mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 23:49:22 +07:00
612a9aab56
Pull drm merge (part 1) from Dave Airlie: "So first of all my tree and uapi stuff has a conflict mess, its my fault as the nouveau stuff didn't hit -next as were trying to rebase regressions out of it before we merged. Highlights: - SH mobile modesetting driver and associated helpers - some DRM core documentation - i915 modesetting rework, haswell hdmi, haswell and vlv fixes, write combined pte writing, ilk rc6 support, - nouveau: major driver rework into a hw core driver, makes features like SLI a lot saner to implement, - psb: add eDP/DP support for Cedarview - radeon: 2 layer page tables, async VM pte updates, better PLL selection for > 2 screens, better ACPI interactions The rest is general grab bag of fixes. So why part 1? well I have the exynos pull req which came in a bit late but was waiting for me to do something they shouldn't have and it looks fairly safe, and David Howells has some more header cleanups he'd like me to pull, that seem like a good idea, but I'd like to get this merge out of the way so -next dosen't get blocked." Tons of conflicts mostly due to silly include line changes, but mostly mindless. A few other small semantic conflicts too, noted from Dave's pre-merged branch. * 'drm-next' of git://people.freedesktop.org/~airlied/linux: (447 commits) drm/nv98/crypt: fix fuc build with latest envyas drm/nouveau/devinit: fixup various issues with subdev ctor/init ordering drm/nv41/vm: fix and enable use of "real" pciegart drm/nv44/vm: fix and enable use of "real" pciegart drm/nv04/dmaobj: fixup vm target handling in preparation for nv4x pcie drm/nouveau: store supported dma mask in vmmgr drm/nvc0/ibus: initial implementation of subdev drm/nouveau/therm: add support for fan-control modes drm/nouveau/hwmon: rename pwm0* to pmw1* to follow hwmon's rules drm/nouveau/therm: calculate the pwm divisor on nv50+ drm/nouveau/fan: rewrite the fan tachometer driver to get more precision, faster drm/nouveau/therm: move thermal-related functions to the therm subdev drm/nouveau/bios: parse the pwm divisor from the perf table drm/nouveau/therm: use the EXTDEV table to detect i2c monitoring devices drm/nouveau/therm: rework thermal table parsing drm/nouveau/gpio: expose the PWM/TOGGLE parameter found in the gpio vbios table drm/nouveau: fix pm initialization order drm/nouveau/bios: check that fixed tvdac gpio data is valid before using it drm/nouveau: log channel debug/error messages from client object rather than drm client drm/nouveau: have drm debugging macros build on top of core macros ...
856 lines
22 KiB
C
856 lines
22 KiB
C
/*
|
|
* Copyright 2010 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Ben Skeggs
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include "nouveau_drm.h"
|
|
#include "nouveau_bios.h"
|
|
#include "nouveau_hw.h"
|
|
#include "nouveau_pm.h"
|
|
#include "nouveau_hwsq.h"
|
|
|
|
#include "nv50_display.h"
|
|
|
|
#include <subdev/bios/pll.h>
|
|
#include <subdev/clock.h>
|
|
#include <subdev/timer.h>
|
|
#include <subdev/fb.h>
|
|
|
|
enum clk_src {
|
|
clk_src_crystal,
|
|
clk_src_href,
|
|
clk_src_hclk,
|
|
clk_src_hclkm3,
|
|
clk_src_hclkm3d2,
|
|
clk_src_host,
|
|
clk_src_nvclk,
