linux_dsm_epyc7002/drivers/gpu/drm/msm/msm_gpu.c
Sharat Masetty de0a3d094d drm/msm: re-factor devfreq code
The devfreq framework requires the drivers to provide busy time estimations.
The GPU driver relies on the hardware performance counteres for the busy time
estimations, but different hardware revisions have counters which can be
sourced from different clocks. So the busy time estimation will be target
dependent.  Additionally on targets where the clocks are completely controlled
by the on chip microcontroller, fetching and setting the current GPU frequency
will be different. This patch aims to embrace these differences by re-factoring
the devfreq code a bit.

Signed-off-by: Sharat Masetty <smasetty@codeaurora.org>
Signed-off-by: Rob Clark <robdclark@gmail.com>
2018-10-04 09:14:20 -04:00

996 lines
23 KiB
C

/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "msm_gpu.h"
#include "msm_gem.h"
#include "msm_mmu.h"
#include "msm_fence.h"
#include <generated/utsrelease.h>
#include <linux/string_helpers.h>
#include <linux/pm_opp.h>
#include <linux/devfreq.h>
#include <linux/devcoredump.h>
/*
* Power Management:
*/
static int msm_devfreq_target(struct device *dev, unsigned long *freq,
u32 flags)
{
struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));
struct dev_pm_opp *opp;
opp = devfreq_recommended_opp(dev, freq, flags);
if (IS_ERR(opp))
return PTR_ERR(opp);
if (gpu->funcs->gpu_set_freq)
gpu->funcs->gpu_set_freq(gpu, (u64)*freq);
else
clk_set_rate(gpu->core_clk, *freq);
dev_pm_opp_put(opp);
return 0;
}
static int msm_devfreq_get_dev_status(struct device *dev,
struct devfreq_dev_status *status)
{
struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));
ktime_t time;
if (gpu->funcs->gpu_get_freq)
status->current_frequency = gpu->funcs->gpu_get_freq(gpu);
else
status->current_frequency = clk_get_rate(gpu->core_clk);
status->busy_time = gpu->funcs->gpu_busy(gpu);
time = ktime_get();
status->total_time = ktime_us_delta(time, gpu->devfreq.time);
gpu->devfreq.time = time;
return 0;
}
static int msm_devfreq_get_cur_freq(struct device *dev, unsigned long *freq)
{
struct msm_gpu *gpu = platform_get_drvdata(to_platform_device(dev));
if (gpu->funcs->gpu_get_freq)
*freq = gpu->funcs->gpu_get_freq(gpu);
else
*freq = clk_get_rate(gpu->core_clk);
return 0;
}
static struct devfreq_dev_profile msm_devfreq_profile = {
.polling_ms = 10,
.target = msm_devfreq_target,
.get_dev_status = msm_devfreq_get_dev_status,
.get_cur_freq = msm_devfreq_get_cur_freq,
};
static void msm_devfreq_init(struct msm_gpu *gpu)
{
/* We need target support to do devfreq */
if (!gpu->funcs->gpu_busy)
return;
msm_devfreq_profile.initial_freq = gpu->fast_rate;
/*
* Don't set the freq_table or max_state and let devfreq build the table
* from OPP
*/
gpu->devfreq.devfreq = devm_devfreq_add_device(&gpu->pdev->dev,
&msm_devfreq_profile, "simple_ondemand", NULL);
if (IS_ERR(gpu->devfreq.devfreq)) {
dev_err(&gpu->pdev->dev, "Couldn't initialize GPU devfreq\n");
gpu->devfreq.devfreq = NULL;
}
devfreq_suspend_device(gpu->devfreq.devfreq);
}
static int enable_pwrrail(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
int ret = 0;
if (gpu->gpu_reg) {
ret = regulator_enable(gpu->gpu_reg);
if (ret) {
dev_err(dev->dev, "failed to enable 'gpu_reg': %d\n", ret);
return ret;
}
}
if (gpu->gpu_cx) {
ret = regulator_enable(gpu->gpu_cx);
if (ret) {
dev_err(dev->dev, "failed to enable 'gpu_cx': %d\n", ret);
return ret;
}
}
return 0;
}
static int disable_pwrrail(struct msm_gpu *gpu)
{
if (gpu->gpu_cx)
regulator_disable(gpu->gpu_cx);
if (gpu->gpu_reg)
regulator_disable(gpu->gpu_reg);
return 0;
}
static int enable_clk(struct msm_gpu *gpu)
{
if (gpu->core_clk && gpu->fast_rate)
clk_set_rate(gpu->core_clk, gpu->fast_rate);
/* Set the RBBM timer rate to 19.2Mhz */
if (gpu->rbbmtimer_clk)
clk_set_rate(gpu->rbbmtimer_clk, 19200000);
return clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks);
}
static int disable_clk(struct msm_gpu *gpu)
{
clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks);
/*
* Set the clock to a deliberately low rate. On older targets the clock
* speed had to be non zero to avoid problems. On newer targets this
* will be rounded down to zero anyway so it all works out.
