci_dev, xentries, efx->rss_queues);
if (rc > 0) {
EFX_BUG_ON_PARANOID(rc >= efx->rss_queues);
efx->rss_queues = rc;
rc = pci_enable_msix(efx->pci_dev, xentries,
efx->rss_queues);
}
if (rc == 0) {
for (i = 0; i < efx->rss_queues; i++) {
efx->channel[i].has_interrupt = 1;
efx->channel[i].irq = xentries[i].vector;
}
} else {
/* Fall back to single channel MSI */
efx->interrupt_mode = EFX_INT_MODE_MSI;
EFX_ERR(efx, "could not enable MSI-X\n");
}
}
/* Try single interrupt MSI */
if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
efx->rss_queues = 1;
rc = pci_enable_msi(efx->pci_dev);
if (rc == 0) {
efx->channel[0].irq = efx->pci_dev->irq;
efx->channel[0].has_interrupt = 1;
} else {
EFX_ERR(efx, "could not enable MSI\n");
efx->interrupt_mode = EFX_INT_MODE_LEGACY;
}
}
/* Assume legacy interrupts */
if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
efx->rss_queues = 1;
/* Every channel is interruptible */
for (i = 0; i < EFX_MAX_CHANNELS; i++)
efx->channel[i].has_interrupt = 1;
efx->legacy_irq = efx->pci_dev->irq;
}
}
static void efx_remove_interrupts(struct efx_nic *efx)
{
struct efx_channel *channel;
/* Remove MSI/MSI-X interrupts */
efx_for_each_channel_with_interrupt(channel, efx)
channel->irq = 0;
pci_disable_msi(efx->pci_dev);
pci_disable_msix(efx->pci_dev);
/* Remove legacy interrupt */
efx->legacy_irq = 0;
}
/* Select number of used resources
* Should be called after probe_interrupts()
*/
static void efx_select_used(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i;
/* TX queues. One per port per channel with TX capability
* (more than one per port won't work on Linux, due to out
* of order issues... but will be fine on Solaris)
*/
tx_queue = &efx->tx_queue[0];
/* Perform this for each channel with TX capabilities.
* At the moment, we only support a single TX queue
*/
tx_queue->used = 1;
if ((!EFX_INT_MODE_USE_MSI(efx)) && separate_tx_and_rx_channels)
tx_queue->channel = &efx->channel[1];
else
tx_queue->channel = &efx->channel[0];
tx_queue->channel->used_flags |= EFX_USED_BY_TX;
tx_queue++;
/* RX queues. Each has a dedicated channel. */
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
if (i < efx->rss_queues) {
rx_queue->used = 1;
/* If we allow multiple RX queues per channel
* we need to decide that here
*/
rx_queue->channel = &efx->channel[rx_queue->queue];
rx_queue->channel->used_flags |= EFX_USED_BY_RX;
rx_queue++;
}
}
}
static int efx_probe_nic(struct efx_nic *efx)
{
int rc;
EFX_LOG(efx, "creating NIC\n");
/* Carry out hardware-type specific initialisation */
rc = falcon_probe_nic(efx);
if (rc)
return rc;
/* Determine the number of channels and RX queues by trying to hook
* in MSI-X interrupts. */
efx_probe_interrupts(efx);
/* Determine number of RX queues and TX queues */
efx_select_used(efx);
/* Initialise the interrupt moderation settings */
efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
return 0;
}
static void efx_remove_nic(struct efx_nic *efx)
{
EFX_LOG(efx, "destroying NIC\n");
efx_remove_interrupts(efx);
falcon_remove_nic(efx);
}
/**************************************************************************
*
* NIC startup/shutdown
*
*************************************************************************/
static int efx_probe_all(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
/* Create NIC */
rc = efx_probe_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to create NIC\n");
goto fail1;
}
/* Create port */
rc = efx_probe_port(efx);
if (rc) {
EFX_ERR(efx, "failed to create port\n");
goto fail2;
}
/* Create channels */
efx_for_each_channel(channel, efx) {
rc = efx_probe_channel(channel);
if (rc) {
EFX_ERR(efx, "failed to create channel %d\n",
channel->channel);
goto fail3;
}
}
return 0;
fail3:
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
fail2:
efx_remove_nic(efx);
fail1:
return rc;
}
/* Called after previous invocation(s) of efx_stop_all, restarts the
* port, kernel transmit queue, NAPI processing and hardware interrupts,
* and ensures that the port is scheduled to be reconfigured.
