mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-21 22:13:31 +07:00
a25b988ff8
Most bridge drivers create a DRM connector to model the connector at the output of the bridge. This model is historical and has worked pretty well so far, but causes several issues: - It prevents supporting more complex display pipelines where DRM connector operations are split over multiple components. For instance a pipeline with a bridge connected to the DDC signals to read EDID data, and another one connected to the HPD signal to detect connection and disconnection, will not be possible to support through this model. - It requires every bridge driver to implement similar connector handling code, resulting in code duplication. - It assumes that a bridge will either be wired to a connector or to another bridge, but doesn't support bridges that can be used in both positions very well (although there is some ad-hoc support for this in the analogix_dp bridge driver). In order to solve these issues, ownership of the connector should be moved to the display controller driver (where it can be implemented using helpers provided by the core). Extend the bridge API to allow disabling connector creation in bridge drivers as a first step towards the new model. The new flags argument to the bridge .attach() operation allows instructing the bridge driver to skip creating a connector. Unconditionally set the new flags argument to 0 for now to keep the existing behaviour, and modify all existing bridge drivers to return an error when connector creation is not requested as they don't support this feature yet. The change is based on the following semantic patch, with manual review and edits. @ rule1 @ identifier funcs; identifier fn; @@ struct drm_bridge_funcs funcs = { ..., .attach = fn }; @ depends on rule1 @ identifier rule1.fn; identifier bridge; statement S, S1; @@ int fn( struct drm_bridge *bridge + , enum drm_bridge_attach_flags flags ) { ... when != S + if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR) { + DRM_ERROR("Fix bridge driver to make connector optional!"); + return -EINVAL; + } + S1 ... } @ depends on rule1 @ identifier rule1.fn; identifier bridge, flags; expression E1, E2, E3; @@ int fn( struct drm_bridge *bridge, enum drm_bridge_attach_flags flags ) { <... drm_bridge_attach(E1, E2, E3 + , flags ) ...> } @@ expression E1, E2, E3; @@ drm_bridge_attach(E1, E2, E3 + , 0 ) Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com> Acked-by: Sam Ravnborg <sam@ravnborg.org> Reviewed-by: Tomi Valkeinen <tomi.valkeinen@ti.com> Tested-by: Sebastian Reichel <sebastian.reichel@collabora.com> Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200226112514.12455-10-laurent.pinchart@ideasonboard.com
1724 lines
51 KiB
C
1724 lines
51 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2016 Broadcom
|
|
*/
|
|
|
|
/**
|
|
* DOC: VC4 DSI0/DSI1 module
|
|
*
|
|
* BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
|
|
* single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
|
|
* controller.
|
|
*
|
|
* Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
|
|
* while the compute module brings both DSI0 and DSI1 out.
|
|
*
|
|
* This driver has been tested for DSI1 video-mode display only
|
|
* currently, with most of the information necessary for DSI0
|
|
* hopefully present.
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/component.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_bridge.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drm_mipi_dsi.h>
|
|
#include <drm/drm_of.h>
|
|
#include <drm/drm_panel.h>
|
|
#include <drm/drm_probe_helper.h>
|
|
|
|
#include "vc4_drv.h"
|
|
#include "vc4_regs.h"
|
|
|
|
#define DSI_CMD_FIFO_DEPTH 16
|
|
#define DSI_PIX_FIFO_DEPTH 256
|
|
#define DSI_PIX_FIFO_WIDTH 4
|
|
|
|
#define DSI0_CTRL 0x00
|
|
|
|
/* Command packet control. */
|
|
#define DSI0_TXPKT1C 0x04 /* AKA PKTC */
|
|
#define DSI1_TXPKT1C 0x04
|
|
# define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
|
|
# define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
|
|
# define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
|
|
# define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
|
|
|
|
# define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
|
|
# define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
|
|
/* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
|
|
# define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
|
|
/* Primary display where cmdfifo provides part of the payload and
|
|
* pixelvalve the rest.
|
|
*/
|
|
# define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
|
|
/* Secondary display where cmdfifo provides part of the payload and
|
|
* pixfifo the rest.
|
|
*/
|
|
# define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
|
|
|
|
# define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
|
|
# define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
|
|
|
|
# define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
|
|
# define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
|
|
/* Command only. Uses TXPKT1H and DISPLAY_NO */
|
|
# define DSI_TXPKT1C_CMD_CTRL_TX 0
|
|
/* Command with BTA for either ack or read data. */
|
|
# define DSI_TXPKT1C_CMD_CTRL_RX 1
|
|
/* Trigger according to TRIG_CMD */
|
|
# define DSI_TXPKT1C_CMD_CTRL_TRIG 2
|
|
/* BTA alone for getting error status after a command, or a TE trigger
|
|
* without a previous command.
|
|
*/
|
|
# define DSI_TXPKT1C_CMD_CTRL_BTA 3
|
|
|
|
# define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
|
|
# define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
|
|
# define DSI_TXPKT1C_CMD_TE_EN BIT(1)
|
|
# define DSI_TXPKT1C_CMD_EN BIT(0)
|
|
|
|
/* Command packet header. */
|
|
#define DSI0_TXPKT1H 0x08 /* AKA PKTH */
|
|
#define DSI1_TXPKT1H 0x08
|
|
# define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
|
|
# define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
|
|
# define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
|
|
# define DSI_TXPKT1H_BC_PARAM_SHIFT 8
|
|
# define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
|
|
# define DSI_TXPKT1H_BC_DT_SHIFT 0
|
|
|
|
#define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
|
|
#define DSI1_RXPKT1H 0x14
|
|
# define DSI_RXPKT1H_CRC_ERR BIT(31)
|
|
# define DSI_RXPKT1H_DET_ERR BIT(30)
|
|
# define DSI_RXPKT1H_ECC_ERR BIT(29)
|
|
# define DSI_RXPKT1H_COR_ERR BIT(28)
|
|
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
|
|
# define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
|
|
/* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
|
|
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
|
|
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
|
|
/* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
|
|
# define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
|
|
# define DSI_RXPKT1H_SHORT_1_SHIFT 16
|
|
# define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
|
|
# define DSI_RXPKT1H_SHORT_0_SHIFT 8
|
|
# define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
|
|
# define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
|
|
|
|
#define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
|
|
#define DSI1_RXPKT2H 0x18
|
|
# define DSI_RXPKT1H_DET_ERR BIT(30)
|
|
# define DSI_RXPKT1H_ECC_ERR BIT(29)
|
|
# define DSI_RXPKT1H_COR_ERR BIT(28)
|
|
# define DSI_RXPKT1H_INCOMP_PKT BIT(25)
|
|
# define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
|
|
# define DSI_RXPKT1H_BC_PARAM_SHIFT 8
|
|
# define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
|
|
# define DSI_RXPKT1H_DT_SHIFT 0
|
|
|
|
#define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
|
|
#define DSI1_TXPKT_CMD_FIFO 0x1c
|
|
|
|
#define DSI0_DISP0_CTRL 0x18
|
|
# define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
|
|
# define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
|
|
# define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
|
|
# define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
|
|
# define DSI_DISP0_LP_STOP_DISABLE 0
|
|
# define DSI_DISP0_LP_STOP_PERLINE 1
|
|
# define DSI_DISP0_LP_STOP_PERFRAME 2
|
|
|
|
/* Transmit RGB pixels and null packets only during HACTIVE, instead
|
|
* of going to LP-STOP.