*/
if (gpu->core_clk)
clk_set_rate(gpu->core_clk, 27000000);
if (gpu->rbbmtimer_clk)
clk_set_rate(gpu->rbbmtimer_clk, 0);
return 0;
}
static int enable_axi(struct msm_gpu *gpu)
{
if (gpu->ebi1_clk)
clk_prepare_enable(gpu->ebi1_clk);
return 0;
}
static int disable_axi(struct msm_gpu *gpu)
{
if (gpu->ebi1_clk)
clk_disable_unprepare(gpu->ebi1_clk);
return 0;
}
void msm_gpu_resume_devfreq(struct msm_gpu *gpu)
{
gpu->devfreq.busy_cycles = 0;
gpu->devfreq.time = ktime_get();
devfreq_resume_device(gpu->devfreq.devfreq);
}
int msm_gpu_pm_resume(struct msm_gpu *gpu)
{
int ret;
DBG("%s", gpu->name);
ret = enable_pwrrail(gpu);
if (ret)
return ret;
ret = enable_clk(gpu);
if (ret)
return ret;
ret = enable_axi(gpu);
if (ret)
return ret;
msm_gpu_resume_devfreq(gpu);
gpu->needs_hw_init = true;
return 0;
}
int msm_gpu_pm_suspend(struct msm_gpu *gpu)
{
int ret;
DBG("%s", gpu->name);
devfreq_suspend_device(gpu->devfreq.devfreq);
ret = disable_axi(gpu);
if (ret)
return ret;
ret = disable_clk(gpu);
if (ret)
return ret;
ret = disable_pwrrail(gpu);
if (ret)
return ret;
return 0;
}
int msm_gpu_hw_init(struct msm_gpu *gpu)
{
int ret;
WARN_ON(!mutex_is_locked(&gpu->dev->struct_mutex));
if (!gpu->needs_hw_init)
return 0;
disable_irq(gpu->irq);
ret = gpu->funcs->hw_init(gpu);
if (!ret)
gpu->needs_hw_init = false;
enable_irq(gpu->irq);
return ret;
}
#ifdef CONFIG_DEV_COREDUMP
static ssize_t msm_gpu_devcoredump_read(char *buffer, loff_t offset,
size_t count, void *data, size_t datalen)
{
struct msm_gpu *gpu = data;
struct drm_print_iterator iter;
struct drm_printer p;
struct msm_gpu_state *state;
state = msm_gpu_crashstate_get(gpu);
if (!state)
return 0;
iter.data = buffer;
iter.offset = 0;
iter.start = offset;
iter.remain = count;
p = drm_coredump_printer(&iter);
drm_printf(&p, "---\n");
drm_printf(&p, "kernel: " UTS_RELEASE "\n");
drm_printf(&p, "module: " KBUILD_MODNAME "\n");
drm_printf(&p, "time: %lld.%09ld\n",
state->time.tv_sec, state->time.tv_nsec);
if (state->comm)
drm_printf(&p, "comm: %s\n", state->comm);
if (state->cmd)
drm_printf(&p, "cmdline: %s\n", state->cmd);
gpu->funcs->show(gpu, state, &p);
msm_gpu_crashstate_put(gpu);
return count - iter.remain;
}
static void msm_gpu_devcoredump_free(void *data)
{
struct msm_gpu *gpu = data;
msm_gpu_crashstate_put(gpu);
}
static void msm_gpu_crashstate_get_bo(struct msm_gpu_state *state,
struct msm_gem_object *obj, u64 iova, u32 flags)
{
struct msm_gpu_state_bo *state_bo = &state->bos[state->nr_bos];
/* Don't record write only objects */
state_bo->size = obj->base.size;
state_bo->iova = iova;
/* Only store the data for buffer objects marked for read */
if ((flags & MSM_SUBMIT_BO_READ)) {
void *ptr;
state_bo->data = kvmalloc(obj->base.size, GFP_KERNEL);
if (!state_bo->data)
return;
ptr = msm_gem_get_vaddr_active(&obj->base);
if (IS_ERR(ptr)) {
