mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 18:45:02 +07:00
e4e65676f2
Apart from the usual cleanups, here is the summary of new features: - s390 moves closer towards host large page support - PowerPC has improved support for debugging (both inside the guest and via gdbstub) and support for e6500 processors - ARM/ARM64 support read-only memory (which is necessary to put firmware in emulated NOR flash) - x86 has the usual emulator fixes and nested virtualization improvements (including improved Windows support on Intel and Jailhouse hypervisor support on AMD), adaptive PLE which helps overcommitting of huge guests. Also included are some patches that make KVM more friendly to memory hot-unplug, and fixes for rare caching bugs. Two patches have trivial mm/ parts that were acked by Rik and Andrew. Note: I will soon switch to a subkey for signing purposes. To verify future signed pull requests from me, please update my key with "gpg --recv-keys 9B4D86F2". You should see 3 new subkeys---the one for signing will be a 2048-bit RSA key, 4E6B09D7. -----BEGIN PGP SIGNATURE----- Version: GnuPG v2.0.22 (GNU/Linux) iQIcBAABAgAGBQJUL5sPAAoJEBvWZb6bTYbyfkEP/3MNhSyn6HCjPjtjLNPAl9KL WpExZSUFL2+4CztpdGIsek1BeJYHmqv3+c5S+WvaWVA1aqh2R7FT1D1ErBLjgLQq lq23IOr+XxmC3dXQUEEk+TlD+283UzypzEG4l4UD3JYg79fE3UrXAz82SeyewJDY x7aPYhkZG3RHu+wAyMPasG6E3zS5LySdUtGWbiPwz5BejrhBJoJdeb2WIL/RwnUK 7ppSLB5EoFj/uMkuyeAAdAbdfSrhHA6faDZxNdxS9k9wGutrhhfUoQ49ONrKG4dV sFo1tSPTVgRs8QFYUZ2fJUPBAmUVddsgqh2K9d0NftGTq7b8YszaCsfFrs2/Y4MU YxssWEhxsfszerCu12bbAJrv6JBZYQ7TwGvI9L7P0iFU6IVw/djmukU4AkM9/e91 YS/cue/PN+9Pn2ccXzL9J7xRtZb8FsOuRsCXTCmbOwDkLmrKPDBN2t3RUbeF+Eam ABrpWnLKX13kZSo4LKU+/niarzmPMp7odQfHVdr8ea0fiYLp4iN8puA20WaSPIgd CLvm+RAvXe5Lm91L4mpFotJ2uFyK6QlIYJV4FsgeWv/0D0qppWQi0Utb/aCNHCgy z8MyUMD48y7EpoQrFYr/7cddXIu0/NegnM8I1coVjIPEk4NfeebGUlCJ/V3D8wMG BgEfS2x6jRc5zB3hjwDr =iEVi -----END PGP SIGNATURE----- Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm Pull KVM updates from Paolo Bonzini: "Fixes and features for 3.18. Apart from the usual cleanups, here is the summary of new features: - s390 moves closer towards host large page support - PowerPC has improved support for debugging (both inside the guest and via gdbstub) and support for e6500 processors - ARM/ARM64 support read-only memory (which is necessary to put firmware in emulated NOR flash) - x86 has the usual emulator fixes and nested virtualization improvements (including improved Windows support on Intel and Jailhouse hypervisor support on AMD), adaptive PLE which helps overcommitting of huge guests. Also included are some patches that make KVM more friendly to memory hot-unplug, and fixes for rare caching bugs. Two patches have trivial mm/ parts that were acked by Rik and Andrew. Note: I will soon switch to a subkey for signing purposes" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (157 commits) kvm: do not handle APIC access page if in-kernel irqchip is not in use KVM: s390: count vcpu wakeups in stat.halt_wakeup KVM: s390/facilities: allow TOD-CLOCK steering facility bit KVM: PPC: BOOK3S: HV: CMA: Reserve cma region only in hypervisor mode arm/arm64: KVM: Report correct FSC for unsupported fault types arm/arm64: KVM: Fix VTTBR_BADDR_MASK and pgd alloc kvm: Fix kvm_get_page_retry_io __gup retval check arm/arm64: KVM: Fix set_clear_sgi_pend_reg offset kvm: x86: Unpin and remove kvm_arch->apic_access_page kvm: vmx: Implement set_apic_access_page_addr kvm: x86: Add request bit to reload APIC access page address kvm: Add arch specific mmu notifier for page invalidation kvm: Rename make_all_cpus_request() to kvm_make_all_cpus_request() and make it non-static kvm: Fix page ageing bugs kvm/x86/mmu: Pass gfn and level to rmapp callback. x86: kvm: use alternatives for VMCALL vs. VMMCALL if kernel text is read-only kvm: x86: use macros to compute bank MSRs KVM: x86: Remove debug assertion of non-PAE reserved bits kvm: don't take vcpu mutex for obviously invalid vcpu ioctls kvm: Faults which trigger IO release the mmap_sem ...
3333 lines
76 KiB
C
3333 lines
76 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* This module enables machines with Intel VT-x extensions to run virtual
|
|
* machines without emulation or binary translation.
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "iodev.h"
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/file.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/kvm_para.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/srcu.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/bsearch.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <asm/ioctl.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
#include "coalesced_mmio.h"
|
|
#include "async_pf.h"
|
|
#include "vfio.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/kvm.h>
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/*
|
|
* Ordering of locks:
|
|
*
|
|
* kvm->lock --> kvm->slots_lock --> kvm->irq_lock
|
|
*/
|
|
|
|
DEFINE_SPINLOCK(kvm_lock);
|
|
static DEFINE_RAW_SPINLOCK(kvm_count_lock);
|
|
LIST_HEAD(vm_list);
|
|
|
|
static cpumask_var_t cpus_hardware_enabled;
|
|
static int kvm_usage_count = 0;
|
|
static atomic_t hardware_enable_failed;
|
|
|
|
struct kmem_cache *kvm_vcpu_cache;
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
|
|
|
|
static __read_mostly struct preempt_ops kvm_preempt_ops;
|
|
|
|
struct dentry *kvm_debugfs_dir;
|
|
|
|
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#ifdef CONFIG_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
|
|
unsigned long arg);
|
|
#endif
|
|
static int hardware_enable_all(void);
|
|
static void hardware_disable_all(void);
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
|
|
|
|
static void kvm_release_pfn_dirty(pfn_t pfn);
|
|
static void mark_page_dirty_in_slot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, gfn_t gfn);
|
|
|
|
__visible bool kvm_rebooting;
|
|
EXPORT_SYMBOL_GPL(kvm_rebooting);
|
|
|
|
static bool largepages_enabled = true;
|
|
|
|
bool kvm_is_mmio_pfn(pfn_t pfn)
|
|
{
|
|
if (pfn_valid(pfn))
|
|
return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Switches to specified vcpu, until a matching vcpu_put()
|
|
*/
|
|
int vcpu_load(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu;
|
|
|
|
if (mutex_lock_killable(&vcpu->mutex))
|
|
return -EINTR;
|
|
if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
|
|
/* The thread running this VCPU changed. */
|
|
struct pid *oldpid = vcpu->pid;
|
|
struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
|
|
rcu_assign_pointer(vcpu->pid, newpid);
|
|
if (oldpid)
|
|
synchronize_rcu();
|
|
put_pid(oldpid);
|
|
}
|
|
cpu = get_cpu();
|
|
preempt_notifier_register(&vcpu->preempt_notifier);
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
put_cpu();
|
|
return 0;
|
|
}
|
|
|
|
void vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
kvm_arch_vcpu_put(vcpu);
|
|
preempt_notifier_unregister(&vcpu->preempt_notifier);
|
|
preempt_enable();
|
|
mutex_unlock(&vcpu->mutex);
|
|
}
|
|
|
|
static void ack_flush(void *_completed)
|
|
{
|
|
}
|
|
|
|
bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
|
|
{
|
|
int i, cpu, me;
|
|
cpumask_var_t cpus;
|
|
bool called = true;
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
zalloc_cpumask_var(&cpus, GFP_ATOMIC);
|
|
|
|
me = get_cpu();
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
kvm_make_request(req, vcpu);
|
|
cpu = vcpu->cpu;
|
|
|
|
/* Set ->requests bit before we read ->mode */
|
|
smp_mb();
|
|
|
|
if (cpus != NULL && cpu != -1 && cpu != me &&
|
|
kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
|
|
cpumask_set_cpu(cpu, cpus);
|
|
}
|
|
if (unlikely(cpus == NULL))
|
|
smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
|
|
else if (!cpumask_empty(cpus))
|
|
smp_call_function_many(cpus, ack_flush, NULL, 1);
|
|
else
|
|
called = false;
|
|
put_cpu();
|
|
free_cpumask_var(cpus);
|
|
return called;
|
|
}
|
|
|
|
void kvm_flush_remote_tlbs(struct kvm *kvm)
|
|
{
|
|
long dirty_count = kvm->tlbs_dirty;
|
|
|
|
smp_mb();
|
|
if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
|
|
++kvm->stat.remote_tlb_flush;
|
|
cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
|
|
|
|
void kvm_reload_remote_mmus(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
|
|
}
|
|
|
|
void kvm_make_mclock_inprogress_request(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
|
|
}
|
|
|
|
void kvm_make_scan_ioapic_request(struct kvm *kvm)
|
|
{
|
|
kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
|
|
}
|
|
|
|
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
|
|
{
|
|
struct page *page;
|
|
int r;
|
|
|
|
mutex_init(&vcpu->mutex);
|
|
vcpu->cpu = -1;
|
|
vcpu->kvm = kvm;
|
|
vcpu->vcpu_id = id;
|
|
vcpu->pid = NULL;
|
|
init_waitqueue_head(&vcpu->wq);
|
|
kvm_async_pf_vcpu_init(vcpu);
|
|
|
|
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
|
|
if (!page) {
|
|
r = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
vcpu->run = page_address(page);
|
|
|
|
kvm_vcpu_set_in_spin_loop(vcpu, false);
|
|
kvm_vcpu_set_dy_eligible(vcpu, false);
|
|
vcpu->preempted = false;
|
|
|
|
r = kvm_arch_vcpu_init(vcpu);
|
|
if (r < 0)
|
|
goto fail_free_run;
|
|
return 0;
|
|
|
|
fail_free_run:
|
|
free_page((unsigned long)vcpu->run);
|
|
fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
|
|
|
|
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
|
|
{
|
|
put_pid(vcpu->pid);
|
|
kvm_arch_vcpu_uninit(vcpu);
|
|
free_page((unsigned long)vcpu->run);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
|
|
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
|
|
{
|
|
return container_of(mn, struct kvm, mmu_notifier);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int need_tlb_flush, idx;
|
|
|
|
/*
|
|
* When ->invalidate_page runs, the linux pte has been zapped
|
|
* already but the page is still allocated until
|
|
* ->invalidate_page returns. So if we increase the sequence
|
|
* here the kvm page fault will notice if the spte can't be
|
|
* established because the page is going to be freed. If
|
|
* instead the kvm page fault establishes the spte before
|
|
* ->invalidate_page runs, kvm_unmap_hva will release it
|
|
* before returning.
