mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-19 12:36:45 +07:00
86db36a347
Tested using the following bash script and the tc from iproute2-next: #!/bin/bash set -e -u -o pipefail NSEC_PER_SEC="1000000000" gatemask() { local tc_list="$1" local mask=0 for tc in ${tc_list}; do mask=$((${mask} | (1 << ${tc}))) done printf "%02x" ${mask} } if ! systemctl is-active --quiet ptp4l; then echo "Please start the ptp4l service" exit fi now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }') # Phase-align the base time to the start of the next second. sec=$(echo "${now}" | gawk -F. '{ print $1; }') base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))" tc qdisc add dev swp5 parent root handle 100 taprio \ num_tc 8 \ map 0 1 2 3 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time ${base_time} \ sched-entry S $(gatemask 7) 100000 \ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \ clockid CLOCK_TAI flags 2 The "state machine" is a workqueue invoked after each manipulation command on the PTP clock (reset, adjust time, set time, adjust frequency) which checks over the state of the time-aware scheduler. So it is not monitored periodically, only in reaction to a PTP command typically triggered from a userspace daemon (linuxptp). Otherwise there is no reason for things to go wrong. Now that the timecounter/cyclecounter has been replaced with hardware operations on the PTP clock, the TAS Kconfig now depends upon PTP and the standalone clocksource operating mode has been removed. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
832 lines
26 KiB
C
832 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
|
|
*/
|
|
#include "sja1105.h"
|
|
|
|
#define SJA1105_TAS_CLKSRC_DISABLED 0
|
|
#define SJA1105_TAS_CLKSRC_STANDALONE 1
|
|
#define SJA1105_TAS_CLKSRC_AS6802 2
|
|
#define SJA1105_TAS_CLKSRC_PTP 3
|
|
#define SJA1105_TAS_MAX_DELTA BIT(19)
|
|
#define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
|
|
|
|
#define work_to_sja1105_tas(d) \
|
|
container_of((d), struct sja1105_tas_data, tas_work)
|
|
#define tas_to_sja1105(d) \
|
|
container_of((d), struct sja1105_private, tas_data)
|
|
|
|
/* This is not a preprocessor macro because the "ns" argument may or may not be
|
|
* s64 at caller side. This ensures it is properly type-cast before div_s64.
|
|
*/
|
|
static s64 ns_to_sja1105_delta(s64 ns)
|
|
{
|
|
return div_s64(ns, 200);
|
|
}
|
|
|
|
static s64 sja1105_delta_to_ns(s64 delta)
|
|
{
|
|
return delta * 200;
|
|
}
|
|
|
|
/* Calculate the first base_time in the future that satisfies this
|
|
* relationship:
|
|
*
|
|
* future_base_time = base_time + N x cycle_time >= now, or
|
|
*
|
|
* now - base_time
|
|
* N >= ---------------
|
|
* cycle_time
|
|
*
|
|
* Because N is an integer, the ceiling value of the above "a / b" ratio
|
|
* is in fact precisely the floor value of "(a + b - 1) / b", which is
|
|
* easier to calculate only having integer division tools.
|
|
*/
|
|
static s64 future_base_time(s64 base_time, s64 cycle_time, s64 now)
|
|
{
|
|
s64 a, b, n;
|
|
|
|
if (base_time >= now)
|
|
return base_time;
|
|
|
|
a = now - base_time;
|
|
b = cycle_time;
|
|
n = div_s64(a + b - 1, b);
|
|
|
|
return base_time + n * cycle_time;
|
|
}
|
|
|
|
static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
|
|
{
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
struct dsa_switch *ds = priv->ds;
|
|
s64 earliest_base_time = S64_MAX;
|
|
s64 latest_base_time = 0;
|
|
s64 its_cycle_time = 0;
|
|
s64 max_cycle_time = 0;
|
|
int port;
|
|
|
|
tas_data->enabled = false;
|
|
|
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
|
const struct tc_taprio_qopt_offload *offload;
|
|
|
|
offload = tas_data->offload[port];
|
|
if (!offload)
|
|
continue;
|
|
|
|
tas_data->enabled = true;
|
|
|
|
if (max_cycle_time < offload->cycle_time)
|
|
max_cycle_time = offload->cycle_time;
|
|
if (latest_base_time < offload->base_time)
|
|
latest_base_time = offload->base_time;
|
|
if (earliest_base_time > offload->base_time) {
|
|
earliest_base_time = offload->base_time;
|
|
its_cycle_time = offload->cycle_time;
|
|
}
|
|
}
|
|
|
|
if (!tas_data->enabled)
|
|
return 0;
|
|
|
|
/* Roll the earliest base time over until it is in a comparable
|
|
* time base with the latest, then compare their deltas.