kvfree(state_bo->data);
return;
}
memcpy(state_bo->data, ptr, obj->base.size);
msm_gem_put_vaddr(&obj->base);
}
state->nr_bos++;
}
static void msm_gpu_crashstate_capture(struct msm_gpu *gpu,
struct msm_gem_submit *submit, char *comm, char *cmd)
{
struct msm_gpu_state *state;
/* Only save one crash state at a time */
if (gpu->crashstate)
return;
state = gpu->funcs->gpu_state_get(gpu);
if (IS_ERR_OR_NULL(state))
return;
/* Fill in the additional crash state information */
state->comm = kstrdup(comm, GFP_KERNEL);
state->cmd = kstrdup(cmd, GFP_KERNEL);
if (submit) {
int i;
state->bos = kcalloc(submit->nr_bos,
sizeof(struct msm_gpu_state_bo), GFP_KERNEL);
for (i = 0; state->bos && i < submit->nr_bos; i++)
msm_gpu_crashstate_get_bo(state, submit->bos[i].obj,
submit->bos[i].iova, submit->bos[i].flags);
}
/* Set the active crash state to be dumped on failure */
gpu->crashstate = state;
/* FIXME: Release the crashstate if this errors out? */
dev_coredumpm(gpu->dev->dev, THIS_MODULE, gpu, 0, GFP_KERNEL,
msm_gpu_devcoredump_read, msm_gpu_devcoredump_free);
}
#else
static void msm_gpu_crashstate_capture(struct msm_gpu *gpu,
struct msm_gem_submit *submit, char *comm, char *cmd)
{
}
#endif
/*
* Hangcheck detection for locked gpu:
*/
static void update_fences(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
uint32_t fence)
{
struct msm_gem_submit *submit;
list_for_each_entry(submit, &ring->submits, node) {
if (submit->seqno > fence)
break;
msm_update_fence(submit->ring->fctx,
submit->fence->seqno);
}
}
static struct msm_gem_submit *
find_submit(struct msm_ringbuffer *ring, uint32_t fence)
{
struct msm_gem_submit *submit;
WARN_ON(!mutex_is_locked(&ring->gpu->dev->struct_mutex));
list_for_each_entry(submit, &ring->submits, node)
if (submit->seqno == fence)
return submit;
return NULL;
}
static void retire_submits(struct msm_gpu *gpu);
static void recover_worker(struct work_struct *work)
{
struct msm_gpu *gpu = container_of(work, struct msm_gpu, recover_work);
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_gem_submit *submit;
struct msm_ringbuffer *cur_ring = gpu->funcs->active_ring(gpu);
char *comm = NULL, *cmd = NULL;
int i;
mutex_lock(&dev->struct_mutex);
dev_err(dev->dev, "%s: hangcheck recover!\n", gpu->name);
submit = find_submit(cur_ring, cur_ring->memptrs->fence + 1);
if (submit) {
struct task_struct *task;
rcu_read_lock();
task = pid_task(submit->pid, PIDTYPE_PID);
if (task) {
comm = kstrdup(task->comm, GFP_ATOMIC);
/*
* So slightly annoying, in other paths like
* mmap'ing gem buffers, mmap_sem is acquired
* before struct_mutex, which means we can't
* hold struct_mutex across the call to
* get_cmdline(). But submits are retired
* from the same in-order workqueue, so we can
* safely drop the lock here without worrying
* about the submit going away.