|
|
clk_src_sclk,
|
|
clk_src_mclk,
|
|
clk_src_vdec,
|
|
clk_src_dom6
|
|
};
|
|
|
|
static u32 read_clk(struct drm_device *, enum clk_src);
|
|
|
|
static u32
|
|
read_div(struct drm_device *dev)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
|
|
switch (nv_device(drm->device)->chipset) {
|
|
case 0x50: /* it exists, but only has bit 31, not the dividers.. */
|
|
case 0x84:
|
|
case 0x86:
|
|
case 0x98:
|
|
case 0xa0:
|
|
return nv_rd32(device, 0x004700);
|
|
case 0x92:
|
|
case 0x94:
|
|
case 0x96:
|
|
return nv_rd32(device, 0x004800);
|
|
default:
|
|
return 0x00000000;
|
|
}
|
|
}
|
|
|
|
static u32
|
|
read_pll_src(struct drm_device *dev, u32 base)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 coef, ref = read_clk(dev, clk_src_crystal);
|
|
u32 rsel = nv_rd32(device, 0x00e18c);
|
|
int P, N, M, id;
|
|
|
|
switch (nv_device(drm->device)->chipset) {
|
|
case 0x50:
|
|
case 0xa0:
|
|
switch (base) {
|
|
case 0x4020:
|
|
case 0x4028: id = !!(rsel & 0x00000004); break;
|
|
case 0x4008: id = !!(rsel & 0x00000008); break;
|
|
case 0x4030: id = 0; break;
|
|
default:
|
|
NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
|
|
return 0;
|
|
}
|
|
|
|
coef = nv_rd32(device, 0x00e81c + (id * 0x0c));
|
|
ref *= (coef & 0x01000000) ? 2 : 4;
|
|
P = (coef & 0x00070000) >> 16;
|
|
N = ((coef & 0x0000ff00) >> 8) + 1;
|
|
M = ((coef & 0x000000ff) >> 0) + 1;
|
|
break;
|
|
case 0x84:
|
|
case 0x86:
|
|
case 0x92:
|
|
coef = nv_rd32(device, 0x00e81c);
|
|
P = (coef & 0x00070000) >> 16;
|
|
N = (coef & 0x0000ff00) >> 8;
|
|
M = (coef & 0x000000ff) >> 0;
|
|
break;
|
|
case 0x94:
|
|
case 0x96:
|
|
case 0x98:
|
|
rsel = nv_rd32(device, 0x00c050);
|
|
switch (base) {
|
|
case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
|
|
case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
|
|
case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
|
|
case 0x4030: rsel = 3; break;
|
|
default:
|
|
NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
|
|
return 0;
|
|
}
|
|
|
|
switch (rsel) {
|
|
case 0: id = 1; break;
|
|
case 1: return read_clk(dev, clk_src_crystal);
|
|
case 2: return read_clk(dev, clk_src_href);
|
|
case 3: id = 0; break;
|
|
}
|
|
|
|
coef = nv_rd32(device, 0x00e81c + (id * 0x28));
|
|
P = (nv_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
|
|
P += (coef & 0x00070000) >> 16;
|
|
N = (coef & 0x0000ff00) >> 8;
|
|
M = (coef & 0x000000ff) >> 0;
|
|
break;
|
|
default:
|
|
BUG_ON(1);
|
|
}
|
|
|
|
if (M)
|
|
return (ref * N / M) >> P;
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
read_pll_ref(struct drm_device *dev, u32 base)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 src, mast = nv_rd32(device, 0x00c040);
|
|
|
|
switch (base) {
|
|
case 0x004028:
|
|
src = !!(mast & 0x00200000);
|
|
break;
|
|
case 0x004020:
|
|
src = !!(mast & 0x00400000);
|
|
break;
|
|
case 0x004008:
|
|
src = !!(mast & 0x00010000);
|
|
break;
|
|
case 0x004030:
|
|
src = !!(mast & 0x02000000);
|
|
break;
|
|
case 0x00e810:
|
|
return read_clk(dev, clk_src_crystal);
|
|
default:
|
|
NV_ERROR(drm, "bad pll 0x%06x\n", base);
|
|
return 0;
|
|
}
|
|
|
|
if (src)
|
|
return read_clk(dev, clk_src_href);
|
|
return read_pll_src(dev, base);
|
|
}
|
|
|
|
static u32
|
|