|
|
*
|
|
* The sequence increase only need to be seen at spin_unlock
|
|
* time, and not at spin_lock time.
|
|
*
|
|
* Increasing the sequence after the spin_unlock would be
|
|
* unsafe because the kvm page fault could then establish the
|
|
* pte after kvm_unmap_hva returned, without noticing the page
|
|
* is going to be freed.
|
|
*/
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
kvm->mmu_notifier_seq++;
|
|
need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
|
|
/* we've to flush the tlb before the pages can be freed */
|
|
if (need_tlb_flush)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
kvm_arch_mmu_notifier_invalidate_page(kvm, address);
|
|
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address,
|
|
pte_t pte)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
kvm->mmu_notifier_seq++;
|
|
kvm_set_spte_hva(kvm, address, pte);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int need_tlb_flush = 0, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* The count increase must become visible at unlock time as no
|
|
* spte can be established without taking the mmu_lock and
|
|
* count is also read inside the mmu_lock critical section.
|
|
*/
|
|
kvm->mmu_notifier_count++;
|
|
need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
|
|
need_tlb_flush |= kvm->tlbs_dirty;
|
|
/* we've to flush the tlb before the pages can be freed */
|
|
if (need_tlb_flush)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* This sequence increase will notify the kvm page fault that
|
|
* the page that is going to be mapped in the spte could have
|
|
* been freed.
|
|
*/
|
|
kvm->mmu_notifier_seq++;
|
|
smp_wmb();
|
|
/*
|
|
* The above sequence increase must be visible before the
|
|
* below count decrease, which is ensured by the smp_wmb above
|
|
* in conjunction with the smp_rmb in mmu_notifier_retry().
|
|
*/
|
|
kvm->mmu_notifier_count--;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
BUG_ON(kvm->mmu_notifier_count < 0);
|
|
}
|
|
|
|
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int young, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
|
|
young = kvm_age_hva(kvm, start, end);
|
|
if (young)
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
return young;
|
|
}
|
|
|
|
static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
|
|
struct mm_struct *mm,
|
|
unsigned long address)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int young, idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
spin_lock(&kvm->mmu_lock);
|
|
young = kvm_test_age_hva(kvm, address);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
|
|
return young;
|
|
}
|
|
|
|
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
|
|
struct mm_struct *mm)
|
|
{
|
|
struct kvm *kvm = mmu_notifier_to_kvm(mn);
|
|
int idx;
|
|
|
|
idx = srcu_read_lock(&kvm->srcu);
|
|
kvm_arch_flush_shadow_all(kvm);
|
|
srcu_read_unlock(&kvm->srcu, idx);
|
|
}
|
|
|
|
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
|
|
.invalidate_page = kvm_mmu_notifier_invalidate_page,
|
|
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
|
|
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
|
|
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
|
|
.test_young = kvm_mmu_notifier_test_young,
|
|
.change_pte = kvm_mmu_notifier_change_pte,
|
|
.release = kvm_mmu_notifier_release,
|
|
};
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
|
|
return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
|
|
}
|
|
|
|
#else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
|
|
|
|
static int kvm_init_mmu_notifier(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
|
|
|
|
static void kvm_init_memslots_id(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct kvm_memslots *slots = kvm->memslots;
|
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
slots->id_to_index[i] = slots->memslots[i].id = i;
|
|
}
|
|
|
|
static struct kvm *kvm_create_vm(unsigned long type)
|
|
{
|
|
int r, i;
|
|
struct kvm *kvm = kvm_arch_alloc_vm();
|
|
|
|
if (!kvm)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
r = kvm_arch_init_vm(kvm, type);
|
|
if (r)
|
|
goto out_err_no_disable;
|
|
|
|
r = hardware_enable_all();
|
|
if (r)
|
|
goto out_err_no_disable;
|
|
|
|
#ifdef CONFIG_HAVE_KVM_IRQCHIP
|
|
INIT_HLIST_HEAD(&kvm->mask_notifier_list);
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
|
INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
|
|
#endif
|
|
|
|
BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
|
|
|
|
r = -ENOMEM;
|
|
kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
|
|
if (!kvm->memslots)
|
|
goto out_err_no_srcu;
|
|
|
|
/*
|
|
* Init kvm generation close to the maximum to easily test the
|
|
* code of handling generation number wrap-around.
|
|
*/
|
|
kvm->memslots->generation = -150;
|
|
|
|
kvm_init_memslots_id(kvm);
|
|
if (init_srcu_struct(&kvm->srcu))
|
|
goto out_err_no_srcu;
|
|
if (init_srcu_struct(&kvm->irq_srcu))
|
|
goto out_err_no_irq_srcu;
|
|
for (i = 0; i < KVM_NR_BUSES; i++) {
|
|
kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
|
|
GFP_KERNEL);
|
|
if (!kvm->buses[i])
|
|
goto out_err;
|
|
}
|
|
|
|
spin_lock_init(&kvm->mmu_lock);
|
|
kvm->mm = current->mm;
|
|
atomic_inc(&kvm->mm->mm_count);
|
|
kvm_eventfd_init(kvm);
|
|
mutex_init(&kvm->lock);
|
|
mutex_init(&kvm->irq_lock);
|
|
mutex_init(&kvm->slots_lock);
|
|
atomic_set(&kvm->users_count, 1);
|
|
INIT_LIST_HEAD(&kvm->devices);
|
|
|
|
r = kvm_init_mmu_notifier(kvm);
|
|
if (r)
|
|
goto out_err;
|
|
|
|
spin_lock(&kvm_lock);
|
|
list_add(&kvm->vm_list, &vm_list);
|
|
spin_unlock(&kvm_lock);
|
|
|
|
return kvm;
|
|
|
|
out_err:
|
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
|
out_err_no_irq_srcu:
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
out_err_no_srcu:
|
|
hardware_disable_all();
|
|
out_err_no_disable:
|
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
|
kfree(kvm->buses[i]);
|
|
kfree(kvm->memslots);
|
|
kvm_arch_free_vm(kvm);
|
|
return ERR_PTR(r);
|
|
}
|
|
|
|
/*
|
|
* Avoid using vmalloc for a small buffer.
|
|
* Should not be used when the size is statically known.
|
|
*/
|
|
void *kvm_kvzalloc(unsigned long size)
|
|
{
|
|
if (size > PAGE_SIZE)
|
|
return vzalloc(size);
|
|
else
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
void kvm_kvfree(const void *addr)
|
|
{
|
|
if (is_vmalloc_addr(addr))
|
|
vfree(addr);
|
|
else
|
|
kfree(addr);
|
|
}
|
|
|
|
static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
if (!memslot->dirty_bitmap)
|
|
return;
|
|
|
|
kvm_kvfree(memslot->dirty_bitmap);
|
|
memslot->dirty_bitmap = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free any memory in @free but not in @dont.
|
|
*/
|
|
static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
|
|
kvm_destroy_dirty_bitmap(free);
|
|
|
|
kvm_arch_free_memslot(kvm, free, dont);
|
|
|
|
free->npages = 0;
|
|
}
|
|
|
|
static void kvm_free_physmem(struct kvm *kvm)
|
|
{
|
|
struct kvm_memslots *slots = kvm->memslots;
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
kvm_for_each_memslot(memslot, slots)
|
|
kvm_free_physmem_slot(kvm, memslot, NULL);
|
|
|
|
kfree(kvm->memslots);
|
|
}
|
|
|
|
static void kvm_destroy_devices(struct kvm *kvm)
|
|
{
|
|
struct list_head *node, *tmp;
|
|
|
|
list_for_each_safe(node, tmp, &kvm->devices) {
|
|
struct kvm_device *dev =
|
|
list_entry(node, struct kvm_device, vm_node);
|
|
|
|
list_del(node);
|
|
dev->ops->destroy(dev);
|
|
}
|
|
}
|
|
|
|
static void kvm_destroy_vm(struct kvm *kvm)
|
|
{
|
|
int i;
|
|
struct mm_struct *mm = kvm->mm;
|
|
|
|
kvm_arch_sync_events(kvm);
|
|
spin_lock(&kvm_lock);
|
|
list_del(&kvm->vm_list);
|
|
spin_unlock(&kvm_lock);
|
|
kvm_free_irq_routing(kvm);
|
|
for (i = 0; i < KVM_NR_BUSES; i++)
|
|
kvm_io_bus_destroy(kvm->buses[i]);
|
|
kvm_coalesced_mmio_free(kvm);
|
|
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
|
|
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
|
|
#else
|
|
kvm_arch_flush_shadow_all(kvm);
|
|
#endif
|
|
kvm_arch_destroy_vm(kvm);
|
|
kvm_destroy_devices(kvm);
|
|
kvm_free_physmem(kvm);
|
|
cleanup_srcu_struct(&kvm->irq_srcu);
|
|
cleanup_srcu_struct(&kvm->srcu);
|
|
kvm_arch_free_vm(kvm);
|
|
hardware_disable_all();
|
|
mmdrop(mm);
|
|
}
|
|
|
|
void kvm_get_kvm(struct kvm *kvm)
|
|
{
|
|
atomic_inc(&kvm->users_count);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_kvm);
|
|
|
|
void kvm_put_kvm(struct kvm *kvm)
|
|
{
|
|
if (atomic_dec_and_test(&kvm->users_count))
|
|
kvm_destroy_vm(kvm);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_put_kvm);
|
|
|
|
|
|
static int kvm_vm_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
|
|
kvm_irqfd_release(kvm);
|
|
|
|
kvm_put_kvm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocation size is twice as large as the actual dirty bitmap size.
|
|
* See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
|
|
*/
|
|
static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
|
|
if (!memslot->dirty_bitmap)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cmp_memslot(const void *slot1, const void *slot2)
|
|
{
|
|
struct kvm_memory_slot *s1, *s2;
|
|
|
|
s1 = (struct kvm_memory_slot *)slot1;
|
|
s2 = (struct kvm_memory_slot *)slot2;
|
|
|
|
if (s1->npages < s2->npages)
|
|
return 1;
|
|
if (s1->npages > s2->npages)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Sort the memslots base on its size, so the larger slots
|
|
* will get better fit.