*/
mutex_unlock(&dev->struct_mutex);
cmd = kstrdup_quotable_cmdline(task, GFP_ATOMIC);
mutex_lock(&dev->struct_mutex);
}
rcu_read_unlock();
if (comm && cmd) {
dev_err(dev->dev, "%s: offending task: %s (%s)\n",
gpu->name, comm, cmd);
msm_rd_dump_submit(priv->hangrd, submit,
"offending task: %s (%s)", comm, cmd);
} else
msm_rd_dump_submit(priv->hangrd, submit, NULL);
}
/* Record the crash state */
pm_runtime_get_sync(&gpu->pdev->dev);
msm_gpu_crashstate_capture(gpu, submit, comm, cmd);
pm_runtime_put_sync(&gpu->pdev->dev);
kfree(cmd);
kfree(comm);
/*
* Update all the rings with the latest and greatest fence.. this
* needs to happen after msm_rd_dump_submit() to ensure that the
* bo's referenced by the offending submit are still around.
*/
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
uint32_t fence = ring->memptrs->fence;
/*
* For the current (faulting?) ring/submit advance the fence by
* one more to clear the faulting submit
*/
if (ring == cur_ring)
fence++;
update_fences(gpu, ring, fence);
}
if (msm_gpu_active(gpu)) {
/* retire completed submits, plus the one that hung: */
retire_submits(gpu);
pm_runtime_get_sync(&gpu->pdev->dev);
gpu->funcs->recover(gpu);
pm_runtime_put_sync(&gpu->pdev->dev);
/*
* Replay all remaining submits starting with highest priority
* ring
*/
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
list_for_each_entry(submit, &ring->submits, node)
gpu->funcs->submit(gpu, submit, NULL);
}
}
mutex_unlock(&dev->struct_mutex);
msm_gpu_retire(gpu);
}
static void hangcheck_timer_reset(struct msm_gpu *gpu)
{
DBG("%s", gpu->name);
mod_timer(&gpu->hangcheck_timer,
round_jiffies_up(jiffies + DRM_MSM_HANGCHECK_JIFFIES));
}
static void hangcheck_handler(struct timer_list *t)
{
struct msm_gpu *gpu = from_timer(gpu, t, hangcheck_timer);
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
uint32_t fence = ring->memptrs->fence;
if (fence != ring->hangcheck_fence) {
/* some progress has been made.. ya! */
ring->hangcheck_fence = fence;
} else if (fence < ring->seqno) {
/* no progress and not done.. hung! */
ring->hangcheck_fence = fence;
dev_err(dev->dev, "%s: hangcheck detected gpu lockup rb %d!\n",
gpu->name, ring->id);
dev_err(dev->dev, "%s: completed fence: %u\n",
gpu->name, fence);
dev_err(dev->dev, "%s: submitted fence: %u\n",
gpu->name, ring->seqno);
queue_work(priv->wq, &gpu->recover_work);
}
/* if still more pending work, reset the hangcheck timer: */
if (ring->seqno > ring->hangcheck_fence)
hangcheck_timer_reset(gpu);
/* workaround for missing irq: */
queue_work(priv->wq, &gpu->retire_work);
}
/*
* Performance Counters:
*/
/* called under perf_lock */
static int update_hw_cntrs(struct msm_gpu *gpu, uint32_t ncntrs, uint32_t *cntrs)
{
uint32_t current_cntrs[ARRAY_SIZE(gpu->last_cntrs)];
int i, n = min(ncntrs, gpu->num_perfcntrs);
/* read current values: */
for (i = 0; i < gpu->num_perfcntrs; i++)
current_cntrs[i] = gpu_read(gpu, gpu->perfcntrs[i].sample_reg);
/* update cntrs: */
for (i = 0; i < n; i++)
cntrs[i] = current_cntrs[i] - gpu->last_cntrs[i];
/* save current values: */
for (i = 0; i < gpu->num_perfcntrs; i++)