* This function is safe to call multiple times when the NIC is in any
* state. */
static void efx_start_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* Check that it is appropriate to restart the interface. All
* of these flags are safe to read under just the rtnl lock */
if (efx->port_enabled)
return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return;
if (NET_DEV_REGISTERED(efx) && !netif_running(efx->net_dev))
return;
/* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx);
efx_wake_queue(efx);
efx_for_each_channel(channel, efx)
efx_start_channel(channel);
falcon_enable_interrupts(efx);
/* Start hardware monitor if we're in RUNNING */
if (efx->state == STATE_RUNNING)
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/* Flush all delayed work. Should only be called when no more delayed work
* will be scheduled. This doesn't flush pending online resets (efx_reset),
* since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx)
{
struct efx_rx_queue *rx_queue;
/* Make sure the hardware monitor is stopped */
cancel_delayed_work_sync(&efx->monitor_work);
/* Ensure that all RX slow refills are complete. */
efx_for_each_rx_queue(rx_queue, efx) {
cancel_delayed_work_sync(&rx_queue->work);
}
/* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->reconfigure_work);
}
/* Quiesce hardware and software without bringing the link down.
* Safe to call multiple times, when the nic and interface is in any
* state. The caller is guaranteed to subsequently be in a position
* to modify any hardware and software state they see fit without
* taking locks. */
static void efx_stop_all(struct efx_nic *efx)
{
struct efx_channel *channel;
EFX_ASSERT_RESET_SERIALISED(efx);
/* port_enabled can be read safely under the rtnl lock */
if (!efx->port_enabled)
return;
/* Disable interrupts and wait for ISR to complete */
falcon_disable_interrupts(efx);
if (efx->legacy_irq)
synchronize_irq(efx->legacy_irq);
efx_for_each_channel_with_interrupt(channel, efx)
if (channel->irq)
synchronize_irq(channel->irq);
/* Stop all NAPI processing and synchronous rx refills */
efx_for_each_channel(channel, efx)
efx_stop_channel(channel);
/* Stop all asynchronous port reconfigurations. Since all
* event processing has already been stopped, there is no
* window to loose phy events */
efx_stop_port(efx);
/* Flush reconfigure_work, refill_workqueue, monitor_work */
efx_flush_all(efx);
/* Isolate the MAC from the TX and RX engines, so that queue
* flushes will complete in a timely fashion. */
falcon_deconfigure_mac_wrapper(efx);
falcon_drain_tx_fifo(efx);
/* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */
efx_stop_queue(efx);
if (NET_DEV_REGISTERED(efx)) {
netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev);
}
}
static void efx_remove_all(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_remove_channel(channel);
efx_remove_port(efx);
efx_remove_nic(efx);
}
/* A convinience function to safely flush all the queues */
int efx_flush_queues(struct efx_nic *efx)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc) {
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
efx_start_all(efx);
return 0;
}
/**************************************************************************
*
* Interrupt moderation
*
**************************************************************************/
/* Set interrupt moderation parameters */
void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
{
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
EFX_ASSERT_RESET_SERIALISED(efx);
efx_for_each_tx_queue(tx_queue, efx)
tx_queue->channel->irq_moderation = tx_usecs;
efx_for_each_rx_queue(rx_queue, efx)
rx_queue->channel->irq_moderation = rx_usecs;
}
/**************************************************************************
*
* Hardware monitor
*
**************************************************************************/
/* Run periodically off the general workqueue. Serialised against
* efx_reconfigure_port via the mac_lock */
static void efx_monitor(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
monitor_work.work);
int rc = 0;
EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
raw_smp_processor_id());
/* If the mac_lock is already held then it is likely a port
* reconfiguration is already in place, which will likely do
* most of the work of check_hw() anyway. */
if (!mutex_trylock(&efx->mac_lock)) {
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
return;
}
if (efx->port_enabled)
rc = falcon_check_xmac(efx);
mutex_unlock(&efx->mac_lock);
if (rc) {
if (monitor_reset) {
EFX_ERR(efx, "hardware monitor detected a fault: "
"triggering reset\n");
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
} else {
EFX_ERR(efx, "hardware monitor detected a fault, "
"skipping reset\n");
}
}
queue_delayed_work(efx->workqueue, &efx->monitor_work,
efx_monitor_interval);
}
/**************************************************************************
*
* ioctls
*
*************************************************************************/
/* Net device ioctl
* Context: process, rtnl_lock() held.
