mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 03:20:53 +07:00
0e833e697b
This implements XOR syndrome calculation using NEON intrinsics. As before, the module can be built for ARM and arm64 from the same source. Relative performance on a Cortex-A57 based system: raid6: int64x1 gen() 905 MB/s raid6: int64x1 xor() 881 MB/s raid6: int64x2 gen() 1343 MB/s raid6: int64x2 xor() 1286 MB/s raid6: int64x4 gen() 1896 MB/s raid6: int64x4 xor() 1321 MB/s raid6: int64x8 gen() 1773 MB/s raid6: int64x8 xor() 1165 MB/s raid6: neonx1 gen() 1834 MB/s raid6: neonx1 xor() 1278 MB/s raid6: neonx2 gen() 2528 MB/s raid6: neonx2 xor() 1942 MB/s raid6: neonx4 gen() 2888 MB/s raid6: neonx4 xor() 2334 MB/s raid6: neonx8 gen() 2957 MB/s raid6: neonx8 xor() 2232 MB/s raid6: using algorithm neonx8 gen() 2957 MB/s raid6: .... xor() 2232 MB/s, rmw enabled Cc: Markus Stockhausen <stockhausen@collogia.de> Cc: Neil Brown <neilb@suse.de> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: NeilBrown <neilb@suse.com>
127 lines
3.4 KiB
Ucode
127 lines
3.4 KiB
Ucode
/* -----------------------------------------------------------------------
|
|
*
|
|
* neon.uc - RAID-6 syndrome calculation using ARM NEON instructions
|
|
*
|
|
* Copyright (C) 2012 Rob Herring
|
|
* Copyright (C) 2015 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*
|
|
* Based on altivec.uc:
|
|
* Copyright 2002-2004 H. Peter Anvin - All Rights Reserved
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, Inc., 53 Temple Place Ste 330,
|
|
* Boston MA 02111-1307, USA; either version 2 of the License, or
|
|
* (at your option) any later version; incorporated herein by reference.
|
|
*
|
|
* ----------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* neon$#.c
|
|
*
|
|
* $#-way unrolled NEON intrinsics math RAID-6 instruction set
|
|
*
|
|
* This file is postprocessed using unroll.awk
|
|
*/
|
|
|
|
#include <arm_neon.h>
|
|
|
|
typedef uint8x16_t unative_t;
|
|
|
|
#define NBYTES(x) ((unative_t){x,x,x,x, x,x,x,x, x,x,x,x, x,x,x,x})
|
|
#define NSIZE sizeof(unative_t)
|
|
|
|
/*
|
|
* The SHLBYTE() operation shifts each byte left by 1, *not*
|
|
* rolling over into the next byte
|
|
*/
|
|
static inline unative_t SHLBYTE(unative_t v)
|
|
{
|
|
return vshlq_n_u8(v, 1);
|
|
}
|
|
|
|
/*
|
|
* The MASK() operation returns 0xFF in any byte for which the high
|
|
* bit is 1, 0x00 for any byte for which the high bit is 0.
|
|
*/
|
|
static inline unative_t MASK(unative_t v)
|
|
{
|
|
const uint8x16_t temp = NBYTES(0);
|
|
return (unative_t)vcltq_s8((int8x16_t)v, (int8x16_t)temp);
|
|
}
|
|
|
|
void raid6_neon$#_gen_syndrome_real(int disks, unsigned long bytes, void **ptrs)
|
|
{
|
|
uint8_t **dptr = (uint8_t **)ptrs;
|
|
uint8_t *p, *q;
|
|
int d, z, z0;
|
|
|
|
register unative_t wd$$, wq$$, wp$$, w1$$, w2$$;
|
|
const unative_t x1d = NBYTES(0x1d);
|
|
|
|
z0 = disks - 3; /* Highest data disk */
|
|
p = dptr[z0+1]; /* XOR parity */
|
|
q = dptr[z0+2]; /* RS syndrome */
|
|
|
|
for ( d = 0 ; d < bytes ; d += NSIZE*$# ) {
|
|
wq$$ = wp$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]);
|
|
for ( z = z0-1 ; z >= 0 ; z-- ) {
|
|
wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]);
|
|
wp$$ = veorq_u8(wp$$, wd$$);
|
|
w2$$ = MASK(wq$$);
|
|
w1$$ = SHLBYTE(wq$$);
|
|
|
|
w2$$ = vandq_u8(w2$$, x1d);
|
|
w1$$ = veorq_u8(w1$$, w2$$);
|
|
wq$$ = veorq_u8(w1$$, wd$$);
|
|
}
|
|
vst1q_u8(&p[d+NSIZE*$$], wp$$);
|
|
vst1q_u8(&q[d+NSIZE*$$], wq$$);
|
|
}
|
|
}
|
|
|
|
void raid6_neon$#_xor_syndrome_real(int disks, int start, int stop,
|
|
unsigned long bytes, void **ptrs)
|
|
{
|
|
uint8_t **dptr = (uint8_t **)ptrs;
|
|
uint8_t *p, *q;
|
|
int d, z, z0;
|
|
|
|
register unative_t wd$$, wq$$, wp$$, w1$$, w2$$;
|
|
const unative_t x1d = NBYTES(0x1d);
|
|
|
|
z0 = stop; /* P/Q right side optimization */
|
|
p = dptr[disks-2]; /* XOR parity */
|
|
q = dptr[disks-1]; /* RS syndrome */
|
|
|
|
for ( d = 0 ; d < bytes ; d += NSIZE*$# ) {
|
|
wq$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]);
|
|
wp$$ = veorq_u8(vld1q_u8(&p[d+$$*NSIZE]), wq$$);
|
|
|
|
/* P/Q data pages */
|
|
for ( z = z0-1 ; z >= start ; z-- ) {
|
|
wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]);
|
|
wp$$ = veorq_u8(wp$$, wd$$);
|
|
w2$$ = MASK(wq$$);
|
|
w1$$ = SHLBYTE(wq$$);
|
|
|
|
w2$$ = vandq_u8(w2$$, x1d);
|
|
w1$$ = veorq_u8(w1$$, w2$$);
|
|
wq$$ = veorq_u8(w1$$, wd$$);
|
|
}
|
|
/* P/Q left side optimization */
|
|
for ( z = start-1 ; z >= 0 ; z-- ) {
|
|
w2$$ = MASK(wq$$);
|
|
w1$$ = SHLBYTE(wq$$);
|
|
|
|
w2$$ = vandq_u8(w2$$, x1d);
|
|
wq$$ = veorq_u8(w1$$, w2$$);
|
|
}
|
|
w1$$ = vld1q_u8(&q[d+NSIZE*$$]);
|
|
wq$$ = veorq_u8(wq$$, w1$$);
|
|
|
|
vst1q_u8(&p[d+NSIZE*$$], wp$$);
|
|
vst1q_u8(&q[d+NSIZE*$$], wq$$);
|
|
}
|
|
}
|