|
|
*/
|
|
static void sort_memslots(struct kvm_memslots *slots)
|
|
{
|
|
int i;
|
|
|
|
sort(slots->memslots, KVM_MEM_SLOTS_NUM,
|
|
sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
|
|
|
|
for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
|
|
slots->id_to_index[slots->memslots[i].id] = i;
|
|
}
|
|
|
|
static void update_memslots(struct kvm_memslots *slots,
|
|
struct kvm_memory_slot *new)
|
|
{
|
|
if (new) {
|
|
int id = new->id;
|
|
struct kvm_memory_slot *old = id_to_memslot(slots, id);
|
|
unsigned long npages = old->npages;
|
|
|
|
*old = *new;
|
|
if (new->npages != npages)
|
|
sort_memslots(slots);
|
|
}
|
|
}
|
|
|
|
static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
|
|
{
|
|
u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
#ifdef __KVM_HAVE_READONLY_MEM
|
|
valid_flags |= KVM_MEM_READONLY;
|
|
#endif
|
|
|
|
if (mem->flags & ~valid_flags)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
|
|
struct kvm_memslots *slots, struct kvm_memory_slot *new)
|
|
{
|
|
struct kvm_memslots *old_memslots = kvm->memslots;
|
|
|
|
/*
|
|
* Set the low bit in the generation, which disables SPTE caching
|
|
* until the end of synchronize_srcu_expedited.
|
|
*/
|
|
WARN_ON(old_memslots->generation & 1);
|
|
slots->generation = old_memslots->generation + 1;
|
|
|
|
update_memslots(slots, new);
|
|
rcu_assign_pointer(kvm->memslots, slots);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
|
|
/*
|
|
* Increment the new memslot generation a second time. This prevents
|
|
* vm exits that race with memslot updates from caching a memslot
|
|
* generation that will (potentially) be valid forever.
|
|
*/
|
|
slots->generation++;
|
|
|
|
kvm_arch_memslots_updated(kvm);
|
|
|
|
return old_memslots;
|
|
}
|
|
|
|
/*
|
|
* Allocate some memory and give it an address in the guest physical address
|
|
* space.
|
|
*
|
|
* Discontiguous memory is allowed, mostly for framebuffers.
|
|
*
|
|
* Must be called holding mmap_sem for write.
|
|
*/
|
|
int __kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
int r;
|
|
gfn_t base_gfn;
|
|
unsigned long npages;
|
|
struct kvm_memory_slot *slot;
|
|
struct kvm_memory_slot old, new;
|
|
struct kvm_memslots *slots = NULL, *old_memslots;
|
|
enum kvm_mr_change change;
|
|
|
|
r = check_memory_region_flags(mem);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EINVAL;
|
|
/* General sanity checks */
|
|
if (mem->memory_size & (PAGE_SIZE - 1))
|
|
goto out;
|
|
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
|
|
goto out;
|
|
/* We can read the guest memory with __xxx_user() later on. */
|
|
if ((mem->slot < KVM_USER_MEM_SLOTS) &&
|
|
((mem->userspace_addr & (PAGE_SIZE - 1)) ||
|
|
!access_ok(VERIFY_WRITE,
|
|
(void __user *)(unsigned long)mem->userspace_addr,
|
|
mem->memory_size)))
|
|
goto out;
|
|
if (mem->slot >= KVM_MEM_SLOTS_NUM)
|
|
goto out;
|
|
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
|
|
goto out;
|
|
|
|
slot = id_to_memslot(kvm->memslots, mem->slot);
|
|
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
|
|
npages = mem->memory_size >> PAGE_SHIFT;
|
|
|
|
if (npages > KVM_MEM_MAX_NR_PAGES)
|
|
goto out;
|
|
|
|
if (!npages)
|
|
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
|
|
|
|
new = old = *slot;
|
|
|
|
new.id = mem->slot;
|
|
new.base_gfn = base_gfn;
|
|
new.npages = npages;
|
|
new.flags = mem->flags;
|
|
|
|
if (npages) {
|
|
if (!old.npages)
|
|
change = KVM_MR_CREATE;
|
|
else { /* Modify an existing slot. */
|
|
if ((mem->userspace_addr != old.userspace_addr) ||
|
|
(npages != old.npages) ||
|
|
((new.flags ^ old.flags) & KVM_MEM_READONLY))
|
|
goto out;
|
|
|
|
if (base_gfn != old.base_gfn)
|
|
change = KVM_MR_MOVE;
|
|
else if (new.flags != old.flags)
|
|
change = KVM_MR_FLAGS_ONLY;
|
|
else { /* Nothing to change. */
|
|
r = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
} else if (old.npages) {
|
|
change = KVM_MR_DELETE;
|
|
} else /* Modify a non-existent slot: disallowed. */
|
|
goto out;
|
|
|
|
if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
|
|
/* Check for overlaps */
|
|
r = -EEXIST;
|
|
kvm_for_each_memslot(slot, kvm->memslots) {
|
|
if ((slot->id >= KVM_USER_MEM_SLOTS) ||
|
|
(slot->id == mem->slot))
|
|
continue;
|
|
if (!((base_gfn + npages <= slot->base_gfn) ||
|
|
(base_gfn >= slot->base_gfn + slot->npages)))
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Free page dirty bitmap if unneeded */
|
|
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
|
|
new.dirty_bitmap = NULL;
|
|
|
|
r = -ENOMEM;
|
|
if (change == KVM_MR_CREATE) {
|
|
new.userspace_addr = mem->userspace_addr;
|
|
|
|
if (kvm_arch_create_memslot(kvm, &new, npages))
|
|
goto out_free;
|
|
}
|
|
|
|
/* Allocate page dirty bitmap if needed */
|
|
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
|
|
if (kvm_create_dirty_bitmap(&new) < 0)
|
|
goto out_free;
|
|
}
|
|
|
|
if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
|
|
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
goto out_free;
|
|
slot = id_to_memslot(slots, mem->slot);
|
|
slot->flags |= KVM_MEMSLOT_INVALID;
|
|
|
|
old_memslots = install_new_memslots(kvm, slots, NULL);
|
|
|
|
/* slot was deleted or moved, clear iommu mapping */
|
|
kvm_iommu_unmap_pages(kvm, &old);
|
|
/* From this point no new shadow pages pointing to a deleted,
|
|
* or moved, memslot will be created.
|
|
*
|
|
* validation of sp->gfn happens in:
|
|
* - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
|
|
* - kvm_is_visible_gfn (mmu_check_roots)
|
|
*/
|
|
kvm_arch_flush_shadow_memslot(kvm, slot);
|
|
slots = old_memslots;
|
|
}
|
|
|
|
r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
|
|
if (r)
|
|
goto out_slots;
|
|
|
|
r = -ENOMEM;
|
|
/*
|
|
* We can re-use the old_memslots from above, the only difference
|
|
* from the currently installed memslots is the invalid flag. This
|
|
* will get overwritten by update_memslots anyway.
|
|
*/
|
|
if (!slots) {
|
|
slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
|
|
GFP_KERNEL);
|
|
if (!slots)
|
|
goto out_free;
|
|
}
|
|
|
|
/* actual memory is freed via old in kvm_free_physmem_slot below */
|
|
if (change == KVM_MR_DELETE) {
|
|
new.dirty_bitmap = NULL;
|
|
memset(&new.arch, 0, sizeof(new.arch));
|
|
}
|
|
|
|
old_memslots = install_new_memslots(kvm, slots, &new);
|
|
|
|
kvm_arch_commit_memory_region(kvm, mem, &old, change);
|
|
|
|
kvm_free_physmem_slot(kvm, &old, &new);
|
|
kfree(old_memslots);
|
|
|
|
/*
|
|
* IOMMU mapping: New slots need to be mapped. Old slots need to be
|
|
* un-mapped and re-mapped if their base changes. Since base change
|
|
* unmapping is handled above with slot deletion, mapping alone is
|
|
* needed here. Anything else the iommu might care about for existing
|
|
* slots (size changes, userspace addr changes and read-only flag
|
|
* changes) is disallowed above, so any other attribute changes getting
|
|
* here can be skipped.
|
|
*/
|
|
if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
|
|
r = kvm_iommu_map_pages(kvm, &new);
|
|
return r;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_slots:
|
|
kfree(slots);
|
|
out_free:
|
|
kvm_free_physmem_slot(kvm, &new, &old);
|
|
out:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
|
|
|
|
int kvm_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
int r;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
r = __kvm_set_memory_region(kvm, mem);
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
|
|
|
|
static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
if (mem->slot >= KVM_USER_MEM_SLOTS)
|
|
return -EINVAL;
|
|
return kvm_set_memory_region(kvm, mem);
|
|
}
|
|
|
|
int kvm_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log, int *is_dirty)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
int r, i;
|
|
unsigned long n;
|
|
unsigned long any = 0;
|
|
|
|
r = -EINVAL;
|
|
if (log->slot >= KVM_USER_MEM_SLOTS)
|
|
goto out;
|
|
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
r = -ENOENT;
|
|
if (!memslot->dirty_bitmap)
|
|
goto out;
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
|
|
for (i = 0; !any && i < n/sizeof(long); ++i)
|
|
any = memslot->dirty_bitmap[i];
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
|
|
goto out;
|
|
|
|
if (any)
|
|
*is_dirty = 1;
|
|
|
|
r = 0;
|
|
out:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
|
|
|
|
bool kvm_largepages_enabled(void)
|
|
{
|
|
return largepages_enabled;
|
|
}
|
|
|
|
void kvm_disable_largepages(void)
|
|
{
|
|
largepages_enabled = false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_disable_largepages);
|
|
|
|
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_memslot(kvm_memslots(kvm), gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_memslot);
|
|
|
|
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
|
|
memslot->flags & KVM_MEMSLOT_INVALID)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
|
|
|
|
unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr, size;
|
|
|
|
size = PAGE_SIZE;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return PAGE_SIZE;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
vma = find_vma(current->mm, addr);
|
|
if (!vma)
|
|
goto out;
|
|
|
|
size = vma_kernel_pagesize(vma);
|
|
|
|
out:
|
|
up_read(¤t->mm->mmap_sem);
|
|
|
|
return size;
|
|
}
|
|
|
|
static bool memslot_is_readonly(struct kvm_memory_slot *slot)
|
|
{
|
|
return slot->flags & KVM_MEM_READONLY;
|
|
}
|
|
|
|
static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
gfn_t *nr_pages, bool write)
|
|
{
|
|
if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
|
|
return KVM_HVA_ERR_BAD;
|
|
|
|
if (memslot_is_readonly(slot) && write)
|
|
return KVM_HVA_ERR_RO_BAD;
|
|
|
|
if (nr_pages)
|
|
*nr_pages = slot->npages - (gfn - slot->base_gfn);
|
|
|
|
return __gfn_to_hva_memslot(slot, gfn);
|
|
}
|
|
|
|
static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
|
|
gfn_t *nr_pages)
|
|
{
|
|
return __gfn_to_hva_many(slot, gfn, nr_pages, true);
|
|
}
|
|
|
|
unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
|
|
gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(slot, gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
|
|
|
|
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_hva);
|
|
|
|
/*
|
|
* If writable is set to false, the hva returned by this function is only
|
|
* allowed to be read.
