linux_dsm_epyc7002/arch/powerpc/mm/init_64.c
Oliver O'Halloran b584c25440 powerpc/vmemmap: Add altmap support
Adds support to powerpc for the altmap feature of ZONE_DEVICE memory. An
altmap is a driver provided region that is used to provide the backing
storage for the struct pages of ZONE_DEVICE memory. In situations where
large amount of ZONE_DEVICE memory is being added to the system the
altmap reduces pressure on main system memory by allowing the mm/
metadata to be stored on the device itself rather in main memory.

Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Oliver O'Halloran <oohall@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2017-07-02 20:40:27 +10:00

448 lines
12 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#undef DEBUG
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/poison.h>
#include <linux/memblock.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/memremap.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <linux/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/vdso.h>
#include "mmu_decl.h"
#ifdef CONFIG_PPC_STD_MMU_64
#if H_PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif
#endif /* CONFIG_PPC_STD_MMU_64 */
phys_addr_t memstart_addr = ~0;
EXPORT_SYMBOL_GPL(memstart_addr);
phys_addr_t kernstart_addr;
EXPORT_SYMBOL_GPL(kernstart_addr);
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Given an address within the vmemmap, determine the pfn of the page that
* represents the start of the section it is within. Note that we have to
* do this by hand as the proffered address may not be correctly aligned.
* Subtraction of non-aligned pointers produces undefined results.
*/
static unsigned long __meminit vmemmap_section_start(unsigned long page)
{
unsigned long offset = page - ((unsigned long)(vmemmap));
/* Return the pfn of the start of the section. */
return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
}
/*
* Check if this vmemmap page is already initialised. If any section
* which overlaps this vmemmap page is initialised then this page is
* initialised already.
*/
static int __meminit vmemmap_populated(unsigned long start, int page_size)
{
unsigned long end = start + page_size;
start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
if (pfn_valid(page_to_pfn((struct page *)start)))
return 1;
return 0;
}
/*
* vmemmap virtual address space management does not have a traditonal page
* table to track which virtual struct pages are backed by physical mapping.
* The virtual to physical mappings are tracked in a simple linked list
* format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
* all times where as the 'next' list maintains the available
* vmemmap_backing structures which have been deleted from the
* 'vmemmap_global' list during system runtime (memory hotplug remove
* operation). The freed 'vmemmap_backing' structures are reused later when
* new requests come in without allocating fresh memory. This pointer also
* tracks the allocated 'vmemmap_backing' structures as we allocate one
* full page memory at a time when we dont have any.
*/
struct vmemmap_backing *vmemmap_list;
static struct vmemmap_backing *next;
/*
* The same pointer 'next' tracks individual chunks inside the allocated
* full page during the boot time and again tracks the freeed nodes during
* runtime. It is racy but it does not happen as they are separated by the
* boot process. Will create problem if some how we have memory hotplug
* operation during boot !!
*/
static int num_left;
static int num_freed;
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
{
struct vmemmap_backing *vmem_back;
/* get from freed entries first */
if (num_freed) {
num_freed--;
vmem_back = next;
next = next->list;
return vmem_back;
}
/* allocate a page when required and hand out chunks */
if (!num_left) {
next = vmemmap_alloc_block(PAGE_SIZE, node);
if (unlikely(!next)) {
WARN_ON(1);
return NULL;
}
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
}
num_left--;
return next++;
}
static __meminit void vmemmap_list_populate(unsigned long phys,
unsigned long start,
int node)
{
struct vmemmap_backing *vmem_back;
vmem_back = vmemmap_list_alloc(node);
if (unlikely(!vmem_back)) {
WARN_ON(1);
return;
}
vmem_back->phys = phys;
vmem_back->virt_addr = start;
vmem_back->list = vmemmap_list;
vmemmap_list = vmem_back;
}
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
/* Align to the page size of the linear mapping. */
start = _ALIGN_DOWN(start, page_size);
pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
for (; start < end; start += page_size) {
struct vmem_altmap *altmap;
void *p;
int rc;
if (vmemmap_populated(start, page_size))
continue;
/* altmap lookups only work at section boundaries */
altmap = to_vmem_altmap(SECTION_ALIGN_DOWN(start));
p = __vmemmap_alloc_block_buf(page_size, node, altmap);
if (!p)
return -ENOMEM;
vmemmap_list_populate(__pa(p), start, node);
pr_debug(" * %016lx..%016lx allocated at %p\n",
start, start + page_size, p);
rc = vmemmap_create_mapping(start, page_size, __pa(p));
if (rc < 0) {
pr_warning(
"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
rc);
return -EFAULT;
}
}
return 0;
}
#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long vmemmap_list_free(unsigned long start)
{
struct vmemmap_backing *vmem_back, *vmem_back_prev;
vmem_back_prev = vmem_back = vmemmap_list;
/* look for it with prev pointer recorded */
for (; vmem_back; vmem_back = vmem_back->list) {
if (vmem_back->virt_addr == start)
break;
vmem_back_prev = vmem_back;
}
if (unlikely(!vmem_back)) {
WARN_ON(1);
return 0;
}
/* remove it from vmemmap_list */
if (vmem_back == vmemmap_list) /* remove head */
vmemmap_list = vmem_back->list;
else
vmem_back_prev->list = vmem_back->list;
/* next point to this freed entry */
vmem_back->list = next;
next = vmem_back;
num_freed++;
return vmem_back->phys;
}
void __ref vmemmap_free(unsigned long start, unsigned long end)
{
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
unsigned long page_order = get_order(page_size);
start = _ALIGN_DOWN(start, page_size);
pr_debug("vmemmap_free %lx...%lx\n", start, end);
for (; start < end; start += page_size) {
unsigned long nr_pages, addr;
struct vmem_altmap *altmap;
struct page *section_base;
struct page *page;
/*
* the section has already be marked as invalid, so
* vmemmap_populated() true means some other sections still
* in this page, so skip it.