|
|
* We want to enforce that all ports' base times are within
|
|
* SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
|
|
*/
|
|
earliest_base_time = future_base_time(earliest_base_time,
|
|
its_cycle_time,
|
|
latest_base_time);
|
|
while (earliest_base_time > latest_base_time)
|
|
earliest_base_time -= its_cycle_time;
|
|
if (latest_base_time - earliest_base_time >
|
|
sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
|
|
dev_err(ds->dev,
|
|
"Base times too far apart: min %llu max %llu\n",
|
|
earliest_base_time, latest_base_time);
|
|
return -ERANGE;
|
|
}
|
|
|
|
tas_data->earliest_base_time = earliest_base_time;
|
|
tas_data->max_cycle_time = max_cycle_time;
|
|
|
|
dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
|
|
dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
|
|
dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Lo and behold: the egress scheduler from hell.
|
|
*
|
|
* At the hardware level, the Time-Aware Shaper holds a global linear arrray of
|
|
* all schedule entries for all ports. These are the Gate Control List (GCL)
|
|
* entries, let's call them "timeslots" for short. This linear array of
|
|
* timeslots is held in BLK_IDX_SCHEDULE.
|
|
*
|
|
* Then there are a maximum of 8 "execution threads" inside the switch, which
|
|
* iterate cyclically through the "schedule". Each "cycle" has an entry point
|
|
* and an exit point, both being timeslot indices in the schedule table. The
|
|
* hardware calls each cycle a "subschedule".
|
|
*
|
|
* Subschedule (cycle) i starts when
|
|
* ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta.
|
|
*
|
|
* The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from
|
|
* k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to
|
|
* k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i]
|
|
*
|
|
* For each schedule entry (timeslot) k, the engine executes the gate control
|
|
* list entry for the duration of BLK_IDX_SCHEDULE[k].delta.
|
|
*
|
|
* +---------+
|
|
* | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS
|
|
* +---------+
|
|
* |
|
|
* +-----------------+
|
|
* | .actsubsch
|
|
* BLK_IDX_SCHEDULE_ENTRY_POINTS v
|
|
* +-------+-------+
|
|
* |cycle 0|cycle 1|
|
|
* +-------+-------+
|
|
* | | | |
|
|
* +----------------+ | | +-------------------------------------+
|
|
* | .subschindx | | .subschindx |
|
|
* | | +---------------+ |
|
|
* | .address | .address | |
|
|
* | | | |
|
|
* | | | |
|
|
* | BLK_IDX_SCHEDULE v v |
|
|
* | +-------+-------+-------+-------+-------+------+ |
|
|
* | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| |
|
|
* | +-------+-------+-------+-------+-------+------+ |
|
|
* | ^ ^ ^ ^ |
|
|
* | | | | | |
|
|
* | +-------------------------+ | | | |
|
|
* | | +-------------------------------+ | | |
|
|
* | | | +-------------------+ | |
|
|
* | | | | | |
|
|
* | +---------------------------------------------------------------+ |
|
|
* | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| |
|
|
* | +---------------------------------------------------------------+ |
|
|
* | ^ ^ BLK_IDX_SCHEDULE_PARAMS |
|
|
* | | | |
|
|
* +--------+ +-------------------------------------------+
|
|
*
|
|
* In the above picture there are two subschedules (cycles):
|
|
*
|
|
* - cycle 0: iterates the schedule table from 0 to 2 (and back)
|
|
* - cycle 1: iterates the schedule table from 3 to 5 (and back)
|
|
*
|
|
* All other possible execution threads must be marked as unused by making
|
|
* their "subschedule end index" (subscheind) equal to the last valid
|
|
* subschedule's end index (in this case 5).