|
|
*/
|
|
unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
|
|
gfn_t gfn, bool *writable)
|
|
{
|
|
unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
|
|
|
|
if (!kvm_is_error_hva(hva) && writable)
|
|
*writable = !memslot_is_readonly(slot);
|
|
|
|
return hva;
|
|
}
|
|
|
|
unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
|
|
{
|
|
struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return gfn_to_hva_memslot_prot(slot, gfn, writable);
|
|
}
|
|
|
|
static int kvm_read_hva(void *data, void __user *hva, int len)
|
|
{
|
|
return __copy_from_user(data, hva, len);
|
|
}
|
|
|
|
static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
|
|
{
|
|
return __copy_from_user_inatomic(data, hva, len);
|
|
}
|
|
|
|
static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, int write, struct page **page)
|
|
{
|
|
int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
|
|
|
|
if (write)
|
|
flags |= FOLL_WRITE;
|
|
|
|
return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
|
|
}
|
|
|
|
int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long addr, bool write_fault,
|
|
struct page **pagep)
|
|
{
|
|
int npages;
|
|
int locked = 1;
|
|
int flags = FOLL_TOUCH | FOLL_HWPOISON |
|
|
(pagep ? FOLL_GET : 0) |
|
|
(write_fault ? FOLL_WRITE : 0);
|
|
|
|
/*
|
|
* If retrying the fault, we get here *not* having allowed the filemap
|
|
* to wait on the page lock. We should now allow waiting on the IO with
|
|
* the mmap semaphore released.
|
|
*/
|
|
down_read(&mm->mmap_sem);
|
|
npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL,
|
|
&locked);
|
|
if (!locked) {
|
|
VM_BUG_ON(npages);
|
|
|
|
if (!pagep)
|
|
return 0;
|
|
|
|
/*
|
|
* The previous call has now waited on the IO. Now we can
|
|
* retry and complete. Pass TRIED to ensure we do not re
|
|
* schedule async IO (see e.g. filemap_fault).
|
|
*/
|
|
down_read(&mm->mmap_sem);
|
|
npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED,
|
|
pagep, NULL, NULL);
|
|
}
|
|
up_read(&mm->mmap_sem);
|
|
return npages;
|
|
}
|
|
|
|
static inline int check_user_page_hwpoison(unsigned long addr)
|
|
{
|
|
int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
|
|
|
|
rc = __get_user_pages(current, current->mm, addr, 1,
|
|
flags, NULL, NULL, NULL);
|
|
return rc == -EHWPOISON;
|
|
}
|
|
|
|
/*
|
|
* The atomic path to get the writable pfn which will be stored in @pfn,
|
|
* true indicates success, otherwise false is returned.
|
|
*/
|
|
static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
|
|
bool write_fault, bool *writable, pfn_t *pfn)
|
|
{
|
|
struct page *page[1];
|
|
int npages;
|
|
|
|
if (!(async || atomic))
|
|
return false;
|
|
|
|
/*
|
|
* Fast pin a writable pfn only if it is a write fault request
|
|
* or the caller allows to map a writable pfn for a read fault
|
|
* request.
|
|
*/
|
|
if (!(write_fault || writable))
|
|
return false;
|
|
|
|
npages = __get_user_pages_fast(addr, 1, 1, page);
|
|
if (npages == 1) {
|
|
*pfn = page_to_pfn(page[0]);
|
|
|
|
if (writable)
|
|
*writable = true;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The slow path to get the pfn of the specified host virtual address,
|
|
* 1 indicates success, -errno is returned if error is detected.
|
|
*/
|
|
static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
|
|
bool *writable, pfn_t *pfn)
|
|
{
|
|
struct page *page[1];
|
|
int npages = 0;
|
|
|
|
might_sleep();
|
|
|
|
if (writable)
|
|
*writable = write_fault;
|
|
|
|
if (async) {
|
|
down_read(¤t->mm->mmap_sem);
|
|
npages = get_user_page_nowait(current, current->mm,
|
|
addr, write_fault, page);
|
|
up_read(¤t->mm->mmap_sem);
|
|
} else {
|
|
/*
|
|
* By now we have tried gup_fast, and possibly async_pf, and we
|
|
* are certainly not atomic. Time to retry the gup, allowing
|
|
* mmap semaphore to be relinquished in the case of IO.
|
|
*/
|
|
npages = kvm_get_user_page_io(current, current->mm, addr,
|
|
write_fault, page);
|
|
}
|
|
if (npages != 1)
|
|
return npages;
|
|
|
|
/* map read fault as writable if possible */
|
|
if (unlikely(!write_fault) && writable) {
|
|
struct page *wpage[1];
|
|
|
|
npages = __get_user_pages_fast(addr, 1, 1, wpage);
|
|
if (npages == 1) {
|
|
*writable = true;
|
|
put_page(page[0]);
|
|
page[0] = wpage[0];
|
|
}
|
|
|
|
npages = 1;
|
|
}
|
|
*pfn = page_to_pfn(page[0]);
|
|
return npages;
|
|
}
|
|
|
|
static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
|
|
{
|
|
if (unlikely(!(vma->vm_flags & VM_READ)))
|
|
return false;
|
|
|
|
if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Pin guest page in memory and return its pfn.
|
|
* @addr: host virtual address which maps memory to the guest
|
|
* @atomic: whether this function can sleep
|
|
* @async: whether this function need to wait IO complete if the
|
|
* host page is not in the memory
|
|
* @write_fault: whether we should get a writable host page
|
|
* @writable: whether it allows to map a writable host page for !@write_fault
|
|
*
|
|
* The function will map a writable host page for these two cases:
|
|
* 1): @write_fault = true
|
|
* 2): @write_fault = false && @writable, @writable will tell the caller
|
|
* whether the mapping is writable.
|
|
*/
|
|
static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
pfn_t pfn = 0;
|
|
int npages;
|
|
|
|
/* we can do it either atomically or asynchronously, not both */
|
|
BUG_ON(atomic && async);
|
|
|
|
if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
|
|
return pfn;
|
|
|
|
if (atomic)
|
|
return KVM_PFN_ERR_FAULT;
|
|
|
|
npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
|
|
if (npages == 1)
|
|
return pfn;
|
|
|
|
down_read(¤t->mm->mmap_sem);
|
|
if (npages == -EHWPOISON ||
|
|
(!async && check_user_page_hwpoison(addr))) {
|
|
pfn = KVM_PFN_ERR_HWPOISON;
|
|
goto exit;
|
|
}
|
|
|
|
vma = find_vma_intersection(current->mm, addr, addr + 1);
|
|
|
|
if (vma == NULL)
|
|
pfn = KVM_PFN_ERR_FAULT;
|
|
else if ((vma->vm_flags & VM_PFNMAP)) {
|
|
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
|
|
vma->vm_pgoff;
|
|
BUG_ON(!kvm_is_mmio_pfn(pfn));
|
|
} else {
|
|
if (async && vma_is_valid(vma, write_fault))
|
|
*async = true;
|
|
pfn = KVM_PFN_ERR_FAULT;
|
|
}
|
|
exit:
|
|
up_read(¤t->mm->mmap_sem);
|
|
return pfn;
|
|
}
|
|
|
|
static pfn_t
|
|
__gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
|
|
bool *async, bool write_fault, bool *writable)
|
|
{
|
|
unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
|
|
|
|
if (addr == KVM_HVA_ERR_RO_BAD)
|
|
return KVM_PFN_ERR_RO_FAULT;
|
|
|
|
if (kvm_is_error_hva(addr))
|
|
return KVM_PFN_NOSLOT;
|
|
|
|
/* Do not map writable pfn in the readonly memslot. */
|
|
if (writable && memslot_is_readonly(slot)) {
|
|
*writable = false;
|
|
writable = NULL;
|
|
}
|
|
|
|
return hva_to_pfn(addr, atomic, async, write_fault,
|
|
writable);
|
|
}
|
|
|
|
static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
struct kvm_memory_slot *slot;
|
|
|
|
if (async)
|
|
*async = false;
|
|
|
|
slot = gfn_to_memslot(kvm, gfn);
|
|
|
|
return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
|
|
writable);
|
|
}
|
|
|
|
pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
|
|
|
|
pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
|
|
bool write_fault, bool *writable)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
|
|
|
|
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn);
|
|
|
|
pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
|
|
bool *writable)
|
|
{
|
|
return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
|
|
|
|
pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
|
|
}
|
|
|
|
pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
|
|
{
|
|
return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
|
|
|
|
int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
|
|
int nr_pages)
|
|
{
|
|
unsigned long addr;
|
|
gfn_t entry;
|
|
|
|
addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
|
|
if (kvm_is_error_hva(addr))
|
|
return -1;
|
|
|
|
if (entry < nr_pages)
|
|
return 0;
|
|
|
|
return __get_user_pages_fast(addr, nr_pages, 1, pages);
|
|
}
|
|
EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
|
|
|
|
static struct page *kvm_pfn_to_page(pfn_t pfn)
|
|
{
|
|
if (is_error_noslot_pfn(pfn))
|
|
return KVM_ERR_PTR_BAD_PAGE;
|
|
|
|
if (kvm_is_mmio_pfn(pfn)) {
|
|
WARN_ON(1);
|
|
return KVM_ERR_PTR_BAD_PAGE;
|
|
}
|
|
|
|
return pfn_to_page(pfn);
|
|
}
|
|
|
|
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
pfn_t pfn;
|
|
|
|
pfn = gfn_to_pfn(kvm, gfn);
|
|
|
|
return kvm_pfn_to_page(pfn);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(gfn_to_page);
|
|
|
|
void kvm_release_page_clean(struct page *page)
|
|
{
|
|
WARN_ON(is_error_page(page));
|
|
|
|
kvm_release_pfn_clean(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
|
|
|
|
void kvm_release_pfn_clean(pfn_t pfn)
|
|
{
|
|
if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
|
|
put_page(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
|
|
|
|
void kvm_release_page_dirty(struct page *page)
|
|
{
|
|
WARN_ON(is_error_page(page));
|
|
|
|
kvm_release_pfn_dirty(page_to_pfn(page));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
|
|
|
|
static void kvm_release_pfn_dirty(pfn_t pfn)
|
|
{
|
|
kvm_set_pfn_dirty(pfn);
|
|
kvm_release_pfn_clean(pfn);
|
|
}
|
|
|
|
void kvm_set_pfn_dirty(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn)) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
if (!PageReserved(page))
|
|
SetPageDirty(page);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
|
|
|
|
void kvm_set_pfn_accessed(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
mark_page_accessed(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
|
|
|
|
void kvm_get_pfn(pfn_t pfn)
|
|
{
|
|
if (!kvm_is_mmio_pfn(pfn))
|
|
get_page(pfn_to_page(pfn));
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_get_pfn);
|
|
|
|
static int next_segment(unsigned long len, int offset)
|
|
{
|
|
if (len > PAGE_SIZE - offset)
|
|
return PAGE_SIZE - offset;
|
|
else
|
|
return len;
|
|
}
|
|
|
|
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
|
|
int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva_prot(kvm, gfn, NULL);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = kvm_read_hva(data, (void __user *)addr + offset, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
|
|
|
|
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest);
|
|
|
|
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
|
|
unsigned long len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int offset = offset_in_page(gpa);
|
|
|
|
addr = gfn_to_hva_prot(kvm, gfn, NULL);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
pagefault_disable();
|
|
r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
|
|
pagefault_enable();
|
|
if (r)
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(kvm_read_guest_atomic);
|
|
|
|
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
|
|
int offset, int len)
|
|
{
|
|
int r;
|
|
unsigned long addr;
|
|
|
|
addr = gfn_to_hva(kvm, gfn);
|
|
if (kvm_is_error_hva(addr))
|
|
return -EFAULT;
|
|
r = __copy_to_user((void __user *)addr + offset, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty(kvm, gfn);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
|
|
|
|
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
|
|
unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
data += seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
gpa_t gpa, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int offset = offset_in_page(gpa);
|
|
gfn_t start_gfn = gpa >> PAGE_SHIFT;
|
|
gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
|
|
gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
|
|
gfn_t nr_pages_avail;
|
|
|
|
ghc->gpa = gpa;
|
|
ghc->generation = slots->generation;
|
|
ghc->len = len;
|
|
ghc->memslot = gfn_to_memslot(kvm, start_gfn);
|
|
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
|
|
if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
|
|
ghc->hva += offset;
|
|
} else {
|
|
/*
|
|
* If the requested region crosses two memslots, we still
|
|
* verify that the entire region is valid here.