|
|
*/
|
|
# define DSI_DISP_HACTIVE_NULL BIT(10)
|
|
/* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
|
|
# define DSI_DISP_VBLP_CTRL BIT(9)
|
|
/* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
|
|
# define DSI_DISP_HFP_CTRL BIT(8)
|
|
/* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
|
|
# define DSI_DISP_HBP_CTRL BIT(7)
|
|
# define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
|
|
# define DSI_DISP0_CHANNEL_SHIFT 5
|
|
/* Enables end events for HSYNC/VSYNC, not just start events. */
|
|
# define DSI_DISP0_ST_END BIT(4)
|
|
# define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
|
|
# define DSI_DISP0_PFORMAT_SHIFT 2
|
|
# define DSI_PFORMAT_RGB565 0
|
|
# define DSI_PFORMAT_RGB666_PACKED 1
|
|
# define DSI_PFORMAT_RGB666 2
|
|
# define DSI_PFORMAT_RGB888 3
|
|
/* Default is VIDEO mode. */
|
|
# define DSI_DISP0_COMMAND_MODE BIT(1)
|
|
# define DSI_DISP0_ENABLE BIT(0)
|
|
|
|
#define DSI0_DISP1_CTRL 0x1c
|
|
#define DSI1_DISP1_CTRL 0x2c
|
|
/* Format of the data written to TXPKT_PIX_FIFO. */
|
|
# define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
|
|
# define DSI_DISP1_PFORMAT_SHIFT 1
|
|
# define DSI_DISP1_PFORMAT_16BIT 0
|
|
# define DSI_DISP1_PFORMAT_24BIT 1
|
|
# define DSI_DISP1_PFORMAT_32BIT_LE 2
|
|
# define DSI_DISP1_PFORMAT_32BIT_BE 3
|
|
|
|
/* DISP1 is always command mode. */
|
|
# define DSI_DISP1_ENABLE BIT(0)
|
|
|
|
#define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
|
|
|
|
#define DSI0_INT_STAT 0x24
|
|
#define DSI0_INT_EN 0x28
|
|
# define DSI1_INT_PHY_D3_ULPS BIT(30)
|
|
# define DSI1_INT_PHY_D3_STOP BIT(29)
|
|
# define DSI1_INT_PHY_D2_ULPS BIT(28)
|
|
# define DSI1_INT_PHY_D2_STOP BIT(27)
|
|
# define DSI1_INT_PHY_D1_ULPS BIT(26)
|
|
# define DSI1_INT_PHY_D1_STOP BIT(25)
|
|
# define DSI1_INT_PHY_D0_ULPS BIT(24)
|
|
# define DSI1_INT_PHY_D0_STOP BIT(23)
|
|
# define DSI1_INT_FIFO_ERR BIT(22)
|
|
# define DSI1_INT_PHY_DIR_RTF BIT(21)
|
|
# define DSI1_INT_PHY_RXLPDT BIT(20)
|
|
# define DSI1_INT_PHY_RXTRIG BIT(19)
|
|
# define DSI1_INT_PHY_D0_LPDT BIT(18)
|
|
# define DSI1_INT_PHY_DIR_FTR BIT(17)
|
|
|
|
/* Signaled when the clock lane enters the given state. */
|
|
# define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
|
|
# define DSI1_INT_PHY_CLOCK_HS BIT(15)
|
|
# define DSI1_INT_PHY_CLOCK_STOP BIT(14)
|
|
|
|
/* Signaled on timeouts */
|
|
# define DSI1_INT_PR_TO BIT(13)
|
|
# define DSI1_INT_TA_TO BIT(12)
|
|
# define DSI1_INT_LPRX_TO BIT(11)
|
|
# define DSI1_INT_HSTX_TO BIT(10)
|
|
|
|
/* Contention on a line when trying to drive the line low */
|
|
# define DSI1_INT_ERR_CONT_LP1 BIT(9)
|
|
# define DSI1_INT_ERR_CONT_LP0 BIT(8)
|
|
|
|
/* Control error: incorrect line state sequence on data lane 0. */
|
|
# define DSI1_INT_ERR_CONTROL BIT(7)
|
|
/* LPDT synchronization error (bits received not a multiple of 8. */
|
|
|
|
# define DSI1_INT_ERR_SYNC_ESC BIT(6)
|
|
/* Signaled after receiving an error packet from the display in
|
|
* response to a read.
|
|
*/
|
|
# define DSI1_INT_RXPKT2 BIT(5)
|
|
/* Signaled after receiving a packet. The header and optional short
|
|
* response will be in RXPKT1H, and a long response will be in the
|
|
* RXPKT_FIFO.
|
|
*/
|
|
# define DSI1_INT_RXPKT1 BIT(4)
|
|
# define DSI1_INT_TXPKT2_DONE BIT(3)
|
|
# define DSI1_INT_TXPKT2_END BIT(2)
|
|
/* Signaled after all repeats of TXPKT1 are transferred. */
|
|
# define DSI1_INT_TXPKT1_DONE BIT(1)
|
|
/* Signaled after each TXPKT1 repeat is scheduled. */
|
|
# define DSI1_INT_TXPKT1_END BIT(0)
|
|
|
|
#define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
|
|
DSI1_INT_ERR_CONTROL | \
|
|
DSI1_INT_ERR_CONT_LP0 | \
|
|
DSI1_INT_ERR_CONT_LP1 | \
|
|
DSI1_INT_HSTX_TO | \
|
|
DSI1_INT_LPRX_TO | \
|
|
DSI1_INT_TA_TO | \
|
|
DSI1_INT_PR_TO)
|
|
|
|
#define DSI0_STAT 0x2c
|
|
#define DSI0_HSTX_TO_CNT 0x30
|
|
#define DSI0_LPRX_TO_CNT 0x34
|
|
#define DSI0_TA_TO_CNT 0x38
|
|
#define DSI0_PR_TO_CNT 0x3c
|
|
#define DSI0_PHYC 0x40
|
|
# define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
|
|
# define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
|
|
# define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
|
|
# define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
|
|
# define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
|
|
# define DSI1_PHYC_CLANE_ULPS BIT(17)
|
|
# define DSI1_PHYC_CLANE_ENABLE BIT(16)
|
|
# define DSI_PHYC_DLANE3_ULPS BIT(13)
|
|
# define DSI_PHYC_DLANE3_ENABLE BIT(12)
|
|
# define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
|
|
# define DSI0_PHYC_CLANE_ULPS BIT(9)
|
|
# define DSI_PHYC_DLANE2_ULPS BIT(9)
|
|
# define DSI0_PHYC_CLANE_ENABLE BIT(8)
|
|
# define DSI_PHYC_DLANE2_ENABLE BIT(8)
|
|
# define DSI_PHYC_DLANE1_ULPS BIT(5)
|
|
# define DSI_PHYC_DLANE1_ENABLE BIT(4)
|
|
# define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
|
|
# define DSI_PHYC_DLANE0_ULPS BIT(1)
|
|
# define DSI_PHYC_DLANE0_ENABLE BIT(0)
|
|
|
|
#define DSI0_HS_CLT0 0x44
|
|
#define DSI0_HS_CLT1 0x48
|
|
#define DSI0_HS_CLT2 0x4c
|
|
#define DSI0_HS_DLT3 0x50
|
|
#define DSI0_HS_DLT4 0x54
|
|
#define DSI0_HS_DLT5 0x58
|
|
#define DSI0_HS_DLT6 0x5c
|
|
#define DSI0_HS_DLT7 0x60
|
|
|
|
#define DSI0_PHY_AFEC0 0x64
|
|
# define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
|
|
# define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
|
|
# define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
|
|
# define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
|
|
# define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
|
|
# define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
|
|
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
|
|
# define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
|
|
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
|
|
# define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
|
|
# define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
|
|
# define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
|
|
# define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
|
|
# define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
|
|
# define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
|
|
# define DSI1_PHY_AFEC0_RESET BIT(13)
|
|
# define DSI1_PHY_AFEC0_PD BIT(12)
|
|
# define DSI0_PHY_AFEC0_RESET BIT(11)
|
|
# define DSI1_PHY_AFEC0_PD_BG BIT(11)
|
|
# define DSI0_PHY_AFEC0_PD BIT(10)
|
|
# define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
|
|
# define DSI0_PHY_AFEC0_PD_BG BIT(9)
|
|
# define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
|
|
# define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
|
|
# define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
|
|
# define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
|
|
# define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
|
|
# define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
|
|
# define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
|
|
|
|
#define DSI0_PHY_AFEC1 0x68
|
|
# define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
|
|
# define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
|
|
# define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
|
|
# define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
|
|
# define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
|
|
# define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
|
|
|
|
#define DSI0_TST_SEL 0x6c
|
|
#define DSI0_TST_MON 0x70
|
|
#define DSI0_ID 0x74
|
|
# define DSI_ID_VALUE 0x00647369
|
|
|
|
#define DSI1_CTRL 0x00
|
|
# define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
|
|
# define DSI_CTRL_HS_CLKC_SHIFT 14
|
|
# define DSI_CTRL_HS_CLKC_BYTE 0
|
|
# define DSI_CTRL_HS_CLKC_DDR2 1
|
|
# define DSI_CTRL_HS_CLKC_DDR 2
|
|
|
|
# define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
|
|
# define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
|
|
# define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
|
|
# define DSI_CTRL_SOFT_RESET_CFG BIT(10)
|
|
# define DSI_CTRL_CAL_BYTE BIT(9)
|
|
# define DSI_CTRL_INV_BYTE BIT(8)
|
|
# define DSI_CTRL_CLR_LDF BIT(7)
|
|
# define DSI0_CTRL_CLR_PBCF BIT(6)
|
|
# define DSI1_CTRL_CLR_RXF BIT(6)
|
|
# define DSI0_CTRL_CLR_CPBCF BIT(5)
|
|
# define DSI1_CTRL_CLR_PDF BIT(5)
|
|
# define DSI0_CTRL_CLR_PDF BIT(4)
|
|
# define DSI1_CTRL_CLR_CDF BIT(4)
|
|
# define DSI0_CTRL_CLR_CDF BIT(3)
|
|
# define DSI0_CTRL_CTRL2 BIT(2)
|
|
# define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
|
|
# define DSI0_CTRL_CTRL1 BIT(1)
|
|
# define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
|
|
# define DSI0_CTRL_CTRL0 BIT(0)
|
|
# define DSI1_CTRL_EN BIT(0)
|
|
# define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
|
|
DSI0_CTRL_CLR_PBCF | \
|
|
DSI0_CTRL_CLR_CPBCF | \
|
|
DSI0_CTRL_CLR_PDF | \
|
|
DSI0_CTRL_CLR_CDF)
|
|
# define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
|
|
DSI1_CTRL_CLR_RXF | \
|
|
DSI1_CTRL_CLR_PDF | \
|
|
DSI1_CTRL_CLR_CDF)
|
|
|
|
#define DSI1_TXPKT2C 0x0c
|
|
#define DSI1_TXPKT2H 0x10
|
|
#define DSI1_TXPKT_PIX_FIFO 0x20
|
|
#define DSI1_RXPKT_FIFO 0x24
|
|
#define DSI1_DISP0_CTRL 0x28
|
|
#define DSI1_INT_STAT 0x30
|
|
#define DSI1_INT_EN 0x34
|
|
/* State reporting bits. These mostly behave like INT_STAT, where
|
|
* writing a 1 clears the bit.