*/
if (vmemmap_populated(start, page_size))
continue;
addr = vmemmap_list_free(start);
if (!addr)
continue;
page = pfn_to_page(addr >> PAGE_SHIFT);
section_base = pfn_to_page(vmemmap_section_start(start));
nr_pages = 1 << page_order;
altmap = to_vmem_altmap((unsigned long) section_base);
if (altmap) {
vmem_altmap_free(altmap, nr_pages);
} else if (PageReserved(page)) {
/* allocated from bootmem */
if (page_size < PAGE_SIZE) {
/*
* this shouldn't happen, but if it is
* the case, leave the memory there
*/
WARN_ON_ONCE(1);
} else {
while (nr_pages--)
free_reserved_page(page++);
}
} else {
free_pages((unsigned long)(__va(addr)), page_order);
}
vmemmap_remove_mapping(start, page_size);
}
}
#endif
void register_page_bootmem_memmap(unsigned long section_nr,
struct page *start_page, unsigned long size)
{
}
/*
* We do not have access to the sparsemem vmemmap, so we fallback to
* walking the list of sparsemem blocks which we already maintain for
* the sake of crashdump. In the long run, we might want to maintain
* a tree if performance of that linear walk becomes a problem.
*
* realmode_pfn_to_page functions can fail due to:
* 1) As real sparsemem blocks do not lay in RAM continously (they
* are in virtual address space which is not available in the real mode),
* the requested page struct can be split between blocks so get_page/put_page
* may fail.
* 2) When huge pages are used, the get_page/put_page API will fail
* in real mode as the linked addresses in the page struct are virtual
* too.
*/
struct page *realmode_pfn_to_page(unsigned long pfn)
{
struct vmemmap_backing *vmem_back;
struct page *page;
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
if (pg_va < vmem_back->virt_addr)
continue;
/* After vmemmap_list entry free is possible, need check all */
if ((pg_va + sizeof(struct page)) <=
(vmem_back->virt_addr + page_size)) {
page = (struct page *) (vmem_back->phys + pg_va -
vmem_back->virt_addr);
return page;
}
}
/* Probably that page struct is split between real pages */
return NULL;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
#elif defined(CONFIG_FLATMEM)
struct page *realmode_pfn_to_page(unsigned long pfn)
{
struct page *page = pfn_to_page(pfn);
return page;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
#endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
#ifdef CONFIG_PPC_STD_MMU_64
static bool disable_radix;
static int __init parse_disable_radix(char *p)
{
disable_radix = true;
return 0;
}
early_param("disable_radix", parse_disable_radix);
/*
* If we're running under a hypervisor, we need to check the contents of
* /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
* radix. If not, we clear the radix feature bit so we fall back to hash.
*/
static void early_check_vec5(void)
{
unsigned long root, chosen;
int size;
const u8 *vec5;
u8 mmu_supported;
root = of_get_flat_dt_root();
chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
if (chosen == -FDT_ERR_NOTFOUND) {
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
return;
}
vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
if (!vec5) {
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
return;
}
if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
return;
}
/* Check for supported configuration */
mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
OV5_FEAT(OV5_MMU_SUPPORT);
if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
/* Hypervisor only supports radix - check enabled && GTSE */
if (!early_radix_enabled()) {
pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
}
if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
OV5_FEAT(OV5_RADIX_GTSE))) {
pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n");
}
/* Do radix anyway - the hypervisor said we had to */
cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
/* Hypervisor only supports hash - disable radix */
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
}
}
void __init mmu_early_init_devtree(void)
{
/* Disable radix mode based on kernel command line. */
if (disable_radix)
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
/*
* Check /chosen/ibm,architecture-vec-5 if running as a guest.
* When running bare-metal, we can use radix if we like
* even though the ibm,architecture-vec-5 property created by
* skiboot doesn't have the necessary bits set.
*/
if (!(mfmsr() & MSR_HV))
early_check_vec5();
if (early_radix_enabled())
radix__early_init_devtree();
else
hash__early_init_devtree();
}
#endif /* CONFIG_PPC_STD_MMU_64 */