|
|
*/
|
|
while (start_gfn <= end_gfn) {
|
|
ghc->memslot = gfn_to_memslot(kvm, start_gfn);
|
|
ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
|
|
&nr_pages_avail);
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
start_gfn += nr_pages_avail;
|
|
}
|
|
/* Use the slow path for cross page reads and writes. */
|
|
ghc->memslot = NULL;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
|
|
|
|
int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
|
|
BUG_ON(len > ghc->len);
|
|
|
|
if (slots->generation != ghc->generation)
|
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
|
|
|
|
if (unlikely(!ghc->memslot))
|
|
return kvm_write_guest(kvm, ghc->gpa, data, len);
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
r = __copy_to_user((void __user *)ghc->hva, data, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
|
|
|
|
int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
|
|
void *data, unsigned long len)
|
|
{
|
|
struct kvm_memslots *slots = kvm_memslots(kvm);
|
|
int r;
|
|
|
|
BUG_ON(len > ghc->len);
|
|
|
|
if (slots->generation != ghc->generation)
|
|
kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
|
|
|
|
if (unlikely(!ghc->memslot))
|
|
return kvm_read_guest(kvm, ghc->gpa, data, len);
|
|
|
|
if (kvm_is_error_hva(ghc->hva))
|
|
return -EFAULT;
|
|
|
|
r = __copy_from_user(data, (void __user *)ghc->hva, len);
|
|
if (r)
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
|
|
|
|
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
|
|
{
|
|
const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
|
|
|
|
return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
|
|
|
|
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
|
{
|
|
gfn_t gfn = gpa >> PAGE_SHIFT;
|
|
int seg;
|
|
int offset = offset_in_page(gpa);
|
|
int ret;
|
|
|
|
while ((seg = next_segment(len, offset)) != 0) {
|
|
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset = 0;
|
|
len -= seg;
|
|
++gfn;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
|
|
|
static void mark_page_dirty_in_slot(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
gfn_t gfn)
|
|
{
|
|
if (memslot && memslot->dirty_bitmap) {
|
|
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
|
|
|
set_bit_le(rel_gfn, memslot->dirty_bitmap);
|
|
}
|
|
}
|
|
|
|
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
mark_page_dirty_in_slot(kvm, memslot, gfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mark_page_dirty);
|
|
|
|
/*
|
|
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
|
|
*/
|
|
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
|
|
|
|
if (kvm_arch_vcpu_runnable(vcpu)) {
|
|
kvm_make_request(KVM_REQ_UNHALT, vcpu);
|
|
break;
|
|
}
|
|
if (kvm_cpu_has_pending_timer(vcpu))
|
|
break;
|
|
if (signal_pending(current))
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
|
|
finish_wait(&vcpu->wq, &wait);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_block);
|
|
|
|
#ifndef CONFIG_S390
|
|
/*
|
|
* Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
|
|
*/
|
|
void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
|
|
{
|
|
int me;
|
|
int cpu = vcpu->cpu;
|
|
wait_queue_head_t *wqp;
|
|
|
|
wqp = kvm_arch_vcpu_wq(vcpu);
|
|
if (waitqueue_active(wqp)) {
|
|
wake_up_interruptible(wqp);
|
|
++vcpu->stat.halt_wakeup;
|
|
}
|
|
|
|
me = get_cpu();
|
|
if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
|
|
if (kvm_arch_vcpu_should_kick(vcpu))
|
|
smp_send_reschedule(cpu);
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
|
|
#endif /* !CONFIG_S390 */
|
|
|
|
int kvm_vcpu_yield_to(struct kvm_vcpu *target)
|
|
{
|
|
struct pid *pid;
|
|
struct task_struct *task = NULL;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
pid = rcu_dereference(target->pid);
|
|
if (pid)
|
|
task = get_pid_task(pid, PIDTYPE_PID);
|
|
rcu_read_unlock();
|
|
if (!task)
|
|
return ret;
|
|
if (task->flags & PF_VCPU) {
|
|
put_task_struct(task);
|
|
return ret;
|
|
}
|
|
ret = yield_to(task, 1);
|
|
put_task_struct(task);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
|
|
|
|
/*
|
|
* Helper that checks whether a VCPU is eligible for directed yield.
|
|
* Most eligible candidate to yield is decided by following heuristics:
|
|
*
|
|
* (a) VCPU which has not done pl-exit or cpu relax intercepted recently
|
|
* (preempted lock holder), indicated by @in_spin_loop.
|
|
* Set at the beiginning and cleared at the end of interception/PLE handler.
|
|
*
|
|
* (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
|
|
* chance last time (mostly it has become eligible now since we have probably
|
|
* yielded to lockholder in last iteration. This is done by toggling
|
|
* @dy_eligible each time a VCPU checked for eligibility.)
|
|
*
|
|
* Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
|
|
* to preempted lock-holder could result in wrong VCPU selection and CPU
|
|
* burning. Giving priority for a potential lock-holder increases lock
|
|
* progress.
|
|
*
|
|
* Since algorithm is based on heuristics, accessing another VCPU data without
|
|
* locking does not harm. It may result in trying to yield to same VCPU, fail
|
|
* and continue with next VCPU and so on.
|
|
*/
|
|
static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
|
|
bool eligible;
|
|
|
|
eligible = !vcpu->spin_loop.in_spin_loop ||
|
|
vcpu->spin_loop.dy_eligible;
|
|
|
|
if (vcpu->spin_loop.in_spin_loop)
|
|
kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
|
|
|
|
return eligible;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
void kvm_vcpu_on_spin(struct kvm_vcpu *me)
|
|
{
|
|
struct kvm *kvm = me->kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
|
|
int yielded = 0;
|
|
int try = 3;
|
|
int pass;
|
|
int i;
|
|
|
|
kvm_vcpu_set_in_spin_loop(me, true);
|
|
/*
|
|
* We boost the priority of a VCPU that is runnable but not
|
|
* currently running, because it got preempted by something
|
|
* else and called schedule in __vcpu_run. Hopefully that
|
|
* VCPU is holding the lock that we need and will release it.
|
|
* We approximate round-robin by starting at the last boosted VCPU.
|
|
*/
|
|
for (pass = 0; pass < 2 && !yielded && try; pass++) {
|
|
kvm_for_each_vcpu(i, vcpu, kvm) {
|
|
if (!pass && i <= last_boosted_vcpu) {
|
|
i = last_boosted_vcpu;
|
|
continue;
|
|
} else if (pass && i > last_boosted_vcpu)
|
|
break;
|
|
if (!ACCESS_ONCE(vcpu->preempted))
|
|
continue;
|
|
if (vcpu == me)
|
|
continue;
|
|
if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
|
|
continue;
|
|
if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
|
|
continue;
|
|
|
|
yielded = kvm_vcpu_yield_to(vcpu);
|
|
if (yielded > 0) {
|
|
kvm->last_boosted_vcpu = i;
|
|
break;
|
|
} else if (yielded < 0) {
|
|
try--;
|
|
if (!try)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
kvm_vcpu_set_in_spin_loop(me, false);
|
|
|
|
/* Ensure vcpu is not eligible during next spinloop */
|
|
kvm_vcpu_set_dy_eligible(me, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
|
|
|
|
static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
|
|
struct page *page;
|
|
|
|
if (vmf->pgoff == 0)
|
|
page = virt_to_page(vcpu->run);
|
|
#ifdef CONFIG_X86
|
|
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->arch.pio_data);
|
|
#endif
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
|
|
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
|
|
#endif
|
|
else
|
|
return kvm_arch_vcpu_fault(vcpu, vmf);
|
|
get_page(page);
|
|
vmf->page = page;
|
|
return 0;
|
|
}
|
|
|
|
static const struct vm_operations_struct kvm_vcpu_vm_ops = {
|
|
.fault = kvm_vcpu_fault,
|
|
};
|
|
|
|
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_ops = &kvm_vcpu_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
|
|
kvm_put_kvm(vcpu->kvm);
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations kvm_vcpu_fops = {
|
|
.release = kvm_vcpu_release,
|
|
.unlocked_ioctl = kvm_vcpu_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = kvm_vcpu_compat_ioctl,
|
|
#endif
|
|
.mmap = kvm_vcpu_mmap,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
/*
|
|
* Allocates an inode for the vcpu.
|
|
*/
|
|
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
|
|
{
|
|
return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
|
|
}
|
|
|
|
/*
|
|
* Creates some virtual cpus. Good luck creating more than one.