|
|
*/
|
|
#define DSI1_STAT 0x38
|
|
# define DSI1_STAT_PHY_D3_ULPS BIT(31)
|
|
# define DSI1_STAT_PHY_D3_STOP BIT(30)
|
|
# define DSI1_STAT_PHY_D2_ULPS BIT(29)
|
|
# define DSI1_STAT_PHY_D2_STOP BIT(28)
|
|
# define DSI1_STAT_PHY_D1_ULPS BIT(27)
|
|
# define DSI1_STAT_PHY_D1_STOP BIT(26)
|
|
# define DSI1_STAT_PHY_D0_ULPS BIT(25)
|
|
# define DSI1_STAT_PHY_D0_STOP BIT(24)
|
|
# define DSI1_STAT_FIFO_ERR BIT(23)
|
|
# define DSI1_STAT_PHY_RXLPDT BIT(22)
|
|
# define DSI1_STAT_PHY_RXTRIG BIT(21)
|
|
# define DSI1_STAT_PHY_D0_LPDT BIT(20)
|
|
/* Set when in forward direction */
|
|
# define DSI1_STAT_PHY_DIR BIT(19)
|
|
# define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
|
|
# define DSI1_STAT_PHY_CLOCK_HS BIT(17)
|
|
# define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
|
|
# define DSI1_STAT_PR_TO BIT(15)
|
|
# define DSI1_STAT_TA_TO BIT(14)
|
|
# define DSI1_STAT_LPRX_TO BIT(13)
|
|
# define DSI1_STAT_HSTX_TO BIT(12)
|
|
# define DSI1_STAT_ERR_CONT_LP1 BIT(11)
|
|
# define DSI1_STAT_ERR_CONT_LP0 BIT(10)
|
|
# define DSI1_STAT_ERR_CONTROL BIT(9)
|
|
# define DSI1_STAT_ERR_SYNC_ESC BIT(8)
|
|
# define DSI1_STAT_RXPKT2 BIT(7)
|
|
# define DSI1_STAT_RXPKT1 BIT(6)
|
|
# define DSI1_STAT_TXPKT2_BUSY BIT(5)
|
|
# define DSI1_STAT_TXPKT2_DONE BIT(4)
|
|
# define DSI1_STAT_TXPKT2_END BIT(3)
|
|
# define DSI1_STAT_TXPKT1_BUSY BIT(2)
|
|
# define DSI1_STAT_TXPKT1_DONE BIT(1)
|
|
# define DSI1_STAT_TXPKT1_END BIT(0)
|
|
|
|
#define DSI1_HSTX_TO_CNT 0x3c
|
|
#define DSI1_LPRX_TO_CNT 0x40
|
|
#define DSI1_TA_TO_CNT 0x44
|
|
#define DSI1_PR_TO_CNT 0x48
|
|
#define DSI1_PHYC 0x4c
|
|
|
|
#define DSI1_HS_CLT0 0x50
|
|
# define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
|
|
# define DSI_HS_CLT0_CZERO_SHIFT 18
|
|
# define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
|
|
# define DSI_HS_CLT0_CPRE_SHIFT 9
|
|
# define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
|
|
# define DSI_HS_CLT0_CPREP_SHIFT 0
|
|
|
|
#define DSI1_HS_CLT1 0x54
|
|
# define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
|
|
# define DSI_HS_CLT1_CTRAIL_SHIFT 9
|
|
# define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
|
|
# define DSI_HS_CLT1_CPOST_SHIFT 0
|
|
|
|
#define DSI1_HS_CLT2 0x58
|
|
# define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
|
|
# define DSI_HS_CLT2_WUP_SHIFT 0
|
|
|
|
#define DSI1_HS_DLT3 0x5c
|
|
# define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
|
|
# define DSI_HS_DLT3_EXIT_SHIFT 18
|
|
# define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
|
|
# define DSI_HS_DLT3_ZERO_SHIFT 9
|
|
# define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
|
|
# define DSI_HS_DLT3_PRE_SHIFT 0
|
|
|
|
#define DSI1_HS_DLT4 0x60
|
|
# define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
|
|
# define DSI_HS_DLT4_ANLAT_SHIFT 18
|
|
# define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
|
|
# define DSI_HS_DLT4_TRAIL_SHIFT 9
|
|
# define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
|
|
# define DSI_HS_DLT4_LPX_SHIFT 0
|
|
|
|
#define DSI1_HS_DLT5 0x64
|
|
# define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
|
|
# define DSI_HS_DLT5_INIT_SHIFT 0
|
|
|
|
#define DSI1_HS_DLT6 0x68
|
|
# define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
|
|
# define DSI_HS_DLT6_TA_GET_SHIFT 24
|
|
# define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
|
|
# define DSI_HS_DLT6_TA_SURE_SHIFT 16
|
|
# define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
|
|
# define DSI_HS_DLT6_TA_GO_SHIFT 8
|
|
# define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
|
|
# define DSI_HS_DLT6_LP_LPX_SHIFT 0
|
|
|
|
#define DSI1_HS_DLT7 0x6c
|
|
# define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
|
|
# define DSI_HS_DLT7_LP_WUP_SHIFT 0
|
|
|
|
#define DSI1_PHY_AFEC0 0x70
|
|
|
|
#define DSI1_PHY_AFEC1 0x74
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
|
|
# define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
|
|
# define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
|
|
# define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
|
|
|
|
#define DSI1_TST_SEL 0x78
|
|
#define DSI1_TST_MON 0x7c
|
|
#define DSI1_PHY_TST1 0x80
|
|
#define DSI1_PHY_TST2 0x84
|
|
#define DSI1_PHY_FIFO_STAT 0x88
|
|
/* Actually, all registers in the range that aren't otherwise claimed
|
|
* will return the ID.
|
|
*/
|
|
#define DSI1_ID 0x8c
|
|
|
|
/* General DSI hardware state. */
|
|
struct vc4_dsi {
|
|
struct platform_device *pdev;
|
|
|
|
struct mipi_dsi_host dsi_host;
|
|
struct drm_encoder *encoder;
|
|
struct drm_bridge *bridge;
|
|
struct list_head bridge_chain;
|
|
|
|
void __iomem *regs;
|
|
|
|
struct dma_chan *reg_dma_chan;
|
|
dma_addr_t reg_dma_paddr;
|
|
u32 *reg_dma_mem;
|
|
dma_addr_t reg_paddr;
|
|
|
|
/* Whether we're on bcm2835's DSI0 or DSI1. */
|
|
int port;
|
|
|
|
/* DSI channel for the panel we're connected to. */
|
|
u32 channel;
|
|
u32 lanes;
|
|
u32 format;
|
|
u32 divider;
|
|
u32 mode_flags;
|
|
|
|
/* Input clock from CPRMAN to the digital PHY, for the DSI
|
|
* escape clock.