|
|
*/
|
|
static int sja1105_init_scheduling(struct sja1105_private *priv)
|
|
{
|
|
struct sja1105_schedule_entry_points_entry *schedule_entry_points;
|
|
struct sja1105_schedule_entry_points_params_entry
|
|
*schedule_entry_points_params;
|
|
struct sja1105_schedule_params_entry *schedule_params;
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
struct sja1105_schedule_entry *schedule;
|
|
struct sja1105_table *table;
|
|
int schedule_start_idx;
|
|
s64 entry_point_delta;
|
|
int schedule_end_idx;
|
|
int num_entries = 0;
|
|
int num_cycles = 0;
|
|
int cycle = 0;
|
|
int i, k = 0;
|
|
int port, rc;
|
|
|
|
rc = sja1105_tas_set_runtime_params(priv);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
/* Discard previous Schedule Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
|
|
if (table->entry_count) {
|
|
kfree(table->entries);
|
|
table->entry_count = 0;
|
|
}
|
|
|
|
/* Discard previous Schedule Entry Points Parameters Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
|
|
if (table->entry_count) {
|
|
kfree(table->entries);
|
|
table->entry_count = 0;
|
|
}
|
|
|
|
/* Discard previous Schedule Parameters Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
|
|
if (table->entry_count) {
|
|
kfree(table->entries);
|
|
table->entry_count = 0;
|
|
}
|
|
|
|
/* Discard previous Schedule Entry Points Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
|
|
if (table->entry_count) {
|
|
kfree(table->entries);
|
|
table->entry_count = 0;
|
|
}
|
|
|
|
/* Figure out the dimensioning of the problem */
|
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
|
if (tas_data->offload[port]) {
|
|
num_entries += tas_data->offload[port]->num_entries;
|
|
num_cycles++;
|
|
}
|
|
}
|
|
|
|
/* Nothing to do */
|
|
if (!num_cycles)
|
|
return 0;
|
|
|
|
/* Pre-allocate space in the static config tables */
|
|
|
|
/* Schedule Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
|
|
table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size,
|
|
GFP_KERNEL);
|
|
if (!table->entries)
|
|
return -ENOMEM;
|
|
table->entry_count = num_entries;
|
|
schedule = table->entries;
|
|
|
|
/* Schedule Points Parameters Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS];
|
|
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT,
|
|
table->ops->unpacked_entry_size, GFP_KERNEL);
|
|
if (!table->entries)
|
|
/* Previously allocated memory will be freed automatically in
|
|
* sja1105_static_config_free. This is true for all early
|
|
* returns below.
|
|
*/
|
|
return -ENOMEM;
|
|
table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT;
|
|
schedule_entry_points_params = table->entries;
|
|
|
|
/* Schedule Parameters Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS];
|
|
table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT,
|
|
table->ops->unpacked_entry_size, GFP_KERNEL);
|
|
if (!table->entries)
|
|
return -ENOMEM;
|
|
table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT;
|
|
schedule_params = table->entries;
|
|
|
|
/* Schedule Entry Points Table */
|
|
table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS];
|
|
table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size,
|
|
GFP_KERNEL);
|
|
if (!table->entries)
|
|
return -ENOMEM;
|
|
table->entry_count = num_cycles;
|
|
schedule_entry_points = table->entries;
|
|
|
|
/* Finally start populating the static config tables */
|
|
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
|
|
schedule_entry_points_params->actsubsch = num_cycles - 1;
|
|
|
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
|
const struct tc_taprio_qopt_offload *offload;
|
|
/* Relative base time */
|
|
s64 rbt;
|
|
|
|
offload = tas_data->offload[port];
|
|
if (!offload)
|
|
continue;
|
|
|
|
schedule_start_idx = k;
|
|
schedule_end_idx = k + offload->num_entries - 1;
|
|
/* This is the base time expressed as a number of TAS ticks
|
|
* relative to PTPSCHTM, which we'll (perhaps improperly) call
|
|
* the operational base time.
|
|
*/
|
|
rbt = future_base_time(offload->base_time,
|
|
offload->cycle_time,
|
|
tas_data->earliest_base_time);
|
|
rbt -= tas_data->earliest_base_time;
|
|
/* UM10944.pdf 4.2.2. Schedule Entry Points table says that
|
|
* delta cannot be zero, which is shitty. Advance all relative
|
|
* base times by 1 TAS delta, so that even the earliest base
|
|
* time becomes 1 in relative terms. Then start the operational
|
|
* base time (PTPSCHTM) one TAS delta earlier than planned.