|
|
*/
|
|
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
|
|
{
|
|
int r;
|
|
struct kvm_vcpu *vcpu, *v;
|
|
|
|
if (id >= KVM_MAX_VCPUS)
|
|
return -EINVAL;
|
|
|
|
vcpu = kvm_arch_vcpu_create(kvm, id);
|
|
if (IS_ERR(vcpu))
|
|
return PTR_ERR(vcpu);
|
|
|
|
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
|
|
|
|
r = kvm_arch_vcpu_setup(vcpu);
|
|
if (r)
|
|
goto vcpu_destroy;
|
|
|
|
mutex_lock(&kvm->lock);
|
|
if (!kvm_vcpu_compatible(vcpu)) {
|
|
r = -EINVAL;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
|
|
r = -EINVAL;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
kvm_for_each_vcpu(r, v, kvm)
|
|
if (v->vcpu_id == id) {
|
|
r = -EEXIST;
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
|
|
|
|
/* Now it's all set up, let userspace reach it */
|
|
kvm_get_kvm(kvm);
|
|
r = create_vcpu_fd(vcpu);
|
|
if (r < 0) {
|
|
kvm_put_kvm(kvm);
|
|
goto unlock_vcpu_destroy;
|
|
}
|
|
|
|
kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
|
|
smp_wmb();
|
|
atomic_inc(&kvm->online_vcpus);
|
|
|
|
mutex_unlock(&kvm->lock);
|
|
kvm_arch_vcpu_postcreate(vcpu);
|
|
return r;
|
|
|
|
unlock_vcpu_destroy:
|
|
mutex_unlock(&kvm->lock);
|
|
vcpu_destroy:
|
|
kvm_arch_vcpu_destroy(vcpu);
|
|
return r;
|
|
}
|
|
|
|
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
|
|
{
|
|
if (sigset) {
|
|
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
|
|
vcpu->sigset_active = 1;
|
|
vcpu->sigset = *sigset;
|
|
} else
|
|
vcpu->sigset_active = 0;
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_vcpu_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
struct kvm_fpu *fpu = NULL;
|
|
struct kvm_sregs *kvm_sregs = NULL;
|
|
|
|
if (vcpu->kvm->mm != current->mm)
|
|
return -EIO;
|
|
|
|
if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
|
|
return -EINVAL;
|
|
|
|
#if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
|
|
/*
|
|
* Special cases: vcpu ioctls that are asynchronous to vcpu execution,
|
|
* so vcpu_load() would break it.
|
|
*/
|
|
if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
|
|
return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
#endif
|
|
|
|
|
|
r = vcpu_load(vcpu);
|
|
if (r)
|
|
return r;
|
|
switch (ioctl) {
|
|
case KVM_RUN:
|
|
r = -EINVAL;
|
|
if (arg)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
|
|
trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
|
|
break;
|
|
case KVM_GET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
r = -ENOMEM;
|
|
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
|
|
if (!kvm_regs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
|
|
if (r)
|
|
goto out_free1;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
|
|
goto out_free1;
|
|
r = 0;
|
|
out_free1:
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_SET_REGS: {
|
|
struct kvm_regs *kvm_regs;
|
|
|
|
r = -ENOMEM;
|
|
kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
|
|
if (IS_ERR(kvm_regs)) {
|
|
r = PTR_ERR(kvm_regs);
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
|
|
kfree(kvm_regs);
|
|
break;
|
|
}
|
|
case KVM_GET_SREGS: {
|
|
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!kvm_sregs)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_SREGS: {
|
|
kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
|
|
if (IS_ERR(kvm_sregs)) {
|
|
r = PTR_ERR(kvm_sregs);
|
|
kvm_sregs = NULL;
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
|
|
break;
|
|
}
|
|
case KVM_GET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &mp_state, sizeof mp_state))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_MP_STATE: {
|
|
struct kvm_mp_state mp_state;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&mp_state, argp, sizeof mp_state))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
|
|
break;
|
|
}
|
|
case KVM_TRANSLATE: {
|
|
struct kvm_translation tr;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&tr, argp, sizeof tr))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &tr, sizeof tr))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_GUEST_DEBUG: {
|
|
struct kvm_guest_debug dbg;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&dbg, argp, sizeof dbg))
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
|
|
break;
|
|
}
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
sigset_t sigset, *p;
|
|
|
|
p = NULL;
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof kvm_sigmask))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof sigset)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&sigset, sigmask_arg->sigset,
|
|
sizeof sigset))
|
|
goto out;
|
|
p = &sigset;
|
|
}
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
|
|
break;
|
|
}
|
|
case KVM_GET_FPU: {
|
|
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!fpu)
|
|
goto out;
|
|
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
|
|
if (r)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
|
|
goto out;
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_SET_FPU: {
|
|
fpu = memdup_user(argp, sizeof(*fpu));
|
|
if (IS_ERR(fpu)) {
|
|
r = PTR_ERR(fpu);
|
|
fpu = NULL;
|
|
goto out;
|
|
}
|
|
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
vcpu_put(vcpu);
|
|
kfree(fpu);
|
|
kfree(kvm_sregs);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
static long kvm_vcpu_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm_vcpu *vcpu = filp->private_data;
|
|
void __user *argp = compat_ptr(arg);
|
|
int r;
|
|
|
|
if (vcpu->kvm->mm != current->mm)
|
|
return -EIO;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_SIGNAL_MASK: {
|
|
struct kvm_signal_mask __user *sigmask_arg = argp;
|
|
struct kvm_signal_mask kvm_sigmask;
|
|
compat_sigset_t csigset;
|
|
sigset_t sigset;
|
|
|
|
if (argp) {
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_sigmask, argp,
|
|
sizeof kvm_sigmask))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (kvm_sigmask.len != sizeof csigset)
|
|
goto out;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&csigset, sigmask_arg->sigset,
|
|
sizeof csigset))
|
|
goto out;
|
|
sigset_from_compat(&sigset, &csigset);
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
|
|
} else
|
|
r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vcpu_ioctl(filp, ioctl, arg);
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static int kvm_device_ioctl_attr(struct kvm_device *dev,
|
|
int (*accessor)(struct kvm_device *dev,
|
|
struct kvm_device_attr *attr),
|
|
unsigned long arg)
|
|
{
|
|
struct kvm_device_attr attr;
|
|
|
|
if (!accessor)
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
|
|
return -EFAULT;
|
|
|
|
return accessor(dev, &attr);
|
|
}
|
|
|
|
static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
|
|
unsigned long arg)
|
|
{
|
|
struct kvm_device *dev = filp->private_data;
|
|
|
|
switch (ioctl) {
|
|
case KVM_SET_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
|
|
case KVM_GET_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
|
|
case KVM_HAS_DEVICE_ATTR:
|
|
return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
|
|
default:
|
|
if (dev->ops->ioctl)
|
|
return dev->ops->ioctl(dev, ioctl, arg);
|
|
|
|
return -ENOTTY;
|
|
}
|
|
}
|
|
|
|
static int kvm_device_release(struct inode *inode, struct file *filp)
|
|
{
|
|
struct kvm_device *dev = filp->private_data;
|
|
struct kvm *kvm = dev->kvm;
|
|
|
|
kvm_put_kvm(kvm);
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations kvm_device_fops = {
|
|
.unlocked_ioctl = kvm_device_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = kvm_device_ioctl,
|
|
#endif
|
|
.release = kvm_device_release,
|
|
};
|
|
|
|
struct kvm_device *kvm_device_from_filp(struct file *filp)
|
|
{
|
|
if (filp->f_op != &kvm_device_fops)
|
|
return NULL;
|
|
|
|
return filp->private_data;
|
|
}
|
|
|
|
static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
|
|
#ifdef CONFIG_KVM_MPIC
|
|
[KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
|
|
[KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
[KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
|
|
#endif
|
|
};
|
|
|
|
int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
|
|
{
|
|
if (type >= ARRAY_SIZE(kvm_device_ops_table))
|
|
return -ENOSPC;
|
|
|
|
if (kvm_device_ops_table[type] != NULL)
|
|
return -EEXIST;
|
|
|
|
kvm_device_ops_table[type] = ops;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_ioctl_create_device(struct kvm *kvm,
|
|
struct kvm_create_device *cd)
|
|
{
|
|
struct kvm_device_ops *ops = NULL;
|
|
struct kvm_device *dev;
|
|
bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
|
|
int ret;
|
|
|
|
if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
|
|
return -ENODEV;
|
|
|
|
ops = kvm_device_ops_table[cd->type];
|
|
if (ops == NULL)
|
|
return -ENODEV;
|
|
|
|
if (test)
|
|
return 0;
|
|
|
|
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
|
|
if (!dev)
|
|
return -ENOMEM;
|
|
|
|
dev->ops = ops;
|
|
dev->kvm = kvm;
|
|
|
|
ret = ops->create(dev, cd->type);
|
|
if (ret < 0) {
|
|
kfree(dev);
|
|
return ret;
|
|
}
|
|
|
|
ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
|
|
if (ret < 0) {
|
|
ops->destroy(dev);
|
|
return ret;
|
|
}
|
|
|
|
list_add(&dev->vm_node, &kvm->devices);
|
|
kvm_get_kvm(kvm);
|
|
cd->fd = ret;
|
|
return 0;
|
|
}
|
|
|
|
static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
|
|
{
|
|
switch (arg) {
|
|
case KVM_CAP_USER_MEMORY:
|
|
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
|
|
case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
|
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
|
case KVM_CAP_SET_BOOT_CPU_ID:
|
|
#endif
|
|
case KVM_CAP_INTERNAL_ERROR_DATA:
|
|
#ifdef CONFIG_HAVE_KVM_MSI
|
|
case KVM_CAP_SIGNAL_MSI:
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQFD
|
|
case KVM_CAP_IRQFD_RESAMPLE:
|
|
#endif
|
|
case KVM_CAP_CHECK_EXTENSION_VM:
|
|
return 1;
|
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
|
case KVM_CAP_IRQ_ROUTING:
|
|
return KVM_MAX_IRQ_ROUTES;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
return kvm_vm_ioctl_check_extension(kvm, arg);
|
|
}
|
|
|
|
static long kvm_vm_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
void __user *argp = (void __user *)arg;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
case KVM_CREATE_VCPU:
|
|
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
|
|
break;
|
|
case KVM_SET_USER_MEMORY_REGION: {
|
|
struct kvm_userspace_memory_region kvm_userspace_mem;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&kvm_userspace_mem, argp,
|
|
sizeof kvm_userspace_mem))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
|
|
break;
|
|
}
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&log, argp, sizeof log))
|
|
goto out;
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
case KVM_REGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof zone))
|
|
goto out;
|
|
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
|
|
break;
|
|
}
|
|
case KVM_UNREGISTER_COALESCED_MMIO: {
|
|
struct kvm_coalesced_mmio_zone zone;
|
|
r = -EFAULT;
|
|
if (copy_from_user(&zone, argp, sizeof zone))
|
|
goto out;
|
|