|
|
*/
|
|
struct clk *escape_clock;
|
|
|
|
/* Input clock to the analog PHY, used to generate the DSI bit
|
|
* clock.
|
|
*/
|
|
struct clk *pll_phy_clock;
|
|
|
|
/* HS Clocks generated within the DSI analog PHY. */
|
|
struct clk_fixed_factor phy_clocks[3];
|
|
|
|
struct clk_hw_onecell_data *clk_onecell;
|
|
|
|
/* Pixel clock output to the pixelvalve, generated from the HS
|
|
* clock.
|
|
*/
|
|
struct clk *pixel_clock;
|
|
|
|
struct completion xfer_completion;
|
|
int xfer_result;
|
|
|
|
struct debugfs_regset32 regset;
|
|
};
|
|
|
|
#define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
|
|
|
|
static inline void
|
|
dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
|
|
{
|
|
struct dma_chan *chan = dsi->reg_dma_chan;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
/* DSI0 should be able to write normally. */
|
|
if (!chan) {
|
|
writel(val, dsi->regs + offset);
|
|
return;
|
|
}
|
|
|
|
*dsi->reg_dma_mem = val;
|
|
|
|
tx = chan->device->device_prep_dma_memcpy(chan,
|
|
dsi->reg_paddr + offset,
|
|
dsi->reg_dma_paddr,
|
|
4, 0);
|
|
if (!tx) {
|
|
DRM_ERROR("Failed to set up DMA register write\n");
|
|
return;
|
|
}
|
|
|
|
cookie = tx->tx_submit(tx);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to submit DMA: %d\n", ret);
|
|
return;
|
|
}
|
|
ret = dma_sync_wait(chan, cookie);
|
|
if (ret)
|
|
DRM_ERROR("Failed to wait for DMA: %d\n", ret);
|
|
}
|
|
|
|
#define DSI_READ(offset) readl(dsi->regs + (offset))
|
|
#define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
|
|
#define DSI_PORT_READ(offset) \
|
|
DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
|
|
#define DSI_PORT_WRITE(offset, val) \
|
|
DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
|
|
#define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
|
|
|
|
/* VC4 DSI encoder KMS struct */
|
|
struct vc4_dsi_encoder {
|
|
struct vc4_encoder base;
|
|
struct vc4_dsi *dsi;
|
|
};
|
|
|
|
static inline struct vc4_dsi_encoder *
|
|
to_vc4_dsi_encoder(struct drm_encoder *encoder)
|
|
{
|
|
return container_of(encoder, struct vc4_dsi_encoder, base.base);
|
|
}
|
|
|
|
static const struct debugfs_reg32 dsi0_regs[] = {
|
|
VC4_REG32(DSI0_CTRL),
|
|
VC4_REG32(DSI0_STAT),
|
|
VC4_REG32(DSI0_HSTX_TO_CNT),
|
|
VC4_REG32(DSI0_LPRX_TO_CNT),
|
|
VC4_REG32(DSI0_TA_TO_CNT),
|
|
VC4_REG32(DSI0_PR_TO_CNT),
|
|
VC4_REG32(DSI0_DISP0_CTRL),
|
|
VC4_REG32(DSI0_DISP1_CTRL),
|
|
VC4_REG32(DSI0_INT_STAT),
|
|
VC4_REG32(DSI0_INT_EN),
|
|
VC4_REG32(DSI0_PHYC),
|
|
VC4_REG32(DSI0_HS_CLT0),
|
|
VC4_REG32(DSI0_HS_CLT1),
|
|
VC4_REG32(DSI0_HS_CLT2),
|
|
VC4_REG32(DSI0_HS_DLT3),
|
|
VC4_REG32(DSI0_HS_DLT4),
|
|
VC4_REG32(DSI0_HS_DLT5),
|
|
VC4_REG32(DSI0_HS_DLT6),
|
|
VC4_REG32(DSI0_HS_DLT7),
|
|
VC4_REG32(DSI0_PHY_AFEC0),
|
|
VC4_REG32(DSI0_PHY_AFEC1),
|
|
VC4_REG32(DSI0_ID),
|
|
};
|
|
|
|
static const struct debugfs_reg32 dsi1_regs[] = {
|
|
VC4_REG32(DSI1_CTRL),
|
|
VC4_REG32(DSI1_STAT),
|
|
VC4_REG32(DSI1_HSTX_TO_CNT),
|
|
VC4_REG32(DSI1_LPRX_TO_CNT),
|
|
VC4_REG32(DSI1_TA_TO_CNT),
|
|
VC4_REG32(DSI1_PR_TO_CNT),
|
|
VC4_REG32(DSI1_DISP0_CTRL),
|
|
VC4_REG32(DSI1_DISP1_CTRL),
|
|
VC4_REG32(DSI1_INT_STAT),
|
|
VC4_REG32(DSI1_INT_EN),
|
|
VC4_REG32(DSI1_PHYC),
|
|
VC4_REG32(DSI1_HS_CLT0),
|
|
VC4_REG32(DSI1_HS_CLT1),
|
|
VC4_REG32(DSI1_HS_CLT2),
|
|
VC4_REG32(DSI1_HS_DLT3),
|
|
VC4_REG32(DSI1_HS_DLT4),
|
|
VC4_REG32(DSI1_HS_DLT5),
|
|
VC4_REG32(DSI1_HS_DLT6),
|
|
VC4_REG32(DSI1_HS_DLT7),
|
|
VC4_REG32(DSI1_PHY_AFEC0),
|
|
VC4_REG32(DSI1_PHY_AFEC1),
|
|
VC4_REG32(DSI1_ID),
|
|
};
|
|
|
|
static void vc4_dsi_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
drm_encoder_cleanup(encoder);
|
|
}
|
|
|
|
static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
|
|
.destroy = vc4_dsi_encoder_destroy,
|
|
};
|
|
|
|
static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
|
|
{
|
|
u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
|
|
|
|
if (latch)
|
|
afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
|
|
else
|
|
afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
|
|
|
|
DSI_PORT_WRITE(PHY_AFEC0, afec0);
|
|
}
|
|
|
|
/* Enters or exits Ultra Low Power State. */
|
|
static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
|
|
{
|
|
bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
|
|
u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
|
|
DSI_PHYC_DLANE0_ULPS |
|
|
(dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
|
|
(dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
|
|
(dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
|
|
u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
|
|
DSI1_STAT_PHY_D0_ULPS |
|
|
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
|
|
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
|
|
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
|
|
u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
|
|
DSI1_STAT_PHY_D0_STOP |
|
|
(dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
|
|
(dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
|
|
(dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
|
|
int ret;
|
|
bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
|
|
DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
|
|
|
|
if (ulps == ulps_currently_enabled)
|
|
return;
|
|
|
|
DSI_PORT_WRITE(STAT, stat_ulps);
|
|
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
|
|
ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
|
|
if (ret) {
|
|
dev_warn(&dsi->pdev->dev,
|
|
"Timeout waiting for DSI ULPS entry: STAT 0x%08x",
|
|
DSI_PORT_READ(STAT));
|
|
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
|
|
vc4_dsi_latch_ulps(dsi, false);
|
|
return;
|
|
}
|
|
|
|
/* The DSI module can't be disabled while the module is
|
|
* generating ULPS state. So, to be able to disable the
|
|
* module, we have the AFE latch the ULPS state and continue
|
|
* on to having the module enter STOP.
|
|
*/
|
|
vc4_dsi_latch_ulps(dsi, ulps);
|
|
|
|
DSI_PORT_WRITE(STAT, stat_stop);
|
|
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
|
|
ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
|
|
if (ret) {
|
|
dev_warn(&dsi->pdev->dev,
|
|
"Timeout waiting for DSI STOP entry: STAT 0x%08x",
|
|
DSI_PORT_READ(STAT));
|
|
DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static u32
|
|
dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
|
|
{
|
|
/* The HS timings have to be rounded up to a multiple of 8
|
|
* because we're using the byte clock.