*/
static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
}
/**************************************************************************
*
* NAPI interface
*
**************************************************************************/
static int efx_init_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
int rc;
efx_for_each_channel(channel, efx) {
channel->napi_dev = efx->net_dev;
rc = efx_lro_init(&channel->lro_mgr, efx);
if (rc)
goto err;
}
return 0;
err:
efx_fini_napi(efx);
return rc;
}
static void efx_fini_napi(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx) {
efx_lro_fini(&channel->lro_mgr);
channel->napi_dev = NULL;
}
}
/**************************************************************************
*
* Kernel netpoll interface
*
*************************************************************************/
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Although in the common case interrupts will be disabled, this is not
* guaranteed. However, all our work happens inside the NAPI callback,
* so no locking is required.
*/
static void efx_netpoll(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_channel *channel;
efx_for_each_channel_with_interrupt(channel, efx)
efx_schedule_channel(channel);
}
#endif
/**************************************************************************
*
* Kernel net device interface
*
*************************************************************************/
/* Context: process, rtnl_lock() held. */
static int efx_net_open(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ASSERT_RESET_SERIALISED(efx);
EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
efx_start_all(efx);
return 0;
}
/* Context: process, rtnl_lock() held.
* Note that the kernel will ignore our return code; this method
* should really be a void.
*/
static int efx_net_stop(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
int rc;
EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
raw_smp_processor_id());
/* Stop the device and flush all the channels */
efx_stop_all(efx);
efx_fini_channels(efx);
rc = efx_init_channels(efx);
if (rc)
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return 0;
}
/* Context: process, dev_base_lock held, non-blocking. */
static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct net_device_stats *stats = &net_dev->stats;
if (!spin_trylock(&efx->stats_lock))
return stats;
if (efx->state == STATE_RUNNING) {
falcon_update_stats_xmac(efx);
falcon_update_nic_stats(efx);
}
spin_unlock(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets;
stats->rx_bytes = mac_stats->rx_bytes;
stats->tx_bytes = mac_stats->tx_bytes;
stats->multicast = mac_stats->rx_multicast;
stats->collisions = mac_stats->tx_collision;
stats->rx_length_errors = (mac_stats->rx_gtjumbo +
mac_stats->rx_length_error);
stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
stats->rx_crc_errors = mac_stats->rx_bad;
stats->rx_frame_errors = mac_stats->rx_align_error;
stats->rx_fifo_errors = mac_stats->rx_overflow;
stats->rx_missed_errors = mac_stats->rx_missed;
stats->tx_window_errors = mac_stats->tx_late_collision;
stats->rx_errors = (stats->rx_length_errors +
stats->rx_over_errors +
stats->rx_crc_errors +
stats->rx_frame_errors +
stats->rx_fifo_errors +
stats->rx_missed_errors +
mac_stats->rx_symbol_error);
stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad);
return stats;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_watchdog(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
atomic_read(&efx->netif_stop_count), efx->port_enabled,
monitor_reset ? "resetting channels" : "skipping reset");
if (monitor_reset)
efx_schedule_reset(efx, RESET_TYPE_MONITOR);
}
/* Context: process, rtnl_lock() held. */
static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{
struct efx_nic *efx = net_dev->priv;
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx);
if (new_mtu > EFX_MAX_MTU)
return -EINVAL;
efx_stop_all(efx);
EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
efx_fini_channels(efx);
net_dev->mtu = new_mtu;
rc = efx_init_channels(efx);
if (rc)
goto fail;
efx_start_all(efx);
return rc;
fail:
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return rc;
}
static int efx_set_mac_address(struct net_device *net_dev, void *data)
{
struct efx_nic *efx = net_dev->priv;
struct sockaddr *addr = data;
char *new_addr = addr->sa_data;
EFX_ASSERT_RESET_SERIALISED(efx);