gpu->last_cntrs[i] = current_cntrs[i];
return n;
}
static void update_sw_cntrs(struct msm_gpu *gpu)
{
ktime_t time;
uint32_t elapsed;
unsigned long flags;
spin_lock_irqsave(&gpu->perf_lock, flags);
if (!gpu->perfcntr_active)
goto out;
time = ktime_get();
elapsed = ktime_to_us(ktime_sub(time, gpu->last_sample.time));
gpu->totaltime += elapsed;
if (gpu->last_sample.active)
gpu->activetime += elapsed;
gpu->last_sample.active = msm_gpu_active(gpu);
gpu->last_sample.time = time;
out:
spin_unlock_irqrestore(&gpu->perf_lock, flags);
}
void msm_gpu_perfcntr_start(struct msm_gpu *gpu)
{
unsigned long flags;
pm_runtime_get_sync(&gpu->pdev->dev);
spin_lock_irqsave(&gpu->perf_lock, flags);
/* we could dynamically enable/disable perfcntr registers too.. */
gpu->last_sample.active = msm_gpu_active(gpu);
gpu->last_sample.time = ktime_get();
gpu->activetime = gpu->totaltime = 0;
gpu->perfcntr_active = true;
update_hw_cntrs(gpu, 0, NULL);
spin_unlock_irqrestore(&gpu->perf_lock, flags);
}
void msm_gpu_perfcntr_stop(struct msm_gpu *gpu)
{
gpu->perfcntr_active = false;
pm_runtime_put_sync(&gpu->pdev->dev);
}
/* returns -errno or # of cntrs sampled */
int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&gpu->perf_lock, flags);
if (!gpu->perfcntr_active) {
ret = -EINVAL;
goto out;
}
*activetime = gpu->activetime;
*totaltime = gpu->totaltime;
gpu->activetime = gpu->totaltime = 0;
ret = update_hw_cntrs(gpu, ncntrs, cntrs);
out:
spin_unlock_irqrestore(&gpu->perf_lock, flags);
return ret;
}
/*
* Cmdstream submission/retirement:
*/
static void retire_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
{
int i;
for (i = 0; i < submit->nr_bos; i++) {
struct msm_gem_object *msm_obj = submit->bos[i].obj;
/* move to inactive: */
msm_gem_move_to_inactive(&msm_obj->base);
msm_gem_put_iova(&msm_obj->base, gpu->aspace);
drm_gem_object_put(&msm_obj->base);
}
pm_runtime_mark_last_busy(&gpu->pdev->dev);
pm_runtime_put_autosuspend(&gpu->pdev->dev);
msm_gem_submit_free(submit);
}
static void retire_submits(struct msm_gpu *gpu)
{
struct drm_device *dev = gpu->dev;
struct msm_gem_submit *submit, *tmp;
int i;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
/* Retire the commits starting with highest priority */
for (i = 0; i < gpu->nr_rings; i++) {
struct msm_ringbuffer *ring = gpu->rb[i];
list_for_each_entry_safe(submit, tmp, &ring->submits, node) {
if (dma_fence_is_signaled(submit->fence))
retire_submit(gpu, submit);
}
}
}
static void retire_worker(struct work_struct *work)
{
struct msm_gpu *gpu = container_of(work, struct msm_gpu, retire_work);
struct drm_device *dev = gpu->dev;
int i;
for (i = 0; i < gpu->nr_rings; i++)
update_fences(gpu, gpu->rb[i], gpu->rb[i]->memptrs->fence);
mutex_lock(&dev->struct_mutex);
retire_submits(gpu);
mutex_unlock(&dev->struct_mutex);
}
/* call from irq handler to schedule work to retire bo's */
void msm_gpu_retire(struct msm_gpu *gpu)
{
struct msm_drm_private *priv = gpu->dev->dev_private;
queue_work(priv->wq, &gpu->retire_work);
update_sw_cntrs(gpu);
}
/* add bo's to gpu's ring, and kick gpu: */