|
|
*/
|
|
return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
|
|
}
|
|
|
|
/* ESC always runs at 100Mhz. */
|
|
#define ESC_TIME_NS 10
|
|
|
|
static u32
|
|
dsi_esc_timing(u32 ns)
|
|
{
|
|
return DIV_ROUND_UP(ns, ESC_TIME_NS);
|
|
}
|
|
|
|
static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
|
|
{
|
|
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
|
|
struct vc4_dsi *dsi = vc4_encoder->dsi;
|
|
struct device *dev = &dsi->pdev->dev;
|
|
struct drm_bridge *iter;
|
|
|
|
list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
|
|
if (iter->funcs->disable)
|
|
iter->funcs->disable(iter);
|
|
}
|
|
|
|
vc4_dsi_ulps(dsi, true);
|
|
|
|
list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
|
|
if (iter->funcs->post_disable)
|
|
iter->funcs->post_disable(iter);
|
|
}
|
|
|
|
clk_disable_unprepare(dsi->pll_phy_clock);
|
|
clk_disable_unprepare(dsi->escape_clock);
|
|
clk_disable_unprepare(dsi->pixel_clock);
|
|
|
|
pm_runtime_put(dev);
|
|
}
|
|
|
|
/* Extends the mode's blank intervals to handle BCM2835's integer-only
|
|
* DSI PLL divider.
|
|
*
|
|
* On 2835, PLLD is set to 2Ghz, and may not be changed by the display
|
|
* driver since most peripherals are hanging off of the PLLD_PER
|
|
* divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
|
|
* the pixel clock), only has an integer divider off of DSI.
|
|
*
|
|
* To get our panel mode to refresh at the expected 60Hz, we need to
|
|
* extend the horizontal blank time. This means we drive a
|
|
* higher-than-expected clock rate to the panel, but that's what the
|
|
* firmware does too.
|
|
*/
|
|
static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
|
|
const struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
|
|
struct vc4_dsi *dsi = vc4_encoder->dsi;
|
|
struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
|
|
unsigned long parent_rate = clk_get_rate(phy_parent);
|
|
unsigned long pixel_clock_hz = mode->clock * 1000;
|
|
unsigned long pll_clock = pixel_clock_hz * dsi->divider;
|
|
int divider;
|
|
|
|
/* Find what divider gets us a faster clock than the requested
|
|
* pixel clock.
|
|
*/
|
|
for (divider = 1; divider < 8; divider++) {
|
|
if (parent_rate / divider < pll_clock) {
|
|
divider--;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Now that we've picked a PLL divider, calculate back to its
|
|
* pixel clock.
|
|
*/
|
|
pll_clock = parent_rate / divider;
|
|
pixel_clock_hz = pll_clock / dsi->divider;
|
|
|
|
adjusted_mode->clock = pixel_clock_hz / 1000;
|
|
|
|
/* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
|
|
adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
|
|
mode->clock;
|
|
adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
|
|
adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
|
|
struct vc4_dsi_encoder *vc4_encoder = to_vc4_dsi_encoder(encoder);
|
|
struct vc4_dsi *dsi = vc4_encoder->dsi;
|
|
struct device *dev = &dsi->pdev->dev;
|
|
bool debug_dump_regs = false;
|
|
struct drm_bridge *iter;
|
|
unsigned long hs_clock;
|
|
u32 ui_ns;
|
|
/* Minimum LP state duration in escape clock cycles. */
|
|
u32 lpx = dsi_esc_timing(60);
|
|
unsigned long pixel_clock_hz = mode->clock * 1000;
|
|
unsigned long dsip_clock;
|
|
unsigned long phy_clock;
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->port);
|
|
return;
|
|
}
|
|
|
|
if (debug_dump_regs) {
|
|
struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
|
|
dev_info(&dsi->pdev->dev, "DSI regs before:\n");
|
|
drm_print_regset32(&p, &dsi->regset);
|
|
}
|
|
|
|
/* Round up the clk_set_rate() request slightly, since
|
|
* PLLD_DSI1 is an integer divider and its rate selection will
|
|
* never round up.
|
|
*/
|
|
phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
|
|
ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
|
|
if (ret) {
|
|
dev_err(&dsi->pdev->dev,
|
|
"Failed to set phy clock to %ld: %d\n", phy_clock, ret);
|
|
}
|
|
|
|
/* Reset the DSI and all its fifos. */
|
|
DSI_PORT_WRITE(CTRL,
|
|
DSI_CTRL_SOFT_RESET_CFG |
|
|
DSI_PORT_BIT(CTRL_RESET_FIFOS));
|
|
|
|
DSI_PORT_WRITE(CTRL,
|
|
DSI_CTRL_HSDT_EOT_DISABLE |
|
|
DSI_CTRL_RX_LPDT_EOT_DISABLE);
|
|
|
|
/* Clear all stat bits so we see what has happened during enable. */
|
|
DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
|
|
|
|
/* Set AFE CTR00/CTR1 to release powerdown of analog. */
|
|
if (dsi->port == 0) {
|
|
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
|
|
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
|
|
|
|
if (dsi->lanes < 2)
|
|
afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
|
|
|
|
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
|
|
afec0 |= DSI0_PHY_AFEC0_RESET;
|
|
|
|
DSI_PORT_WRITE(PHY_AFEC0, afec0);
|
|
|
|
DSI_PORT_WRITE(PHY_AFEC1,
|
|
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
|
|
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
|
|
VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
|
|
} else {
|
|
u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
|
|
VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
|
|
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
|
|
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
|
|
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
|
|
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
|
|
VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
|
|
|
|
if (dsi->lanes < 4)
|
|
afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
|
|
if (dsi->lanes < 3)
|
|
afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
|
|
if (dsi->lanes < 2)
|
|
afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
|
|
|
|
afec0 |= DSI1_PHY_AFEC0_RESET;
|
|
|
|
DSI_PORT_WRITE(PHY_AFEC0, afec0);
|
|
|
|
DSI_PORT_WRITE(PHY_AFEC1, 0);
|
|
|
|
/* AFEC reset hold time */
|
|
mdelay(1);
|
|
}
|
|
|
|
ret = clk_prepare_enable(dsi->escape_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
ret = clk_prepare_enable(dsi->pll_phy_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
hs_clock = clk_get_rate(dsi->pll_phy_clock);
|
|
|
|
/* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
|
|
* not the pixel clock rate. DSIxP take from the APHY's byte,
|
|
* DDR2, or DDR4 clock (we use byte) and feed into the PV at
|
|
* that rate. Separately, a value derived from PIX_CLK_DIV
|
|
* and HS_CLKC is fed into the PV to divide down to the actual
|
|
* pixel clock for pushing pixels into DSI.
|
|
*/
|
|
dsip_clock = phy_clock / 8;
|
|
ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
|
|
dsip_clock, ret);
|
|
}
|
|
|
|
ret = clk_prepare_enable(dsi->pixel_clock);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
|
|
return;
|
|
}
|
|
|
|
/* How many ns one DSI unit interval is. Note that the clock
|
|
* is DDR, so there's an extra divide by 2.
|
|
*/
|
|
ui_ns = DIV_ROUND_UP(500000000, hs_clock);
|
|
|
|
DSI_PORT_WRITE(HS_CLT0,
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
|
|
DSI_HS_CLT0_CZERO) |
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
|
|
DSI_HS_CLT0_CPRE) |
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
|
|
DSI_HS_CLT0_CPREP));
|
|
|
|
DSI_PORT_WRITE(HS_CLT1,
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
|
|
DSI_HS_CLT1_CTRAIL) |
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
|
|
DSI_HS_CLT1_CPOST));
|
|
|
|
DSI_PORT_WRITE(HS_CLT2,
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
|
|
DSI_HS_CLT2_WUP));
|
|
|
|
DSI_PORT_WRITE(HS_DLT3,
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
|
|
DSI_HS_DLT3_EXIT) |
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
|
|
DSI_HS_DLT3_ZERO) |
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
|
|
DSI_HS_DLT3_PRE));
|
|
|
|
DSI_PORT_WRITE(HS_DLT4,
|
|
VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
|
|
DSI_HS_DLT4_LPX) |
|
|
VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
|
|
dsi_hs_timing(ui_ns, 60, 4)),
|
|
DSI_HS_DLT4_TRAIL) |
|
|
VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
|
|
|
|
/* T_INIT is how long STOP is driven after power-up to
|
|
* indicate to the slave (also coming out of power-up) that
|
|
* master init is complete, and should be greater than the
|
|
* maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
|
|
* D-PHY spec gives a minimum 100us for T_INIT,MASTER and
|
|
* T_INIT,SLAVE, while allowing protocols on top of it to give
|
|
* greater minimums. The vc4 firmware uses an extremely
|
|
* conservative 5ms, and we maintain that here.