if (!is_valid_ether_addr(new_addr)) {
DECLARE_MAC_BUF(mac);
EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
print_mac(mac, new_addr));
return -EINVAL;
}
memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
/* Reconfigure the MAC */
efx_reconfigure_port(efx);
return 0;
}
/* Context: netif_tx_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev)
{
struct efx_nic *efx = net_dev->priv;
struct dev_mc_list *mc_list = net_dev->mc_list;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
int promiscuous;
u32 crc;
int bit;
int i;
/* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
promiscuous = (net_dev->flags & IFF_PROMISC) ? 1 : 0;
if (efx->promiscuous != promiscuous) {
efx->promiscuous = promiscuous;
/* Close the window between efx_stop_port() and efx_flush_all()
* by only queuing work when the port is enabled. */
if (efx->port_enabled)
queue_work(efx->workqueue, &efx->reconfigure_work);
}
/* Build multicast hash table */
if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
for (i = 0; i < net_dev->mc_count; i++) {
crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
set_bit_le(bit, mc_hash->byte);
mc_list = mc_list->next;
}
}
/* Create and activate new global multicast hash table */
falcon_set_multicast_hash(efx);
}
static int efx_netdev_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *net_dev = (struct net_device *)ptr;
if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
struct efx_nic *efx = net_dev->priv;
strcpy(efx->name, net_dev->name);
}
return NOTIFY_DONE;
}
static struct notifier_block efx_netdev_notifier = {
.notifier_call = efx_netdev_event,
};
static int efx_register_netdev(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
int rc;
net_dev->watchdog_timeo = 5 * HZ;
net_dev->irq = efx->pci_dev->irq;
net_dev->open = efx_net_open;
net_dev->stop = efx_net_stop;
net_dev->get_stats = efx_net_stats;
net_dev->tx_timeout = &efx_watchdog;
net_dev->hard_start_xmit = efx_hard_start_xmit;
net_dev->do_ioctl = efx_ioctl;
net_dev->change_mtu = efx_change_mtu;
net_dev->set_mac_address = efx_set_mac_address;
net_dev->set_multicast_list = efx_set_multicast_list;
#ifdef CONFIG_NET_POLL_CONTROLLER
net_dev->poll_controller = efx_netpoll;
#endif
SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev);
/* Clear MAC statistics */
falcon_update_stats_xmac(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rc = register_netdev(net_dev);
if (rc) {
EFX_ERR(efx, "could not register net dev\n");
return rc;
}
strcpy(efx->name, net_dev->name);
return 0;
}
static void efx_unregister_netdev(struct efx_nic *efx)
{
struct efx_tx_queue *tx_queue;
if (!efx->net_dev)
return;
BUG_ON(efx->net_dev->priv != efx);
/* Free up any skbs still remaining. This has to happen before
* we try to unregister the netdev as running their destructors
* may be needed to get the device ref. count to 0. */
efx_for_each_tx_queue(tx_queue, efx)
efx_release_tx_buffers(tx_queue);
if (NET_DEV_REGISTERED(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
unregister_netdev(efx->net_dev);
}
}
/**************************************************************************
*
* Device reset and suspend
*
**************************************************************************/
/* The final hardware and software finalisation before reset. */
static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
EFX_ASSERT_RESET_SERIALISED(efx);
rc = falcon_xmac_get_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not back up PHY settings\n");
goto fail;
}
efx_fini_channels(efx);
return 0;
fail:
return rc;
}
/* The first part of software initialisation after a hardware reset
* This function does not handle serialisation with the kernel, it
* assumes the caller has done this */
static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int rc;
rc = efx_init_channels(efx);
if (rc)
goto fail1;
/* Restore MAC and PHY settings. */
rc = falcon_xmac_set_settings(efx, ecmd);
if (rc) {
EFX_ERR(efx, "could not restore PHY settings\n");
goto fail2;
}
return 0;
fail2:
efx_fini_channels(efx);
fail1:
return rc;
}
/* Reset the NIC as transparently as possible. Do not reset the PHY
* Note that the reset may fail, in which case the card will be left
* in a most-probably-unusable state.
*
* This function will sleep. You cannot reset from within an atomic
* state; use efx_schedule_reset() instead.
*
* Grabs the rtnl_lock.