void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
struct msm_file_private *ctx)
{
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct msm_ringbuffer *ring = submit->ring;
int i;
WARN_ON(!mutex_is_locked(&dev->struct_mutex));
pm_runtime_get_sync(&gpu->pdev->dev);
msm_gpu_hw_init(gpu);
submit->seqno = ++ring->seqno;
list_add_tail(&submit->node, &ring->submits);
msm_rd_dump_submit(priv->rd, submit, NULL);
update_sw_cntrs(gpu);
for (i = 0; i < submit->nr_bos; i++) {
struct msm_gem_object *msm_obj = submit->bos[i].obj;
uint64_t iova;
/* can't happen yet.. but when we add 2d support we'll have
* to deal w/ cross-ring synchronization:
*/
WARN_ON(is_active(msm_obj) && (msm_obj->gpu != gpu));
/* submit takes a reference to the bo and iova until retired: */
drm_gem_object_get(&msm_obj->base);
msm_gem_get_iova(&msm_obj->base,
submit->gpu->aspace, &iova);
if (submit->bos[i].flags & MSM_SUBMIT_BO_WRITE)
msm_gem_move_to_active(&msm_obj->base, gpu, true, submit->fence);
else if (submit->bos[i].flags & MSM_SUBMIT_BO_READ)
msm_gem_move_to_active(&msm_obj->base, gpu, false, submit->fence);
}
gpu->funcs->submit(gpu, submit, ctx);
priv->lastctx = ctx;
hangcheck_timer_reset(gpu);
}
/*
* Init/Cleanup:
*/
static irqreturn_t irq_handler(int irq, void *data)
{
struct msm_gpu *gpu = data;
return gpu->funcs->irq(gpu);
}
static int get_clocks(struct platform_device *pdev, struct msm_gpu *gpu)
{
int ret = msm_clk_bulk_get(&pdev->dev, &gpu->grp_clks);
if (ret < 1) {
gpu->nr_clocks = 0;
return ret;
}
gpu->nr_clocks = ret;
gpu->core_clk = msm_clk_bulk_get_clock(gpu->grp_clks,
gpu->nr_clocks, "core");
gpu->rbbmtimer_clk = msm_clk_bulk_get_clock(gpu->grp_clks,
gpu->nr_clocks, "rbbmtimer");
return 0;
}
static struct msm_gem_address_space *
msm_gpu_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev,
uint64_t va_start, uint64_t va_end)
{
struct iommu_domain *iommu;
struct msm_gem_address_space *aspace;
int ret;
/*
* Setup IOMMU.. eventually we will (I think) do this once per context
* and have separate page tables per context. For now, to keep things
* simple and to get something working, just use a single address space:
*/
iommu = iommu_domain_alloc(&platform_bus_type);
if (!iommu)
return NULL;
iommu->geometry.aperture_start = va_start;
iommu->geometry.aperture_end = va_end;
dev_info(gpu->dev->dev, "%s: using IOMMU\n", gpu->name);
aspace = msm_gem_address_space_create(&pdev->dev, iommu, "gpu");
if (IS_ERR(aspace)) {
dev_err(gpu->dev->dev, "failed to init iommu: %ld\n",
PTR_ERR(aspace));
iommu_domain_free(iommu);
return ERR_CAST(aspace);
}
ret = aspace->mmu->funcs->attach(aspace->mmu, NULL, 0);
if (ret) {
msm_gem_address_space_put(aspace);
return ERR_PTR(ret);
}
return aspace;
}
int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
const char *name, struct msm_gpu_config *config)
{
int i, ret, nr_rings = config->nr_rings;
void *memptrs;
uint64_t memptrs_iova;
if (WARN_ON(gpu->num_perfcntrs > ARRAY_SIZE(gpu->last_cntrs)))
gpu->num_perfcntrs = ARRAY_SIZE(gpu->last_cntrs);
gpu->dev = drm;
gpu->funcs = funcs;
gpu->name = name;
INIT_LIST_HEAD(&gpu->active_list);