|
|
*/
|
|
DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
|
|
5 * 1000 * 1000, 0),
|
|
DSI_HS_DLT5_INIT));
|
|
|
|
DSI_PORT_WRITE(HS_DLT6,
|
|
VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
|
|
VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
|
|
VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
|
|
VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
|
|
|
|
DSI_PORT_WRITE(HS_DLT7,
|
|
VC4_SET_FIELD(dsi_esc_timing(1000000),
|
|
DSI_HS_DLT7_LP_WUP));
|
|
|
|
DSI_PORT_WRITE(PHYC,
|
|
DSI_PHYC_DLANE0_ENABLE |
|
|
(dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
|
|
(dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
|
|
(dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
|
|
DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
|
|
((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
|
|
0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
|
|
(dsi->port == 0 ?
|
|
VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
|
|
VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
|
|
|
|
DSI_PORT_WRITE(CTRL,
|
|
DSI_PORT_READ(CTRL) |
|
|
DSI_CTRL_CAL_BYTE);
|
|
|
|
/* HS timeout in HS clock cycles: disabled. */
|
|
DSI_PORT_WRITE(HSTX_TO_CNT, 0);
|
|
/* LP receive timeout in HS clocks. */
|
|
DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
|
|
/* Bus turnaround timeout */
|
|
DSI_PORT_WRITE(TA_TO_CNT, 100000);
|
|
/* Display reset sequence timeout */
|
|
DSI_PORT_WRITE(PR_TO_CNT, 100000);
|
|
|
|
/* Set up DISP1 for transferring long command payloads through
|
|
* the pixfifo.
|
|
*/
|
|
DSI_PORT_WRITE(DISP1_CTRL,
|
|
VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
|
|
DSI_DISP1_PFORMAT) |
|
|
DSI_DISP1_ENABLE);
|
|
|
|
/* Ungate the block. */
|
|
if (dsi->port == 0)
|
|
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
|
|
else
|
|
DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
|
|
|
|
/* Bring AFE out of reset. */
|
|
if (dsi->port == 0) {
|
|
} else {
|
|
DSI_PORT_WRITE(PHY_AFEC0,
|
|
DSI_PORT_READ(PHY_AFEC0) &
|
|
~DSI1_PHY_AFEC0_RESET);
|
|
}
|
|
|
|
vc4_dsi_ulps(dsi, false);
|
|
|
|
list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
|
|
if (iter->funcs->pre_enable)
|
|
iter->funcs->pre_enable(iter);
|
|
}
|
|
|
|
if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
|
|
DSI_PORT_WRITE(DISP0_CTRL,
|
|
VC4_SET_FIELD(dsi->divider,
|
|
DSI_DISP0_PIX_CLK_DIV) |
|
|
VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
|
|
VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
|
|
DSI_DISP0_LP_STOP_CTRL) |
|
|
DSI_DISP0_ST_END |
|
|
DSI_DISP0_ENABLE);
|
|
} else {
|
|
DSI_PORT_WRITE(DISP0_CTRL,
|
|
DSI_DISP0_COMMAND_MODE |
|
|
DSI_DISP0_ENABLE);
|
|
}
|
|
|
|
list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
|
|
if (iter->funcs->enable)
|
|
iter->funcs->enable(iter);
|
|
}
|
|
|
|
if (debug_dump_regs) {
|
|
struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
|
|
dev_info(&dsi->pdev->dev, "DSI regs after:\n");
|
|
drm_print_regset32(&p, &dsi->regset);
|
|
}
|
|
}
|
|
|
|
static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
|
|
const struct mipi_dsi_msg *msg)
|
|
{
|
|
struct vc4_dsi *dsi = host_to_dsi(host);
|
|
struct mipi_dsi_packet packet;
|
|
u32 pkth = 0, pktc = 0;
|
|
int i, ret;
|
|
bool is_long = mipi_dsi_packet_format_is_long(msg->type);
|
|
u32 cmd_fifo_len = 0, pix_fifo_len = 0;
|
|
|
|
mipi_dsi_create_packet(&packet, msg);
|
|
|
|
pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
|
|
pkth |= VC4_SET_FIELD(packet.header[1] |
|
|
(packet.header[2] << 8),
|
|
DSI_TXPKT1H_BC_PARAM);
|
|
if (is_long) {
|
|
/* Divide data across the various FIFOs we have available.
|
|
* The command FIFO takes byte-oriented data, but is of
|
|
* limited size. The pixel FIFO (never actually used for
|
|
* pixel data in reality) is word oriented, and substantially
|
|
* larger. So, we use the pixel FIFO for most of the data,
|
|
* sending the residual bytes in the command FIFO at the start.
|
|
*
|
|
* With this arrangement, the command FIFO will never get full.
|
|
*/
|
|
if (packet.payload_length <= 16) {
|
|
cmd_fifo_len = packet.payload_length;
|
|
pix_fifo_len = 0;
|
|
} else {
|
|
cmd_fifo_len = (packet.payload_length %
|
|
DSI_PIX_FIFO_WIDTH);
|
|
pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
|
|
DSI_PIX_FIFO_WIDTH);
|
|
}
|
|
|
|
WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
|
|
|
|
pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
|
|
}
|
|
|
|
if (msg->rx_len) {
|
|
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
|
|
DSI_TXPKT1C_CMD_CTRL);
|
|
} else {
|
|
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
|
|
DSI_TXPKT1C_CMD_CTRL);
|
|
}
|
|
|
|
for (i = 0; i < cmd_fifo_len; i++)
|
|
DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
|
|
for (i = 0; i < pix_fifo_len; i++) {
|
|
const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
|
|
|
|
DSI_PORT_WRITE(TXPKT_PIX_FIFO,
|
|
pix[0] |
|
|
pix[1] << 8 |
|
|
pix[2] << 16 |
|
|
pix[3] << 24);
|
|
}
|
|
|
|
if (msg->flags & MIPI_DSI_MSG_USE_LPM)
|
|
pktc |= DSI_TXPKT1C_CMD_MODE_LP;
|
|
if (is_long)
|
|
pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
|
|
|
|
/* Send one copy of the packet. Larger repeats are used for pixel
|
|
* data in command mode.
