linux_dsm_epyc7002/Documentation/video4linux/pxa_camera.txt
Robert Jarzmik 256b02332a V4L/DVB (11321): pxa_camera: Redesign DMA handling
The DMA transfers in pxa_camera showed some weaknesses in
multiple queued buffers context :
 - poll/select problem
   The bug shows up with capture_example tool from v4l2 hg
   tree. The process just "stalls" on a "select timeout".

 - multiple buffers DMA starting
   When multiple buffers were queued, the DMA channels were
   always started right away. This is not optimal, as a
   special case appears when the first EOF was not yet
   reached, and the DMA channels were prematurely started.

 - Maintainability
   DMA code was a bit obfuscated. Rationalize the code to be
   easily maintainable by anyone.

 - DMA hot chaining
   DMA is not stopped anymore to queue a buffer, the buffer
   is queued with DMA running. As a tribute, a corner case
   exists where chaining happens while DMA finishes the
   chain, and the capture is restarted to deal with the
   missed link buffer.

This patch attemps to address these issues / improvements.

 create mode 100644 Documentation/video4linux/pxa_camera.txt

Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2009-04-06 21:43:45 -03:00

126 lines
5.3 KiB
Plaintext

PXA-Camera Host Driver
======================
Constraints
-----------
a) Image size for YUV422P format
All YUV422P images are enforced to have width x height % 16 = 0.
This is due to DMA constraints, which transfers only planes of 8 byte
multiples.
Global video workflow
---------------------
a) QCI stopped
Initialy, the QCI interface is stopped.
When a buffer is queued (pxa_videobuf_ops->buf_queue), the QCI starts.
b) QCI started
More buffers can be queued while the QCI is started without halting the
capture. The new buffers are "appended" at the tail of the DMA chain, and
smoothly captured one frame after the other.
Once a buffer is filled in the QCI interface, it is marked as "DONE" and
removed from the active buffers list. It can be then requeud or dequeued by
userland application.
Once the last buffer is filled in, the QCI interface stops.
DMA usage
---------
a) DMA flow
- first buffer queued for capture
Once a first buffer is queued for capture, the QCI is started, but data
transfer is not started. On "End Of Frame" interrupt, the irq handler
starts the DMA chain.
- capture of one videobuffer
The DMA chain starts transfering data into videobuffer RAM pages.
When all pages are transfered, the DMA irq is raised on "ENDINTR" status
- finishing one videobuffer
The DMA irq handler marks the videobuffer as "done", and removes it from
the active running queue
Meanwhile, the next videobuffer (if there is one), is transfered by DMA
- finishing the last videobuffer
On the DMA irq of the last videobuffer, the QCI is stopped.
b) DMA prepared buffer will have this structure
+------------+-----+---------------+-----------------+
| desc-sg[0] | ... | desc-sg[last] | finisher/linker |
+------------+-----+---------------+-----------------+
This structure is pointed by dma->sg_cpu.
The descriptors are used as follows :
- desc-sg[i]: i-th descriptor, transfering the i-th sg
element to the video buffer scatter gather
- finisher: has ddadr=DADDR_STOP, dcmd=ENDIRQEN
- linker: has ddadr= desc-sg[0] of next video buffer, dcmd=0
For the next schema, let's assume d0=desc-sg[0] .. dN=desc-sg[N],
"f" stands for finisher and "l" for linker.
A typical running chain is :
Videobuffer 1 Videobuffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+---+
| |
+----+
After the chaining is finished, the chain looks like :
Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+
| | | |
+----+ +----+
new_link
c) DMA hot chaining timeslice issue
As DMA chaining is done while DMA _is_ running, the linking may be done
while the DMA jumps from one Videobuffer to another. On the schema, that
would be a problem if the following sequence is encountered :
- DMA chain is Videobuffer1 + Videobuffer2
- pxa_videobuf_queue() is called to queue Videobuffer3
- DMA controller finishes Videobuffer2, and DMA stops
=>
Videobuffer 1 Videobuffer 2
+---------+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-^-+
| | |
+----+ +-- DMA DDADR loads DDADR_STOP
- pxa_dma_add_tail_buf() is called, the Videobuffer2 "finisher" is
replaced by a "linker" to Videobuffer3 (creation of new_link)
- pxa_videobuf_queue() finishes
- the DMA irq handler is called, which terminates Videobuffer2
- Videobuffer3 capture is not scheduled on DMA chain (as it stopped !!!)
Videobuffer 1 Videobuffer 2 Videobuffer 3
+---------+----+---+ +----+----+----+---+ +----+----+----+---+
| d0 | .. | dN | l | | d0 | .. | dN | l | | d0 | .. | dN | f |
+---------+----+-|-+ ^----+----+----+-|-+ ^----+----+----+---+
| | | |
+----+ +----+
new_link
DMA DDADR still is DDADR_STOP
- pxa_camera_check_link_miss() is called
This checks if the DMA is finished and a buffer is still on the
pcdev->capture list. If that's the case, the capture will be restarted,
and Videobuffer3 is scheduled on DMA chain.
- the DMA irq handler finishes
Note: if DMA stops just after pxa_camera_check_link_miss() reads DDADR()
value, we have the guarantee that the DMA irq handler will be called back
when the DMA will finish the buffer, and pxa_camera_check_link_miss() will
be called again, to reschedule Videobuffer3.
--
Author: Robert Jarzmik <robert.jarzmik@free.fr>