|
|
*/
|
|
entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
|
|
|
|
schedule_entry_points[cycle].subschindx = cycle;
|
|
schedule_entry_points[cycle].delta = entry_point_delta;
|
|
schedule_entry_points[cycle].address = schedule_start_idx;
|
|
|
|
/* The subschedule end indices need to be
|
|
* monotonically increasing.
|
|
*/
|
|
for (i = cycle; i < 8; i++)
|
|
schedule_params->subscheind[i] = schedule_end_idx;
|
|
|
|
for (i = 0; i < offload->num_entries; i++, k++) {
|
|
s64 delta_ns = offload->entries[i].interval;
|
|
|
|
schedule[k].delta = ns_to_sja1105_delta(delta_ns);
|
|
schedule[k].destports = BIT(port);
|
|
schedule[k].resmedia_en = true;
|
|
schedule[k].resmedia = SJA1105_GATE_MASK &
|
|
~offload->entries[i].gate_mask;
|
|
}
|
|
cycle++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Be there 2 port subschedules, each executing an arbitrary number of gate
|
|
* open/close events cyclically.
|
|
* None of those gate events must ever occur at the exact same time, otherwise
|
|
* the switch is known to act in exotically strange ways.
|
|
* However the hardware doesn't bother performing these integrity checks.
|
|
* So here we are with the task of validating whether the new @admin offload
|
|
* has any conflict with the already established TAS configuration in
|
|
* tas_data->offload. We already know the other ports are in harmony with one
|
|
* another, otherwise we wouldn't have saved them.
|
|
* Each gate event executes periodically, with a period of @cycle_time and a
|
|
* phase given by its cycle's @base_time plus its offset within the cycle
|
|
* (which in turn is given by the length of the events prior to it).
|
|
* There are two aspects to possible collisions:
|
|
* - Collisions within one cycle's (actually the longest cycle's) time frame.
|
|
* For that, we need to compare the cartesian product of each possible
|
|
* occurrence of each event within one cycle time.
|
|
* - Collisions in the future. Events may not collide within one cycle time,
|
|
* but if two port schedules don't have the same periodicity (aka the cycle
|
|
* times aren't multiples of one another), they surely will some time in the
|
|
* future (actually they will collide an infinite amount of times).
|
|
*/
|
|
static bool
|
|
sja1105_tas_check_conflicts(struct sja1105_private *priv, int port,
|
|
const struct tc_taprio_qopt_offload *admin)
|
|
{
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
const struct tc_taprio_qopt_offload *offload;
|
|
s64 max_cycle_time, min_cycle_time;
|
|
s64 delta1, delta2;
|
|
s64 rbt1, rbt2;
|
|
s64 stop_time;
|
|
s64 t1, t2;
|
|
int i, j;
|
|
s32 rem;
|
|
|
|
offload = tas_data->offload[port];
|
|
if (!offload)
|
|
return false;
|
|
|
|
/* Check if the two cycle times are multiples of one another.
|
|
* If they aren't, then they will surely collide.
|
|
*/
|
|
max_cycle_time = max(offload->cycle_time, admin->cycle_time);
|
|
min_cycle_time = min(offload->cycle_time, admin->cycle_time);
|
|
div_s64_rem(max_cycle_time, min_cycle_time, &rem);
|
|
if (rem)
|
|
return true;
|
|
|
|
/* Calculate the "reduced" base time of each of the two cycles
|
|
* (transposed back as close to 0 as possible) by dividing to
|
|
* the cycle time.
|
|
*/
|
|
div_s64_rem(offload->base_time, offload->cycle_time, &rem);
|
|
rbt1 = rem;
|
|
|
|
div_s64_rem(admin->base_time, admin->cycle_time, &rem);
|
|
rbt2 = rem;
|
|
|
|
stop_time = max_cycle_time + max(rbt1, rbt2);
|
|
|
|
/* delta1 is the relative base time of each GCL entry within
|
|
* the established ports' TAS config.
|
|
*/
|
|
for (i = 0, delta1 = 0;
|
|
i < offload->num_entries;
|
|
delta1 += offload->entries[i].interval, i++) {
|
|
/* delta2 is the relative base time of each GCL entry
|
|
* within the newly added TAS config.
|
|
*/
|
|
for (j = 0, delta2 = 0;
|
|
j < admin->num_entries;
|
|
delta2 += admin->entries[j].interval, j++) {
|
|
/* t1 follows all possible occurrences of the
|
|
* established ports' GCL entry i within the
|
|
* first cycle time.