|
|
*/
|
|
pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
|
|
|
|
pktc |= DSI_TXPKT1C_CMD_EN;
|
|
if (pix_fifo_len) {
|
|
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
|
|
DSI_TXPKT1C_DISPLAY_NO);
|
|
} else {
|
|
pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
|
|
DSI_TXPKT1C_DISPLAY_NO);
|
|
}
|
|
|
|
/* Enable the appropriate interrupt for the transfer completion. */
|
|
dsi->xfer_result = 0;
|
|
reinit_completion(&dsi->xfer_completion);
|
|
DSI_PORT_WRITE(INT_STAT, DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
|
|
if (msg->rx_len) {
|
|
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
|
|
DSI1_INT_PHY_DIR_RTF));
|
|
} else {
|
|
DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
|
|
DSI1_INT_TXPKT1_DONE));
|
|
}
|
|
|
|
/* Send the packet. */
|
|
DSI_PORT_WRITE(TXPKT1H, pkth);
|
|
DSI_PORT_WRITE(TXPKT1C, pktc);
|
|
|
|
if (!wait_for_completion_timeout(&dsi->xfer_completion,
|
|
msecs_to_jiffies(1000))) {
|
|
dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
|
|
dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
|
|
DSI_PORT_READ(INT_STAT));
|
|
ret = -ETIMEDOUT;
|
|
} else {
|
|
ret = dsi->xfer_result;
|
|
}
|
|
|
|
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
|
|
|
|
if (ret)
|
|
goto reset_fifo_and_return;
|
|
|
|
if (ret == 0 && msg->rx_len) {
|
|
u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
|
|
u8 *msg_rx = msg->rx_buf;
|
|
|
|
if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
|
|
u32 rxlen = VC4_GET_FIELD(rxpkt1h,
|
|
DSI_RXPKT1H_BC_PARAM);
|
|
|
|
if (rxlen != msg->rx_len) {
|
|
DRM_ERROR("DSI returned %db, expecting %db\n",
|
|
rxlen, (int)msg->rx_len);
|
|
ret = -ENXIO;
|
|
goto reset_fifo_and_return;
|
|
}
|
|
|
|
for (i = 0; i < msg->rx_len; i++)
|
|
msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
|
|
} else {
|
|
/* FINISHME: Handle AWER */
|
|
|
|
msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
|
|
DSI_RXPKT1H_SHORT_0);
|
|
if (msg->rx_len > 1) {
|
|
msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
|
|
DSI_RXPKT1H_SHORT_1);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
reset_fifo_and_return:
|
|
DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
|
|
|
|
DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
|
|
udelay(1);
|
|
DSI_PORT_WRITE(CTRL,
|
|
DSI_PORT_READ(CTRL) |
|
|
DSI_PORT_BIT(CTRL_RESET_FIFOS));
|
|
|
|
DSI_PORT_WRITE(TXPKT1C, 0);
|
|
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
|
|
return ret;
|
|
}
|
|
|
|
static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
|
|
struct mipi_dsi_device *device)
|
|
{
|
|
struct vc4_dsi *dsi = host_to_dsi(host);
|
|
|
|
dsi->lanes = device->lanes;
|
|
dsi->channel = device->channel;
|
|
dsi->mode_flags = device->mode_flags;
|
|
|
|
switch (device->format) {
|
|
case MIPI_DSI_FMT_RGB888:
|
|
dsi->format = DSI_PFORMAT_RGB888;
|
|
dsi->divider = 24 / dsi->lanes;
|
|
break;
|
|
case MIPI_DSI_FMT_RGB666:
|
|
dsi->format = DSI_PFORMAT_RGB666;
|
|
dsi->divider = 24 / dsi->lanes;
|
|
break;
|
|
case MIPI_DSI_FMT_RGB666_PACKED:
|
|
dsi->format = DSI_PFORMAT_RGB666_PACKED;
|
|
dsi->divider = 18 / dsi->lanes;
|
|
break;
|
|
case MIPI_DSI_FMT_RGB565:
|
|
dsi->format = DSI_PFORMAT_RGB565;
|
|
dsi->divider = 16 / dsi->lanes;
|
|
break;
|
|
default:
|
|
dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
|
|
dsi->format);
|
|
return 0;
|
|
}
|
|
|
|
if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
|
|
dev_err(&dsi->pdev->dev,
|
|
"Only VIDEO mode panels supported currently.\n");
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
|
|
struct mipi_dsi_device *device)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
|
|
.attach = vc4_dsi_host_attach,
|
|
.detach = vc4_dsi_host_detach,
|
|
.transfer = vc4_dsi_host_transfer,
|
|
};
|
|
|
|
static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
|
|
.disable = vc4_dsi_encoder_disable,
|
|
.enable = vc4_dsi_encoder_enable,
|
|
.mode_fixup = vc4_dsi_encoder_mode_fixup,
|
|
};
|
|
|
|
static const struct of_device_id vc4_dsi_dt_match[] = {
|
|
{ .compatible = "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
|
|
{}
|
|
};
|
|
|
|
static void dsi_handle_error(struct vc4_dsi *dsi,
|
|
irqreturn_t *ret, u32 stat, u32 bit,
|
|
const char *type)
|
|
{
|
|
if (!(stat & bit))
|
|
return;
|
|
|
|
DRM_ERROR("DSI%d: %s error\n", dsi->port, type);
|
|
*ret = IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Initial handler for port 1 where we need the reg_dma workaround.
|
|
* The register DMA writes sleep, so we can't do it in the top half.
|
|
* Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
|
|
* parent interrupt contrller until our interrupt thread is done.
|
|
*/
|
|
static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
|
|
{
|
|
struct vc4_dsi *dsi = data;
|
|
u32 stat = DSI_PORT_READ(INT_STAT);
|
|
|
|
if (!stat)
|
|
return IRQ_NONE;
|
|
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/*
|
|
* Normal IRQ handler for port 0, or the threaded IRQ handler for port
|
|
* 1 where we need the reg_dma workaround.
|
|
*/
|
|
static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
|
|
{
|
|
struct vc4_dsi *dsi = data;
|
|
u32 stat = DSI_PORT_READ(INT_STAT);
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
DSI_PORT_WRITE(INT_STAT, stat);
|
|
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_ERR_SYNC_ESC, "LPDT sync");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_ERR_CONTROL, "data lane 0 sequence");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_ERR_CONT_LP0, "LP0 contention");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_ERR_CONT_LP1, "LP1 contention");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_HSTX_TO, "HSTX timeout");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_LPRX_TO, "LPRX timeout");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_TA_TO, "turnaround timeout");
|
|
dsi_handle_error(dsi, &ret, stat,
|
|
DSI1_INT_PR_TO, "peripheral reset timeout");
|
|
|
|
if (stat & (DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF)) {
|
|
complete(&dsi->xfer_completion);
|
|
ret = IRQ_HANDLED;
|
|
} else if (stat & DSI1_INT_HSTX_TO) {
|
|
complete(&dsi->xfer_completion);
|
|
dsi->xfer_result = -ETIMEDOUT;
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
|
|
* PHY that are consumed by CPRMAN (clk-bcm2835.c).
|
|
* @dsi: DSI encoder
|
|
*/
|
|
static int
|
|
vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
|
|
{
|
|
struct device *dev = &dsi->pdev->dev;
|
|
const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
|
|
static const struct {
|
|
const char *dsi0_name, *dsi1_name;
|
|
int div;
|
|
} phy_clocks[] = {
|
|
{ "dsi0_byte", "dsi1_byte", 8 },
|
|
{ "dsi0_ddr2", "dsi1_ddr2", 4 },
|
|
{ "dsi0_ddr", "dsi1_ddr", 2 },
|
|
};
|
|
int i;
|
|
|
|
dsi->clk_onecell = devm_kzalloc(dev,
|
|
sizeof(*dsi->clk_onecell) +
|
|
ARRAY_SIZE(phy_clocks) *
|
|
sizeof(struct clk_hw *),
|
|
GFP_KERNEL);
|
|
if (!dsi->clk_onecell)
|
|
return -ENOMEM;
|
|
dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
|
|
struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
|
|
struct clk_init_data init;
|
|
int ret;
|
|
|
|
/* We just use core fixed factor clock ops for the PHY
|
|
* clocks. The clocks are actually gated by the
|
|
* PHY_AFEC0_DDRCLK_EN bits, which we should be
|
|
* setting if we use the DDR/DDR2 clocks. However,
|
|
* vc4_dsi_encoder_enable() is setting up both AFEC0,
|
|
* setting both our parent DSI PLL's rate and this
|
|
* clock's rate, so it knows if DDR/DDR2 are going to
|
|
* be used and could enable the gates itself.
|
|
*/
|
|
fix->mult = 1;
|
|
fix->div = phy_clocks[i].div;
|
|
fix->hw.init = &init;
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
init.parent_names = &parent_name;
|
|
init.num_parents = 1;
|
|
if (dsi->port == 1)
|
|
init.name = phy_clocks[i].dsi1_name;
|
|
else
|
|
init.name = phy_clocks[i].dsi0_name;
|
|
init.ops = &clk_fixed_factor_ops;
|
|
|
|
ret = devm_clk_hw_register(dev, &fix->hw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dsi->clk_onecell->hws[i] = &fix->hw;
|
|
}
|
|
|
|
return of_clk_add_hw_provider(dev->of_node,
|
|
of_clk_hw_onecell_get,
|
|
dsi->clk_onecell);
|
|
}
|
|
|
|
static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
struct vc4_dsi *dsi = dev_get_drvdata(dev);
|
|
struct vc4_dsi_encoder *vc4_dsi_encoder;
|
|
struct drm_panel *panel;
|
|
const struct of_device_id *match;
|
|
dma_cap_mask_t dma_mask;
|
|
int ret;
|
|
|
|
match = of_match_device(vc4_dsi_dt_match, dev);
|
|
if (!match)
|
|
return -ENODEV;
|
|
|
|
dsi->port = (uintptr_t)match->data;
|
|
|
|
vc4_dsi_encoder = devm_kzalloc(dev, sizeof(*vc4_dsi_encoder),
|
|
GFP_KERNEL);
|
|
if (!vc4_dsi_encoder)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&dsi->bridge_chain);
|
|
vc4_dsi_encoder->base.type = VC4_ENCODER_TYPE_DSI1;
|
|
vc4_dsi_encoder->dsi = dsi;
|
|
dsi->encoder = &vc4_dsi_encoder->base.base;
|
|
|
|
dsi->regs = vc4_ioremap_regs(pdev, 0);
|
|
if (IS_ERR(dsi->regs))
|
|
return PTR_ERR(dsi->regs);
|
|
|
|
dsi->regset.base = dsi->regs;
|
|
if (dsi->port == 0) {
|
|
dsi->regset.regs = dsi0_regs;
|
|
dsi->regset.nregs = ARRAY_SIZE(dsi0_regs);
|
|
} else {
|
|
dsi->regset.regs = dsi1_regs;
|
|
dsi->regset.nregs = ARRAY_SIZE(dsi1_regs);
|
|
}
|
|
|
|
if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
|
|
dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
|
|
DSI_PORT_READ(ID), DSI_ID_VALUE);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* DSI1 has a broken AXI slave that doesn't respond to writes
|
|
* from the ARM. It does handle writes from the DMA engine,
|
|
* so set up a channel for talking to it.