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
|
|
break;
|
|
}
|
|
#endif
|
|
case KVM_IRQFD: {
|
|
struct kvm_irqfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof data))
|
|
goto out;
|
|
r = kvm_irqfd(kvm, &data);
|
|
break;
|
|
}
|
|
case KVM_IOEVENTFD: {
|
|
struct kvm_ioeventfd data;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&data, argp, sizeof data))
|
|
goto out;
|
|
r = kvm_ioeventfd(kvm, &data);
|
|
break;
|
|
}
|
|
#ifdef CONFIG_KVM_APIC_ARCHITECTURE
|
|
case KVM_SET_BOOT_CPU_ID:
|
|
r = 0;
|
|
mutex_lock(&kvm->lock);
|
|
if (atomic_read(&kvm->online_vcpus) != 0)
|
|
r = -EBUSY;
|
|
else
|
|
kvm->bsp_vcpu_id = arg;
|
|
mutex_unlock(&kvm->lock);
|
|
break;
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_MSI
|
|
case KVM_SIGNAL_MSI: {
|
|
struct kvm_msi msi;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&msi, argp, sizeof msi))
|
|
goto out;
|
|
r = kvm_send_userspace_msi(kvm, &msi);
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef __KVM_HAVE_IRQ_LINE
|
|
case KVM_IRQ_LINE_STATUS:
|
|
case KVM_IRQ_LINE: {
|
|
struct kvm_irq_level irq_event;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&irq_event, argp, sizeof irq_event))
|
|
goto out;
|
|
|
|
r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
|
|
ioctl == KVM_IRQ_LINE_STATUS);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (ioctl == KVM_IRQ_LINE_STATUS) {
|
|
if (copy_to_user(argp, &irq_event, sizeof irq_event))
|
|
goto out;
|
|
}
|
|
|
|
r = 0;
|
|
break;
|
|
}
|
|
#endif
|
|
#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
|
|
case KVM_SET_GSI_ROUTING: {
|
|
struct kvm_irq_routing routing;
|
|
struct kvm_irq_routing __user *urouting;
|
|
struct kvm_irq_routing_entry *entries;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&routing, argp, sizeof(routing)))
|
|
goto out;
|
|
r = -EINVAL;
|
|
if (routing.nr >= KVM_MAX_IRQ_ROUTES)
|
|
goto out;
|
|
if (routing.flags)
|
|
goto out;
|
|
r = -ENOMEM;
|
|
entries = vmalloc(routing.nr * sizeof(*entries));
|
|
if (!entries)
|
|
goto out;
|
|
r = -EFAULT;
|
|
urouting = argp;
|
|
if (copy_from_user(entries, urouting->entries,
|
|
routing.nr * sizeof(*entries)))
|
|
goto out_free_irq_routing;
|
|
r = kvm_set_irq_routing(kvm, entries, routing.nr,
|
|
routing.flags);
|
|
out_free_irq_routing:
|
|
vfree(entries);
|
|
break;
|
|
}
|
|
#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
|
|
case KVM_CREATE_DEVICE: {
|
|
struct kvm_create_device cd;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&cd, argp, sizeof(cd)))
|
|
goto out;
|
|
|
|
r = kvm_ioctl_create_device(kvm, &cd);
|
|
if (r)
|
|
goto out;
|
|
|
|
r = -EFAULT;
|
|
if (copy_to_user(argp, &cd, sizeof(cd)))
|
|
goto out;
|
|
|
|
r = 0;
|
|
break;
|
|
}
|
|
case KVM_CHECK_EXTENSION:
|
|
r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
|
|
break;
|
|
default:
|
|
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
|
|
if (r == -ENOTTY)
|
|
r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
struct compat_kvm_dirty_log {
|
|
__u32 slot;
|
|
__u32 padding1;
|
|
union {
|
|
compat_uptr_t dirty_bitmap; /* one bit per page */
|
|
__u64 padding2;
|
|
};
|
|
};
|
|
|
|
static long kvm_vm_compat_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
struct kvm *kvm = filp->private_data;
|
|
int r;
|
|
|
|
if (kvm->mm != current->mm)
|
|
return -EIO;
|
|
switch (ioctl) {
|
|
case KVM_GET_DIRTY_LOG: {
|
|
struct compat_kvm_dirty_log compat_log;
|
|
struct kvm_dirty_log log;
|
|
|
|
r = -EFAULT;
|
|
if (copy_from_user(&compat_log, (void __user *)arg,
|
|
sizeof(compat_log)))
|
|
goto out;
|
|
log.slot = compat_log.slot;
|
|
log.padding1 = compat_log.padding1;
|
|
log.padding2 = compat_log.padding2;
|
|
log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
|
|
|
|
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
|
|
break;
|
|
}
|
|
default:
|
|
r = kvm_vm_ioctl(filp, ioctl, arg);
|
|
}
|
|
|
|
out:
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
static struct file_operations kvm_vm_fops = {
|
|
.release = kvm_vm_release,
|
|
.unlocked_ioctl = kvm_vm_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = kvm_vm_compat_ioctl,
|
|
#endif
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static int kvm_dev_ioctl_create_vm(unsigned long type)
|
|
{
|
|
int r;
|
|
struct kvm *kvm;
|
|
|
|
kvm = kvm_create_vm(type);
|
|
if (IS_ERR(kvm))
|
|
return PTR_ERR(kvm);
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
r = kvm_coalesced_mmio_init(kvm);
|
|
if (r < 0) {
|
|
kvm_put_kvm(kvm);
|
|
return r;
|
|
}
|
|
#endif
|
|
r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
|
|
if (r < 0)
|
|
kvm_put_kvm(kvm);
|
|
|
|
return r;
|
|
}
|
|
|
|
static long kvm_dev_ioctl(struct file *filp,
|
|
unsigned int ioctl, unsigned long arg)
|
|
{
|
|
long r = -EINVAL;
|
|
|
|
switch (ioctl) {
|
|
case KVM_GET_API_VERSION:
|
|
if (arg)
|
|
goto out;
|
|
r = KVM_API_VERSION;
|
|
break;
|
|
case KVM_CREATE_VM:
|
|
r = kvm_dev_ioctl_create_vm(arg);
|
|
break;
|
|
case KVM_CHECK_EXTENSION:
|
|
r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
|
|
break;
|
|
case KVM_GET_VCPU_MMAP_SIZE:
|
|
if (arg)
|
|
goto out;
|
|
r = PAGE_SIZE; /* struct kvm_run */
|
|
#ifdef CONFIG_X86
|
|
r += PAGE_SIZE; /* pio data page */
|
|
#endif
|
|
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
|
|
r += PAGE_SIZE; /* coalesced mmio ring page */
|
|
#endif
|
|
break;
|
|
case KVM_TRACE_ENABLE:
|
|
case KVM_TRACE_PAUSE:
|
|
case KVM_TRACE_DISABLE:
|
|
r = -EOPNOTSUPP;
|
|
break;
|
|
default:
|
|
return kvm_arch_dev_ioctl(filp, ioctl, arg);
|
|
}
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static struct file_operations kvm_chardev_ops = {
|
|
.unlocked_ioctl = kvm_dev_ioctl,
|
|
.compat_ioctl = kvm_dev_ioctl,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static struct miscdevice kvm_dev = {
|
|
KVM_MINOR,
|
|
"kvm",
|
|
&kvm_chardev_ops,
|
|
};
|
|
|
|
static void hardware_enable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
int r;
|
|
|
|
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
|
|
cpumask_set_cpu(cpu, cpus_hardware_enabled);
|
|
|
|
r = kvm_arch_hardware_enable();
|
|
|
|
if (r) {
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
atomic_inc(&hardware_enable_failed);
|
|
printk(KERN_INFO "kvm: enabling virtualization on "
|
|
"CPU%d failed\n", cpu);
|
|
}
|
|
}
|
|
|
|
static void hardware_enable(void)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
if (kvm_usage_count)
|
|
hardware_enable_nolock(NULL);
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
}
|
|
|
|
static void hardware_disable_nolock(void *junk)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
|
|
return;
|
|
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
|
|
kvm_arch_hardware_disable();
|
|
}
|
|
|
|
static void hardware_disable(void)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
if (kvm_usage_count)
|
|
hardware_disable_nolock(NULL);
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
}
|
|
|
|
static void hardware_disable_all_nolock(void)
|
|
{
|
|
BUG_ON(!kvm_usage_count);
|
|
|
|
kvm_usage_count--;
|
|
if (!kvm_usage_count)
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
}
|
|
|
|
static void hardware_disable_all(void)
|
|
{
|
|
raw_spin_lock(&kvm_count_lock);
|
|
hardware_disable_all_nolock();
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
}
|
|
|
|
static int hardware_enable_all(void)
|
|
{
|
|
int r = 0;
|
|
|
|
raw_spin_lock(&kvm_count_lock);
|
|
|
|
kvm_usage_count++;
|
|
if (kvm_usage_count == 1) {
|
|
atomic_set(&hardware_enable_failed, 0);
|
|
on_each_cpu(hardware_enable_nolock, NULL, 1);
|
|
|
|
if (atomic_read(&hardware_enable_failed)) {
|
|
hardware_disable_all_nolock();
|
|
r = -EBUSY;
|
|
}
|
|
}
|
|
|
|
raw_spin_unlock(&kvm_count_lock);
|
|
|
|
return r;
|
|
}
|
|
|
|
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
int cpu = (long)v;
|
|
|
|
val &= ~CPU_TASKS_FROZEN;
|
|
switch (val) {
|
|
case CPU_DYING:
|
|
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
|
|
cpu);
|
|
hardware_disable();
|
|
break;
|
|
case CPU_STARTING:
|
|
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
|
|
cpu);
|
|
hardware_enable();
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
|
|
void *v)
|
|
{
|
|
/*
|
|
* Some (well, at least mine) BIOSes hang on reboot if
|
|
* in vmx root mode.
|
|
*
|
|
* And Intel TXT required VMX off for all cpu when system shutdown.
|
|
*/
|
|
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
|
|
kvm_rebooting = true;
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block kvm_reboot_notifier = {
|
|
.notifier_call = kvm_reboot,
|
|
.priority = 0,
|
|
};
|
|
|
|
static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < bus->dev_count; i++) {
|
|
struct kvm_io_device *pos = bus->range[i].dev;
|
|
|
|
kvm_iodevice_destructor(pos);
|
|
}
|
|
kfree(bus);
|
|
}
|
|
|
|
static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
|
|
const struct kvm_io_range *r2)
|
|
{
|
|
if (r1->addr < r2->addr)
|
|
return -1;
|
|
if (r1->addr + r1->len > r2->addr + r2->len)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
|
|
{
|
|
return kvm_io_bus_cmp(p1, p2);
|
|
}
|
|
|
|
static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
|
|
gpa_t addr, int len)
|
|
{
|
|
bus->range[bus->dev_count++] = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
.dev = dev,
|
|
};
|
|
|
|
sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
|
|
kvm_io_bus_sort_cmp, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
|
|
gpa_t addr, int len)
|
|
{
|
|
struct kvm_io_range *range, key;
|
|
int off;
|
|
|
|
key = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
range = bsearch(&key, bus->range, bus->dev_count,
|
|
sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
|
|
if (range == NULL)
|
|
return -ENOENT;
|
|
|
|
off = range - bus->range;
|
|
|
|
while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
|
|
off--;
|
|
|
|
return off;
|
|
}
|
|
|
|
static int __kvm_io_bus_write(struct kvm_io_bus *bus,
|
|
struct kvm_io_range *range, const void *val)
|
|
{
|
|
int idx;
|
|
|
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
|
|
range->len, val))
|
|
return idx;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* kvm_io_bus_write - called under kvm->slots_lock */
|
|
int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, const void *val)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
int r;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
r = __kvm_io_bus_write(bus, &range, val);
|
|
return r < 0 ? r : 0;
|
|
}
|
|
|
|
/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
|
|
int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, const void *val, long cookie)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
|
|
/* First try the device referenced by cookie. */
|
|
if ((cookie >= 0) && (cookie < bus->dev_count) &&
|
|
(kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
|
|
if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
|
|
val))
|
|
return cookie;
|
|
|
|
/*
|
|
* cookie contained garbage; fall back to search and return the
|
|
* correct cookie value.