|
|
*/
|
|
for (t1 = rbt1 + delta1;
|
|
t1 <= stop_time;
|
|
t1 += offload->cycle_time) {
|
|
/* t2 follows all possible occurrences
|
|
* of the newly added GCL entry j
|
|
* within the first cycle time.
|
|
*/
|
|
for (t2 = rbt2 + delta2;
|
|
t2 <= stop_time;
|
|
t2 += admin->cycle_time) {
|
|
if (t1 == t2) {
|
|
dev_warn(priv->ds->dev,
|
|
"GCL entry %d collides with entry %d of port %d\n",
|
|
j, i, port);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
|
|
struct tc_taprio_qopt_offload *admin)
|
|
{
|
|
struct sja1105_private *priv = ds->priv;
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
int other_port, rc, i;
|
|
|
|
/* Can't change an already configured port (must delete qdisc first).
|
|
* Can't delete the qdisc from an unconfigured port.
|
|
*/
|
|
if (!!tas_data->offload[port] == admin->enable)
|
|
return -EINVAL;
|
|
|
|
if (!admin->enable) {
|
|
taprio_offload_free(tas_data->offload[port]);
|
|
tas_data->offload[port] = NULL;
|
|
|
|
rc = sja1105_init_scheduling(priv);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
|
|
}
|
|
|
|
/* The cycle time extension is the amount of time the last cycle from
|
|
* the old OPER needs to be extended in order to phase-align with the
|
|
* base time of the ADMIN when that becomes the new OPER.
|
|
* But of course our switch needs to be reset to switch-over between
|
|
* the ADMIN and the OPER configs - so much for a seamless transition.
|
|
* So don't add insult over injury and just say we don't support cycle
|
|
* time extension.
|
|
*/
|
|
if (admin->cycle_time_extension)
|
|
return -ENOTSUPP;
|
|
|
|
if (!ns_to_sja1105_delta(admin->base_time)) {
|
|
dev_err(ds->dev, "A base time of zero is not hardware-allowed\n");
|
|
return -ERANGE;
|
|
}
|
|
|
|
for (i = 0; i < admin->num_entries; i++) {
|
|
s64 delta_ns = admin->entries[i].interval;
|
|
s64 delta_cycles = ns_to_sja1105_delta(delta_ns);
|
|
bool too_long, too_short;
|
|
|
|
too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA);
|
|
too_short = (delta_cycles == 0);
|
|
if (too_long || too_short) {
|
|
dev_err(priv->ds->dev,
|
|
"Interval %llu too %s for GCL entry %d\n",
|
|
delta_ns, too_long ? "long" : "short", i);
|
|
return -ERANGE;
|
|
}
|
|
}
|
|
|
|
for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) {
|
|
if (other_port == port)
|
|
continue;
|
|
|
|
if (sja1105_tas_check_conflicts(priv, other_port, admin))
|
|
return -ERANGE;
|
|
}
|
|
|
|
tas_data->offload[port] = taprio_offload_get(admin);
|
|
|
|
rc = sja1105_init_scheduling(priv);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
|
|
}
|
|
|
|
static int sja1105_tas_check_running(struct sja1105_private *priv)
|
|
{
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
struct dsa_switch *ds = priv->ds;
|
|
struct sja1105_ptp_cmd cmd = {0};
|
|
int rc;
|
|
|
|
rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
if (cmd.ptpstrtsch == 1)
|
|
/* Schedule successfully started */
|
|
tas_data->state = SJA1105_TAS_STATE_RUNNING;
|
|
else if (cmd.ptpstopsch == 1)
|
|
/* Schedule is stopped */
|
|
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
|
else
|
|
/* Schedule is probably not configured with PTP clock source */
|
|
rc = -EINVAL;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Write to PTPCLKCORP */
|
|
static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
|
|
u64 correction)
|
|
{
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
|
|
|
|
return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
|
|
&ptpclkcorp, NULL);
|
|
}
|
|
|
|
/* Write to PTPSCHTM */
|
|
static int sja1105_tas_set_base_time(struct sja1105_private *priv,
|
|
u64 base_time)
|
|
{
|
|
const struct sja1105_regs *regs = priv->info->regs;
|
|
u64 ptpschtm = ns_to_sja1105_ticks(base_time);
|
|
|
|
return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
|
|
&ptpschtm, NULL);
|
|
}
|
|
|
|
static int sja1105_tas_start(struct sja1105_private *priv)
|
|
{
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
|
|
struct dsa_switch *ds = priv->ds;
|
|
int rc;
|
|
|
|
dev_dbg(ds->dev, "Starting the TAS\n");
|
|
|
|
if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
|
|
tas_data->state == SJA1105_TAS_STATE_RUNNING) {
|
|
dev_err(ds->dev, "TAS already started\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd->ptpstrtsch = 1;