*/
static int efx_reset(struct efx_nic *efx)
{
struct ethtool_cmd ecmd;
enum reset_type method = efx->reset_pending;
int rc;
/* Serialise with kernel interfaces */
rtnl_lock();
/* If we're not RUNNING then don't reset. Leave the reset_pending
* flag set so that efx_pci_probe_main will be retried */
if (efx->state != STATE_RUNNING) {
EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
goto unlock_rtnl;
}
efx->state = STATE_RESETTING;
EFX_INFO(efx, "resetting (%d)\n", method);
/* The net_dev->get_stats handler is quite slow, and will fail
* if a fetch is pending over reset. Serialise against it. */
spin_lock(&efx->stats_lock);
spin_unlock(&efx->stats_lock);
efx_stop_all(efx);
mutex_lock(&efx->mac_lock);
rc = efx_reset_down(efx, &ecmd);
if (rc)
goto fail1;
rc = falcon_reset_hw(efx, method);
if (rc) {
EFX_ERR(efx, "failed to reset hardware\n");
goto fail2;
}
/* Allow resets to be rescheduled. */
efx->reset_pending = RESET_TYPE_NONE;
/* Reinitialise bus-mastering, which may have been turned off before
* the reset was scheduled. This is still appropriate, even in the
* RESET_TYPE_DISABLE since this driver generally assumes the hardware
* can respond to requests. */
pci_set_master(efx->pci_dev);
/* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
* case so the driver can talk to external SRAM */
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail3;
}
/* Leave device stopped if necessary */
if (method == RESET_TYPE_DISABLE) {
/* Reinitialise the device anyway so the driver unload sequence
* can talk to the external SRAM */
(void) falcon_init_nic(efx);
rc = -EIO;
goto fail4;
}
rc = efx_reset_up(efx, &ecmd);
if (rc)
goto fail5;
mutex_unlock(&efx->mac_lock);
EFX_LOG(efx, "reset complete\n");
efx->state = STATE_RUNNING;
efx_start_all(efx);
unlock_rtnl:
rtnl_unlock();
return 0;
fail5:
fail4:
fail3:
fail2:
fail1:
EFX_ERR(efx, "has been disabled\n");
efx->state = STATE_DISABLED;
mutex_unlock(&efx->mac_lock);
rtnl_unlock();
efx_unregister_netdev(efx);
efx_fini_port(efx);
return rc;
}
/* The worker thread exists so that code that cannot sleep can
* schedule a reset for later.
*/
static void efx_reset_work(struct work_struct *data)
{
struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
efx_reset(nic);
}
void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
{
enum reset_type method;
if (efx->reset_pending != RESET_TYPE_NONE) {
EFX_INFO(efx, "quenching already scheduled reset\n");
return;
}
switch (type) {
case RESET_TYPE_INVISIBLE:
case RESET_TYPE_ALL:
case RESET_TYPE_WORLD:
case RESET_TYPE_DISABLE:
method = type;
break;
case RESET_TYPE_RX_RECOVERY:
case RESET_TYPE_RX_DESC_FETCH:
case RESET_TYPE_TX_DESC_FETCH:
case RESET_TYPE_TX_SKIP:
method = RESET_TYPE_INVISIBLE;
break;
default:
method = RESET_TYPE_ALL;
break;
}
if (method != type)
EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
else
EFX_LOG(efx, "scheduling reset (%d)\n", method);
efx->reset_pending = method;
queue_work(efx->workqueue, &efx->reset_work);
}
/**************************************************************************
*
* List of NICs we support
*
**************************************************************************/
/* PCI device ID table */
static struct pci_device_id efx_pci_table[] __devinitdata = {
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
.driver_data = (unsigned long) &falcon_a_nic_type},
{PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
.driver_data = (unsigned long) &falcon_b_nic_type},
{0} /* end of list */
};
/**************************************************************************
*
* Dummy PHY/MAC/Board operations
*
* Can be used where the MAC does not implement this operation
* Needed so all function pointers are valid and do not have to be tested
* before use
*
**************************************************************************/
int efx_port_dummy_op_int(struct efx_nic *efx)
{
return 0;
}
void efx_port_dummy_op_void(struct efx_nic *efx) {}
void efx_port_dummy_op_blink(struct efx_nic *efx, int blink) {}
static struct efx_phy_operations efx_dummy_phy_operations = {
.init = efx_port_dummy_op_int,
.reconfigure = efx_port_dummy_op_void,
.check_hw = efx_port_dummy_op_int,
.fini = efx_port_dummy_op_void,
.clear_interrupt = efx_port_dummy_op_void,
.reset_xaui = efx_port_dummy_op_void,
};
/* Dummy board operations */
static int efx_nic_dummy_op_int(struct efx_nic *nic)
{
return 0;
}
static struct efx_board efx_dummy_board_info = {
.init = efx_nic_dummy_op_int,
.init_leds = efx_port_dummy_op_int,
.set_fault_led = efx_port_dummy_op_blink,
};
/**************************************************************************
*
* Data housekeeping
*
**************************************************************************/
/* This zeroes out and then fills in the invariants in a struct
* efx_nic (including all sub-structures).