|
|
*/
|
|
if (dsi->port == 1) {
|
|
dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
|
|
&dsi->reg_dma_paddr,
|
|
GFP_KERNEL);
|
|
if (!dsi->reg_dma_mem) {
|
|
DRM_ERROR("Failed to get DMA memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
dma_cap_zero(dma_mask);
|
|
dma_cap_set(DMA_MEMCPY, dma_mask);
|
|
dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
|
|
if (IS_ERR(dsi->reg_dma_chan)) {
|
|
ret = PTR_ERR(dsi->reg_dma_chan);
|
|
if (ret != -EPROBE_DEFER)
|
|
DRM_ERROR("Failed to get DMA channel: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Get the physical address of the device's registers. The
|
|
* struct resource for the regs gives us the bus address
|
|
* instead.
|
|
*/
|
|
dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
|
|
0, NULL, NULL));
|
|
}
|
|
|
|
init_completion(&dsi->xfer_completion);
|
|
/* At startup enable error-reporting interrupts and nothing else. */
|
|
DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
|
|
/* Clear any existing interrupt state. */
|
|
DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
|
|
|
|
if (dsi->reg_dma_mem)
|
|
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
|
|
vc4_dsi_irq_defer_to_thread_handler,
|
|
vc4_dsi_irq_handler,
|
|
IRQF_ONESHOT,
|
|
"vc4 dsi", dsi);
|
|
else
|
|
ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
|
|
vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
|
|
if (ret) {
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get interrupt: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dsi->escape_clock = devm_clk_get(dev, "escape");
|
|
if (IS_ERR(dsi->escape_clock)) {
|
|
ret = PTR_ERR(dsi->escape_clock);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get escape clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dsi->pll_phy_clock = devm_clk_get(dev, "phy");
|
|
if (IS_ERR(dsi->pll_phy_clock)) {
|
|
ret = PTR_ERR(dsi->pll_phy_clock);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get phy clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
dsi->pixel_clock = devm_clk_get(dev, "pixel");
|
|
if (IS_ERR(dsi->pixel_clock)) {
|
|
ret = PTR_ERR(dsi->pixel_clock);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get pixel clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = drm_of_find_panel_or_bridge(dev->of_node, 0, 0,
|
|
&panel, &dsi->bridge);
|
|
if (ret) {
|
|
/* If the bridge or panel pointed by dev->of_node is not
|
|
* enabled, just return 0 here so that we don't prevent the DRM
|
|
* dev from being registered. Of course that means the DSI
|
|
* encoder won't be exposed, but that's not a problem since
|
|
* nothing is connected to it.
|
|
*/
|
|
if (ret == -ENODEV)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (panel) {
|
|
dsi->bridge = devm_drm_panel_bridge_add_typed(dev, panel,
|
|
DRM_MODE_CONNECTOR_DSI);
|
|
if (IS_ERR(dsi->bridge))
|
|
return PTR_ERR(dsi->bridge);
|
|
}
|
|
|
|
/* The esc clock rate is supposed to always be 100Mhz. */
|
|
ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to set esc clock: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = vc4_dsi_init_phy_clocks(dsi);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dsi->port == 1)
|
|
vc4->dsi1 = dsi;
|
|
|
|
drm_encoder_init(drm, dsi->encoder, &vc4_dsi_encoder_funcs,
|
|
DRM_MODE_ENCODER_DSI, NULL);
|
|
drm_encoder_helper_add(dsi->encoder, &vc4_dsi_encoder_helper_funcs);
|
|
|
|
ret = drm_bridge_attach(dsi->encoder, dsi->bridge, NULL, 0);
|
|
if (ret) {
|
|
dev_err(dev, "bridge attach failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
/* Disable the atomic helper calls into the bridge. We
|
|
* manually call the bridge pre_enable / enable / etc. calls
|
|
* from our driver, since we need to sequence them within the
|
|
* encoder's enable/disable paths.
|
|
*/
|
|
list_splice_init(&dsi->encoder->bridge_chain, &dsi->bridge_chain);
|
|
|
|
if (dsi->port == 0)
|
|
vc4_debugfs_add_regset32(drm, "dsi0_regs", &dsi->regset);
|
|
else
|
|
vc4_debugfs_add_regset32(drm, "dsi1_regs", &dsi->regset);
|
|
|
|
pm_runtime_enable(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vc4_dsi_unbind(struct device *dev, struct device *master,
|
|
void *data)
|
|
{
|
|
struct drm_device *drm = dev_get_drvdata(master);
|
|
struct vc4_dev *vc4 = to_vc4_dev(drm);
|
|
struct vc4_dsi *dsi = dev_get_drvdata(dev);
|
|
|
|
if (dsi->bridge)
|
|
pm_runtime_disable(dev);
|
|
|
|
/*
|
|
* Restore the bridge_chain so the bridge detach procedure can happen
|
|
* normally.
|
|
*/
|
|
list_splice_init(&dsi->bridge_chain, &dsi->encoder->bridge_chain);
|
|
vc4_dsi_encoder_destroy(dsi->encoder);
|
|
|
|
if (dsi->port == 1)
|
|
vc4->dsi1 = NULL;
|
|
}
|
|
|
|
static const struct component_ops vc4_dsi_ops = {
|
|
.bind = vc4_dsi_bind,
|
|
.unbind = vc4_dsi_unbind,
|
|
};
|
|
|
|
static int vc4_dsi_dev_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vc4_dsi *dsi;
|
|
int ret;
|
|
|
|
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
|
|
if (!dsi)
|
|
return -ENOMEM;
|
|
dev_set_drvdata(dev, dsi);
|
|
|
|
dsi->pdev = pdev;
|
|
|
|
/* Note, the initialization sequence for DSI and panels is
|
|
* tricky. The component bind above won't get past its
|
|
* -EPROBE_DEFER until the panel/bridge probes. The
|
|
* panel/bridge will return -EPROBE_DEFER until it has a
|
|
* mipi_dsi_host to register its device to. So, we register
|
|
* the host during pdev probe time, so vc4 as a whole can then
|
|
* -EPROBE_DEFER its component bind process until the panel
|
|
* successfully attaches.
|
|
*/
|
|
dsi->dsi_host.ops = &vc4_dsi_host_ops;
|
|
dsi->dsi_host.dev = dev;
|
|
mipi_dsi_host_register(&dsi->dsi_host);
|
|
|
|
ret = component_add(&pdev->dev, &vc4_dsi_ops);
|
|
if (ret) {
|
|
mipi_dsi_host_unregister(&dsi->dsi_host);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vc4_dsi_dev_remove(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct vc4_dsi *dsi = dev_get_drvdata(dev);
|
|
|
|
component_del(&pdev->dev, &vc4_dsi_ops);
|
|
mipi_dsi_host_unregister(&dsi->dsi_host);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct platform_driver vc4_dsi_driver = {
|
|
.probe = vc4_dsi_dev_probe,
|
|
.remove = vc4_dsi_dev_remove,
|
|
.driver = {
|
|
.name = "vc4_dsi",
|
|
.of_match_table = vc4_dsi_dt_match,
|
|
},
|
|
};
|