|
|
cmd->ptpstopsch = 0;
|
|
|
|
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sja1105_tas_stop(struct sja1105_private *priv)
|
|
{
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
|
|
struct dsa_switch *ds = priv->ds;
|
|
int rc;
|
|
|
|
dev_dbg(ds->dev, "Stopping the TAS\n");
|
|
|
|
if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
|
|
dev_err(ds->dev, "TAS already disabled\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
cmd->ptpstopsch = 1;
|
|
cmd->ptpstrtsch = 0;
|
|
|
|
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
|
|
if (rc < 0)
|
|
return rc;
|
|
|
|
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The schedule engine and the PTP clock are driven by the same oscillator, and
|
|
* they run in parallel. But whilst the PTP clock can keep an absolute
|
|
* time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
|
|
* up a delta, which is 200ns), and wrapping around at the end of each cycle.
|
|
* The schedule engine is started when the PTP clock reaches the PTPSCHTM time
|
|
* (in PTP domain).
|
|
* Because the PTP clock can be rate-corrected (accelerated or slowed down) by
|
|
* a software servo, and the schedule engine clock runs in parallel to the PTP
|
|
* clock, there is logic internal to the switch that periodically keeps the
|
|
* schedule engine from drifting away. The frequency with which this internal
|
|
* syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
|
|
* a value also in the PTP clock domain, and is also rate-corrected.
|
|
* To be precise, during a correction period, there is logic to determine by
|
|
* how many scheduler clock ticks has the PTP clock drifted. At the end of each
|
|
* correction period/beginning of new one, the length of a delta is shrunk or
|
|
* expanded with an integer number of ticks, compared with the typical 25.
|
|
* So a delta lasts for 200ns (or 25 ticks) only on average.
|
|
* Sometimes it is longer, sometimes it is shorter. The internal syntonization
|
|
* logic can adjust for at most 5 ticks each 20 ticks.
|
|
*
|
|
* The first implication is that you should choose your schedule correction
|
|
* period to be an integer multiple of the schedule length. Preferably one.
|
|
* In case there are schedules of multiple ports active, then the correction
|
|
* period needs to be a multiple of them all. Given the restriction that the
|
|
* cycle times have to be multiples of one another anyway, this means the
|
|
* correction period can simply be the largest cycle time, hence the current
|
|
* choice. This way, the updates are always synchronous to the transmission
|
|
* cycle, and therefore predictable.
|
|
*
|
|
* The second implication is that at the beginning of a correction period, the
|
|
* first few deltas will be modulated in time, until the schedule engine is
|
|
* properly phase-aligned with the PTP clock. For this reason, you should place
|
|
* your best-effort traffic at the beginning of a cycle, and your
|
|
* time-triggered traffic afterwards.
|
|
*
|
|
* The third implication is that once the schedule engine is started, it can
|
|
* only adjust for so much drift within a correction period. In the servo you
|
|
* can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
|
|
* want to do the latter, you need to stop and restart the schedule engine,
|
|
* which is what the state machine handles.
|
|
*/
|
|
static void sja1105_tas_state_machine(struct work_struct *work)
|
|
{
|
|
struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
|
|
struct sja1105_private *priv = tas_to_sja1105(tas_data);
|
|
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
|
struct timespec64 base_time_ts, now_ts;
|
|
struct dsa_switch *ds = priv->ds;
|
|
struct timespec64 diff;
|
|
s64 base_time, now;
|
|
int rc = 0;
|
|
|
|
mutex_lock(&ptp_data->lock);
|
|
|
|
switch (tas_data->state) {
|
|
case SJA1105_TAS_STATE_DISABLED:
|
|
/* Can't do anything at all if clock is still being stepped */
|
|
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
|
|
break;
|
|
|
|
rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
/* Plan to start the earliest schedule first. The others
|
|
* will be started in hardware, by way of their respective
|
|
* entry points delta.