*/
static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
struct pci_dev *pci_dev, struct net_device *net_dev)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int i, rc;
/* Initialise common structures */
memset(efx, 0, sizeof(*efx));
spin_lock_init(&efx->biu_lock);
spin_lock_init(&efx->phy_lock);
INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
efx->pci_dev = pci_dev;
efx->state = STATE_INIT;
efx->reset_pending = RESET_TYPE_NONE;
strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
efx->board_info = efx_dummy_board_info;
efx->net_dev = net_dev;
efx->rx_checksum_enabled = 1;
spin_lock_init(&efx->netif_stop_lock);
spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock);
efx->phy_op = &efx_dummy_phy_operations;
efx->mii.dev = net_dev;
INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
atomic_set(&efx->netif_stop_count, 1);
for (i = 0; i < EFX_MAX_CHANNELS; i++) {
channel = &efx->channel[i];
channel->efx = efx;
channel->channel = i;
channel->evqnum = i;
channel->work_pending = 0;
}
for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
tx_queue = &efx->tx_queue[i];
tx_queue->efx = efx;
tx_queue->queue = i;
tx_queue->buffer = NULL;
tx_queue->channel = &efx->channel[0]; /* for safety */
}
for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
rx_queue = &efx->rx_queue[i];
rx_queue->efx = efx;
rx_queue->queue = i;
rx_queue->channel = &efx->channel[0]; /* for safety */
rx_queue->buffer = NULL;
spin_lock_init(&rx_queue->add_lock);
INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
}
efx->type = type;
/* Sanity-check NIC type */
EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
(efx->type->txd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
(efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->evq_size &
(efx->type->evq_size - 1));
/* As close as we can get to guaranteeing that we don't overflow */
EFX_BUG_ON_PARANOID(efx->type->evq_size <
(efx->type->txd_ring_mask + 1 +
efx->type->rxd_ring_mask + 1));
EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
/* Higher numbered interrupt modes are less capable! */
efx->interrupt_mode = max(efx->type->max_interrupt_mode,
interrupt_mode);
efx->workqueue = create_singlethread_workqueue("sfc_work");
if (!efx->workqueue) {
rc = -ENOMEM;
goto fail1;
}
return 0;
fail1:
return rc;
}
static void efx_fini_struct(struct efx_nic *efx)
{
if (efx->workqueue) {
destroy_workqueue(efx->workqueue);
efx->workqueue = NULL;
}
}
/**************************************************************************
*
* PCI interface
*
**************************************************************************/
/* Main body of final NIC shutdown code
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove_main(struct efx_nic *efx)
{
EFX_ASSERT_RESET_SERIALISED(efx);
/* Skip everything if we never obtained a valid membase */
if (!efx->membase)
return;
efx_fini_channels(efx);
efx_fini_port(efx);
/* Shutdown the board, then the NIC and board state */
falcon_fini_interrupt(efx);
efx_fini_napi(efx);
efx_remove_all(efx);
}
/* Final NIC shutdown
* This is called only at module unload (or hotplug removal).
*/
static void efx_pci_remove(struct pci_dev *pci_dev)
{
struct efx_nic *efx;
efx = pci_get_drvdata(pci_dev);
if (!efx)
return;
/* Mark the NIC as fini, then stop the interface */
rtnl_lock();
efx->state = STATE_FINI;
dev_close(efx->net_dev);
/* Allow any queued efx_resets() to complete */
rtnl_unlock();
if (efx->membase == NULL)
goto out;
efx_unregister_netdev(efx);
/* Wait for any scheduled resets to complete. No more will be
* scheduled from this point because efx_stop_all() has been
* called, we are no longer registered with driverlink, and
* the net_device's have been removed. */
flush_workqueue(efx->workqueue);
efx_pci_remove_main(efx);
out:
efx_fini_io(efx);
EFX_LOG(efx, "shutdown successful\n");
pci_set_drvdata(pci_dev, NULL);
efx_fini_struct(efx);
free_netdev(efx->net_dev);
};
/* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically).