INIT_WORK(&gpu->retire_work, retire_worker);
INIT_WORK(&gpu->recover_work, recover_worker);
timer_setup(&gpu->hangcheck_timer, hangcheck_handler, 0);
spin_lock_init(&gpu->perf_lock);
/* Map registers: */
gpu->mmio = msm_ioremap(pdev, config->ioname, name);
if (IS_ERR(gpu->mmio)) {
ret = PTR_ERR(gpu->mmio);
goto fail;
}
/* Get Interrupt: */
gpu->irq = platform_get_irq_byname(pdev, config->irqname);
if (gpu->irq < 0) {
ret = gpu->irq;
dev_err(drm->dev, "failed to get irq: %d\n", ret);
goto fail;
}
ret = devm_request_irq(&pdev->dev, gpu->irq, irq_handler,
IRQF_TRIGGER_HIGH, gpu->name, gpu);
if (ret) {
dev_err(drm->dev, "failed to request IRQ%u: %d\n", gpu->irq, ret);
goto fail;
}
ret = get_clocks(pdev, gpu);
if (ret)
goto fail;
gpu->ebi1_clk = msm_clk_get(pdev, "bus");
DBG("ebi1_clk: %p", gpu->ebi1_clk);
if (IS_ERR(gpu->ebi1_clk))
gpu->ebi1_clk = NULL;
/* Acquire regulators: */
gpu->gpu_reg = devm_regulator_get(&pdev->dev, "vdd");
DBG("gpu_reg: %p", gpu->gpu_reg);
if (IS_ERR(gpu->gpu_reg))
gpu->gpu_reg = NULL;
gpu->gpu_cx = devm_regulator_get(&pdev->dev, "vddcx");
DBG("gpu_cx: %p", gpu->gpu_cx);
if (IS_ERR(gpu->gpu_cx))
gpu->gpu_cx = NULL;
gpu->pdev = pdev;
platform_set_drvdata(pdev, gpu);
msm_devfreq_init(gpu);
gpu->aspace = msm_gpu_create_address_space(gpu, pdev,
config->va_start, config->va_end);
if (gpu->aspace == NULL)
dev_info(drm->dev, "%s: no IOMMU, fallback to VRAM carveout!\n", name);
else if (IS_ERR(gpu->aspace)) {
ret = PTR_ERR(gpu->aspace);
goto fail;
}
memptrs = msm_gem_kernel_new(drm, sizeof(*gpu->memptrs_bo),
MSM_BO_UNCACHED, gpu->aspace, &gpu->memptrs_bo,
&memptrs_iova);
if (IS_ERR(memptrs)) {
ret = PTR_ERR(memptrs);
dev_err(drm->dev, "could not allocate memptrs: %d\n", ret);
goto fail;
}
if (nr_rings > ARRAY_SIZE(gpu->rb)) {
DRM_DEV_INFO_ONCE(drm->dev, "Only creating %zu ringbuffers\n",
ARRAY_SIZE(gpu->rb));
nr_rings = ARRAY_SIZE(gpu->rb);
}
/* Create ringbuffer(s): */
for (i = 0; i < nr_rings; i++) {
gpu->rb[i] = msm_ringbuffer_new(gpu, i, memptrs, memptrs_iova);
if (IS_ERR(gpu->rb[i])) {
ret = PTR_ERR(gpu->rb[i]);
dev_err(drm->dev,
"could not create ringbuffer %d: %d\n", i, ret);
goto fail;
}
memptrs += sizeof(struct msm_rbmemptrs);
memptrs_iova += sizeof(struct msm_rbmemptrs);
}
gpu->nr_rings = nr_rings;
return 0;
fail:
for (i = 0; i < ARRAY_SIZE(gpu->rb); i++) {
msm_ringbuffer_destroy(gpu->rb[i]);
gpu->rb[i] = NULL;
}
if (gpu->memptrs_bo) {
msm_gem_put_vaddr(gpu->memptrs_bo);
msm_gem_put_iova(gpu->memptrs_bo, gpu->aspace);
drm_gem_object_put_unlocked(gpu->memptrs_bo);
}
platform_set_drvdata(pdev, NULL);
return ret;
}
void msm_gpu_cleanup(struct msm_gpu *gpu)
{
int i;
DBG("%s", gpu->name);
WARN_ON(!list_empty(&gpu->active_list));
for (i = 0; i < ARRAY_SIZE(gpu->rb); i++) {
msm_ringbuffer_destroy(gpu->rb[i]);
gpu->rb[i] = NULL;
}
if (gpu->memptrs_bo) {
msm_gem_put_vaddr(gpu->memptrs_bo);
msm_gem_put_iova(gpu->memptrs_bo, gpu->aspace);
drm_gem_object_put_unlocked(gpu->memptrs_bo);
}
if (!IS_ERR_OR_NULL(gpu->aspace)) {
gpu->aspace->mmu->funcs->detach(gpu->aspace->mmu,
NULL, 0);
msm_gem_address_space_put(gpu->aspace);
}
}