|
|
* Try our best to avoid fringe cases (race condition between
|
|
* ptpschtm and ptpstrtsch) by pushing the oper_base_time at
|
|
* least one second in the future from now. This is not ideal,
|
|
* but this only needs to buy us time until the
|
|
* sja1105_tas_start command below gets executed.
|
|
*/
|
|
base_time = future_base_time(tas_data->earliest_base_time,
|
|
tas_data->max_cycle_time,
|
|
now + 1ull * NSEC_PER_SEC);
|
|
base_time -= sja1105_delta_to_ns(1);
|
|
|
|
rc = sja1105_tas_set_base_time(priv, base_time);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
tas_data->oper_base_time = base_time;
|
|
|
|
rc = sja1105_tas_start(priv);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
base_time_ts = ns_to_timespec64(base_time);
|
|
now_ts = ns_to_timespec64(now);
|
|
|
|
dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
|
|
base_time_ts.tv_sec, base_time_ts.tv_nsec,
|
|
now_ts.tv_sec, now_ts.tv_nsec);
|
|
|
|
break;
|
|
|
|
case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
|
|
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
|
|
/* Clock was stepped.. bad news for TAS */
|
|
sja1105_tas_stop(priv);
|
|
break;
|
|
}
|
|
|
|
/* Check if TAS has actually started, by comparing the
|
|
* scheduled start time with the SJA1105 PTP clock
|
|
*/
|
|
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
if (now < tas_data->oper_base_time) {
|
|
/* TAS has not started yet */
|
|
diff = ns_to_timespec64(tas_data->oper_base_time - now);
|
|
dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
|
|
diff.tv_sec, diff.tv_nsec);
|
|
break;
|
|
}
|
|
|
|
/* Time elapsed, what happened? */
|
|
rc = sja1105_tas_check_running(priv);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
|
|
/* TAS has started */
|
|
dev_err(ds->dev,
|
|
"TAS not started despite time elapsed\n");
|
|
|
|
break;
|
|
|
|
case SJA1105_TAS_STATE_RUNNING:
|
|
/* Clock was stepped.. bad news for TAS */
|
|
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
|
|
sja1105_tas_stop(priv);
|
|
break;
|
|
}
|
|
|
|
rc = sja1105_tas_check_running(priv);
|
|
if (rc < 0)
|
|
break;
|
|
|
|
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
|
|
dev_err(ds->dev, "TAS surprisingly stopped\n");
|
|
|
|
break;
|
|
|
|
default:
|
|
if (net_ratelimit())
|
|
dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
|
|
}
|
|
|
|
if (rc && net_ratelimit())
|
|
dev_err(ds->dev, "An operation returned %d\n", rc);
|
|
|
|
mutex_unlock(&ptp_data->lock);
|
|
}
|
|
|
|
void sja1105_tas_clockstep(struct dsa_switch *ds)
|
|
{
|
|
struct sja1105_private *priv = ds->priv;
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
|
|
if (!tas_data->enabled)
|
|
return;
|
|
|
|
tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
|
|
schedule_work(&tas_data->tas_work);
|
|
}
|
|
|
|
void sja1105_tas_adjfreq(struct dsa_switch *ds)
|
|
{
|
|
struct sja1105_private *priv = ds->priv;
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
|
|
if (!tas_data->enabled)
|
|
return;
|
|
|
|
/* No reason to schedule the workqueue, nothing changed */
|
|
if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
|
|
return;
|
|
|
|
tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
|
|
schedule_work(&tas_data->tas_work);
|
|
}
|
|
|
|
void sja1105_tas_setup(struct dsa_switch *ds)
|
|
{
|
|
struct sja1105_private *priv = ds->priv;
|
|
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
|
|
|
INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
|
|
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
|
tas_data->last_op = SJA1105_PTP_NONE;
|
|
}
|
|
|
|
void sja1105_tas_teardown(struct dsa_switch *ds)
|
|
{
|
|
struct sja1105_private *priv = ds->priv;
|
|
struct tc_taprio_qopt_offload *offload;
|
|
int port;
|
|
|
|
cancel_work_sync(&priv->tas_data.tas_work);
|
|
|
|
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
|
offload = priv->tas_data.offload[port];
|
|
if (!offload)
|
|
continue;
|
|
|
|
taprio_offload_free(offload);
|
|
}
|
|
}
|