*/
static int efx_pci_probe_main(struct efx_nic *efx)
{
int rc;
/* Do start-of-day initialisation */
rc = efx_probe_all(efx);
if (rc)
goto fail1;
rc = efx_init_napi(efx);
if (rc)
goto fail2;
/* Initialise the board */
rc = efx->board_info.init(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise board\n");
goto fail3;
}
rc = falcon_init_nic(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise NIC\n");
goto fail4;
}
rc = efx_init_port(efx);
if (rc) {
EFX_ERR(efx, "failed to initialise port\n");
goto fail5;
}
rc = efx_init_channels(efx);
if (rc)
goto fail6;
rc = falcon_init_interrupt(efx);
if (rc)
goto fail7;
return 0;
fail7:
efx_fini_channels(efx);
fail6:
efx_fini_port(efx);
fail5:
fail4:
fail3:
efx_fini_napi(efx);
fail2:
efx_remove_all(efx);
fail1:
return rc;
}
/* NIC initialisation
*
* This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC,
* sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network
* interfaces is brought up (i.e. efx_net_open).
*/
static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
const struct pci_device_id *entry)
{
struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
struct net_device *net_dev;
struct efx_nic *efx;
int i, rc;
/* Allocate and initialise a struct net_device and struct efx_nic */
net_dev = alloc_etherdev(sizeof(*efx));
if (!net_dev)
return -ENOMEM;
net_dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
if (lro)
net_dev->features |= NETIF_F_LRO;
efx = net_dev->priv;
pci_set_drvdata(pci_dev, efx);
rc = efx_init_struct(efx, type, pci_dev, net_dev);
if (rc)
goto fail1;
EFX_INFO(efx, "Solarflare Communications NIC detected\n");
/* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx);
if (rc)
goto fail2;
/* No serialisation is required with the reset path because
* we're in STATE_INIT. */
for (i = 0; i < 5; i++) {
rc = efx_pci_probe_main(efx);
if (rc == 0)
break;
/* Serialise against efx_reset(). No more resets will be
* scheduled since efx_stop_all() has been called, and we
* have not and never have been registered with either
* the rtnetlink or driverlink layers. */
cancel_work_sync(&efx->reset_work);
/* Retry if a recoverably reset event has been scheduled */
if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
(efx->reset_pending != RESET_TYPE_ALL))
goto fail3;
efx->reset_pending = RESET_TYPE_NONE;
}
if (rc) {
EFX_ERR(efx, "Could not reset NIC\n");
goto fail4;
}
/* Switch to the running state before we expose the device to
* the OS. This is to ensure that the initial gathering of
* MAC stats succeeds. */
rtnl_lock();
efx->state = STATE_RUNNING;
rtnl_unlock();
rc = efx_register_netdev(efx);
if (rc)
goto fail5;
EFX_LOG(efx, "initialisation successful\n");
return 0;
fail5:
efx_pci_remove_main(efx);
fail4:
fail3:
efx_fini_io(efx);
fail2:
efx_fini_struct(efx);
fail1:
EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
free_netdev(net_dev);
return rc;
}
static struct pci_driver efx_pci_driver = {
.name = EFX_DRIVER_NAME,
.id_table = efx_pci_table,
.probe = efx_pci_probe,
.remove = efx_pci_remove,
};
/**************************************************************************
*
* Kernel module interface
*
*************************************************************************/
module_param(interrupt_mode, uint, 0444);
MODULE_PARM_DESC(interrupt_mode,
"Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
static int __init efx_init_module(void)
{
int rc;
printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
rc = register_netdevice_notifier(&efx_netdev_notifier);
if (rc)
goto err_notifier;
refill_workqueue = create_workqueue("sfc_refill");
if (!refill_workqueue) {
rc = -ENOMEM;
goto err_refill;
}
rc = pci_register_driver(&efx_pci_driver);
if (rc < 0)
goto err_pci;
return 0;
err_pci:
destroy_workqueue(refill_workqueue);
err_refill:
unregister_netdevice_notifier(&efx_netdev_notifier);
err_notifier:
return rc;
}
static void __exit efx_exit_module(void)
{
printk(KERN_INFO "Solarflare NET driver unloading\n");
pci_unregister_driver(&efx_pci_driver);
destroy_workqueue(refill_workqueue);
unregister_netdevice_notifier(&efx_netdev_notifier);
}
module_init(efx_init_module);
module_exit(efx_exit_module);
MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
"Solarflare Communications");
MODULE_DESCRIPTION("Solarflare Communications network driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, efx_pci_table);