|
|
*/
|
|
return __kvm_io_bus_write(bus, &range, val);
|
|
}
|
|
|
|
static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
|
|
void *val)
|
|
{
|
|
int idx;
|
|
|
|
idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
|
|
if (idx < 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
while (idx < bus->dev_count &&
|
|
kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
|
|
if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
|
|
range->len, val))
|
|
return idx;
|
|
idx++;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_io_bus_write);
|
|
|
|
/* kvm_io_bus_read - called under kvm->slots_lock */
|
|
int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, void *val)
|
|
{
|
|
struct kvm_io_bus *bus;
|
|
struct kvm_io_range range;
|
|
int r;
|
|
|
|
range = (struct kvm_io_range) {
|
|
.addr = addr,
|
|
.len = len,
|
|
};
|
|
|
|
bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
|
|
r = __kvm_io_bus_read(bus, &range, val);
|
|
return r < 0 ? r : 0;
|
|
}
|
|
|
|
|
|
/* Caller must hold slots_lock. */
|
|
int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
|
|
int len, struct kvm_io_device *dev)
|
|
{
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
|
|
bus = kvm->buses[bus_idx];
|
|
/* exclude ioeventfd which is limited by maximum fd */
|
|
if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
|
|
return -ENOSPC;
|
|
|
|
new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
|
|
sizeof(struct kvm_io_range)), GFP_KERNEL);
|
|
if (!new_bus)
|
|
return -ENOMEM;
|
|
memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
|
|
sizeof(struct kvm_io_range)));
|
|
kvm_io_bus_insert_dev(new_bus, dev, addr, len);
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
kfree(bus);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must hold slots_lock. */
|
|
int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
|
|
struct kvm_io_device *dev)
|
|
{
|
|
int i, r;
|
|
struct kvm_io_bus *new_bus, *bus;
|
|
|
|
bus = kvm->buses[bus_idx];
|
|
r = -ENOENT;
|
|
for (i = 0; i < bus->dev_count; i++)
|
|
if (bus->range[i].dev == dev) {
|
|
r = 0;
|
|
break;
|
|
}
|
|
|
|
if (r)
|
|
return r;
|
|
|
|
new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
|
|
sizeof(struct kvm_io_range)), GFP_KERNEL);
|
|
if (!new_bus)
|
|
return -ENOMEM;
|
|
|
|
memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
|
|
new_bus->dev_count--;
|
|
memcpy(new_bus->range + i, bus->range + i + 1,
|
|
(new_bus->dev_count - i) * sizeof(struct kvm_io_range));
|
|
|
|
rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
|
|
synchronize_srcu_expedited(&kvm->srcu);
|
|
kfree(bus);
|
|
return r;
|
|
}
|
|
|
|
static struct notifier_block kvm_cpu_notifier = {
|
|
.notifier_call = kvm_cpu_hotplug,
|
|
};
|
|
|
|
static int vm_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
|
|
*val = 0;
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
*val += *(u32 *)((void *)kvm + offset);
|
|
spin_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
|
|
|
|
static int vcpu_stat_get(void *_offset, u64 *val)
|
|
{
|
|
unsigned offset = (long)_offset;
|
|
struct kvm *kvm;
|
|
struct kvm_vcpu *vcpu;
|
|
int i;
|
|
|
|
*val = 0;
|
|
spin_lock(&kvm_lock);
|
|
list_for_each_entry(kvm, &vm_list, vm_list)
|
|
kvm_for_each_vcpu(i, vcpu, kvm)
|
|
*val += *(u32 *)((void *)vcpu + offset);
|
|
|
|
spin_unlock(&kvm_lock);
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
|
|
|
|
static const struct file_operations *stat_fops[] = {
|
|
[KVM_STAT_VCPU] = &vcpu_stat_fops,
|
|
[KVM_STAT_VM] = &vm_stat_fops,
|
|
};
|
|
|
|
static int kvm_init_debug(void)
|
|
{
|
|
int r = -EEXIST;
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
|
|
if (kvm_debugfs_dir == NULL)
|
|
goto out;
|
|
|
|
for (p = debugfs_entries; p->name; ++p) {
|
|
p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
|
|
(void *)(long)p->offset,
|
|
stat_fops[p->kind]);
|
|
if (p->dentry == NULL)
|
|
goto out_dir;
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_dir:
|
|
debugfs_remove_recursive(kvm_debugfs_dir);
|
|
out:
|
|
return r;
|
|
}
|
|
|
|
static void kvm_exit_debug(void)
|
|
{
|
|
struct kvm_stats_debugfs_item *p;
|
|
|
|
for (p = debugfs_entries; p->name; ++p)
|
|
debugfs_remove(p->dentry);
|
|
debugfs_remove(kvm_debugfs_dir);
|
|
}
|
|
|
|
static int kvm_suspend(void)
|
|
{
|
|
if (kvm_usage_count)
|
|
hardware_disable_nolock(NULL);
|
|
return 0;
|
|
}
|
|
|
|
static void kvm_resume(void)
|
|
{
|
|
if (kvm_usage_count) {
|
|
WARN_ON(raw_spin_is_locked(&kvm_count_lock));
|
|
hardware_enable_nolock(NULL);
|
|
}
|
|
}
|
|
|
|
static struct syscore_ops kvm_syscore_ops = {
|
|
.suspend = kvm_suspend,
|
|
.resume = kvm_resume,
|
|
};
|
|
|
|
static inline
|
|
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
|
|
{
|
|
return container_of(pn, struct kvm_vcpu, preempt_notifier);
|
|
}
|
|
|
|
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
if (vcpu->preempted)
|
|
vcpu->preempted = false;
|
|
|
|
kvm_arch_sched_in(vcpu, cpu);
|
|
|
|
kvm_arch_vcpu_load(vcpu, cpu);
|
|
}
|
|
|
|
static void kvm_sched_out(struct preempt_notifier *pn,
|
|
struct task_struct *next)
|
|
{
|
|
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
|
|
|
|
if (current->state == TASK_RUNNING)
|
|
vcpu->preempted = true;
|
|
kvm_arch_vcpu_put(vcpu);
|
|
}
|
|
|
|
int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
|
|
struct module *module)
|
|
{
|
|
int r;
|
|
int cpu;
|
|
|
|
r = kvm_arch_init(opaque);
|
|
if (r)
|
|
goto out_fail;
|
|
|
|
/*
|
|
* kvm_arch_init makes sure there's at most one caller
|
|
* for architectures that support multiple implementations,
|
|
* like intel and amd on x86.
|
|
* kvm_arch_init must be called before kvm_irqfd_init to avoid creating
|
|
* conflicts in case kvm is already setup for another implementation.
|
|
*/
|
|
r = kvm_irqfd_init();
|
|
if (r)
|
|
goto out_irqfd;
|
|
|
|
if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
|
|
r = -ENOMEM;
|
|
goto out_free_0;
|
|
}
|
|
|
|
r = kvm_arch_hardware_setup();
|
|
if (r < 0)
|
|
goto out_free_0a;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
smp_call_function_single(cpu,
|
|
kvm_arch_check_processor_compat,
|
|
&r, 1);
|
|
if (r < 0)
|
|
goto out_free_1;
|
|
}
|
|
|
|
r = register_cpu_notifier(&kvm_cpu_notifier);
|
|
if (r)
|
|
goto out_free_2;
|
|
register_reboot_notifier(&kvm_reboot_notifier);
|
|
|
|
/* A kmem cache lets us meet the alignment requirements of fx_save. */
|
|
if (!vcpu_align)
|
|
vcpu_align = __alignof__(struct kvm_vcpu);
|
|
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
|
|
0, NULL);
|
|
if (!kvm_vcpu_cache) {
|
|
r = -ENOMEM;
|
|
goto out_free_3;
|
|
}
|
|
|
|
r = kvm_async_pf_init();
|
|
if (r)
|
|
goto out_free;
|
|
|
|
kvm_chardev_ops.owner = module;
|
|
kvm_vm_fops.owner = module;
|
|
kvm_vcpu_fops.owner = module;
|
|
|
|
r = misc_register(&kvm_dev);
|
|
if (r) {
|
|
printk(KERN_ERR "kvm: misc device register failed\n");
|
|
goto out_unreg;
|
|
}
|
|
|
|
register_syscore_ops(&kvm_syscore_ops);
|
|
|
|
kvm_preempt_ops.sched_in = kvm_sched_in;
|
|
kvm_preempt_ops.sched_out = kvm_sched_out;
|
|
|
|
r = kvm_init_debug();
|
|
if (r) {
|
|
printk(KERN_ERR "kvm: create debugfs files failed\n");
|
|
goto out_undebugfs;
|
|
}
|
|
|
|
r = kvm_vfio_ops_init();
|
|
WARN_ON(r);
|
|
|
|
return 0;
|
|
|
|
out_undebugfs:
|
|
unregister_syscore_ops(&kvm_syscore_ops);
|
|
misc_deregister(&kvm_dev);
|
|
out_unreg:
|
|
kvm_async_pf_deinit();
|
|
out_free:
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
out_free_3:
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
out_free_2:
|
|
out_free_1:
|
|
kvm_arch_hardware_unsetup();
|
|
out_free_0a:
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
out_free_0:
|
|
kvm_irqfd_exit();
|
|
out_irqfd:
|
|
kvm_arch_exit();
|
|
out_fail:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_init);
|
|
|
|
void kvm_exit(void)
|
|
{
|
|
kvm_exit_debug();
|
|
misc_deregister(&kvm_dev);
|
|
kmem_cache_destroy(kvm_vcpu_cache);
|
|
kvm_async_pf_deinit();
|
|
unregister_syscore_ops(&kvm_syscore_ops);
|
|
unregister_reboot_notifier(&kvm_reboot_notifier);
|
|
unregister_cpu_notifier(&kvm_cpu_notifier);
|
|
on_each_cpu(hardware_disable_nolock, NULL, 1);
|
|
kvm_arch_hardware_unsetup();
|
|
kvm_arch_exit();
|
|
kvm_irqfd_exit();
|
|
free_cpumask_var(cpus_hardware_enabled);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_exit);
|