read_pll(struct drm_device *dev, u32 base)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 mast = nv_rd32(device, 0x00c040);
|
|
u32 ctrl = nv_rd32(device, base + 0);
|
|
u32 coef = nv_rd32(device, base + 4);
|
|
u32 ref = read_pll_ref(dev, base);
|
|
u32 clk = 0;
|
|
int N1, N2, M1, M2;
|
|
|
|
if (base == 0x004028 && (mast & 0x00100000)) {
|
|
/* wtf, appears to only disable post-divider on nva0 */
|
|
if (nv_device(drm->device)->chipset != 0xa0)
|
|
return read_clk(dev, clk_src_dom6);
|
|
}
|
|
|
|
N2 = (coef & 0xff000000) >> 24;
|
|
M2 = (coef & 0x00ff0000) >> 16;
|
|
N1 = (coef & 0x0000ff00) >> 8;
|
|
M1 = (coef & 0x000000ff);
|
|
if ((ctrl & 0x80000000) && M1) {
|
|
clk = ref * N1 / M1;
|
|
if ((ctrl & 0x40000100) == 0x40000000) {
|
|
if (M2)
|
|
clk = clk * N2 / M2;
|
|
else
|
|
clk = 0;
|
|
}
|
|
}
|
|
|
|
return clk;
|
|
}
|
|
|
|
static u32
|
|
read_clk(struct drm_device *dev, enum clk_src src)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 mast = nv_rd32(device, 0x00c040);
|
|
u32 P = 0;
|
|
|
|
switch (src) {
|
|
case clk_src_crystal:
|
|
return device->crystal;
|
|
case clk_src_href:
|
|
return 100000; /* PCIE reference clock */
|
|
case clk_src_hclk:
|
|
return read_clk(dev, clk_src_href) * 27778 / 10000;
|
|
case clk_src_hclkm3:
|
|
return read_clk(dev, clk_src_hclk) * 3;
|
|
case clk_src_hclkm3d2:
|
|
return read_clk(dev, clk_src_hclk) * 3 / 2;
|
|
case clk_src_host:
|
|
switch (mast & 0x30000000) {
|
|
case 0x00000000: return read_clk(dev, clk_src_href);
|
|
case 0x10000000: break;
|
|
case 0x20000000: /* !0x50 */
|
|
case 0x30000000: return read_clk(dev, clk_src_hclk);
|
|
}
|
|
break;
|
|
case clk_src_nvclk:
|
|
if (!(mast & 0x00100000))
|
|
P = (nv_rd32(device, 0x004028) & 0x00070000) >> 16;
|
|
switch (mast & 0x00000003) {
|
|
case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
|
|
case 0x00000001: return read_clk(dev, clk_src_dom6);
|
|
case 0x00000002: return read_pll(dev, 0x004020) >> P;
|
|
case 0x00000003: return read_pll(dev, 0x004028) >> P;
|
|
}
|
|
break;
|
|
case clk_src_sclk:
|
|
P = (nv_rd32(device, 0x004020) & 0x00070000) >> 16;
|
|
switch (mast & 0x00000030) {
|
|
case 0x00000000:
|
|
if (mast & 0x00000080)
|
|
return read_clk(dev, clk_src_host) >> P;
|
|
return read_clk(dev, clk_src_crystal) >> P;
|
|
case 0x00000010: break;
|
|
case 0x00000020: return read_pll(dev, 0x004028) >> P;
|
|
case 0x00000030: return read_pll(dev, 0x004020) >> P;
|
|
}
|
|
break;
|
|
case clk_src_mclk:
|
|
P = (nv_rd32(device, 0x004008) & 0x00070000) >> 16;
|
|
if (nv_rd32(device, 0x004008) & 0x00000200) {
|
|
switch (mast & 0x0000c000) {
|
|
case 0x00000000:
|
|
return read_clk(dev, clk_src_crystal) >> P;
|
|
case 0x00008000:
|
|
case 0x0000c000:
|
|
return read_clk(dev, clk_src_href) >> P;
|
|
}
|
|
} else {
|
|
return read_pll(dev, 0x004008) >> P;
|
|
}
|
|
break;
|
|
case clk_src_vdec:
|
|
P = (read_div(dev) & 0x00000700) >> 8;
|
|
switch (nv_device(drm->device)->chipset) {
|
|
case 0x84:
|
|
case 0x86:
|
|
case 0x92:
|
|
case 0x94:
|
|
case 0x96:
|
|
case 0xa0:
|
|
switch (mast & 0x00000c00) {
|
|
case 0x00000000:
|
|
if (nv_device(drm->device)->chipset == 0xa0) /* wtf?? */
|
|
return read_clk(dev, clk_src_nvclk) >> P;
|
|
return read_clk(dev, clk_src_crystal) >> P;
|
|
case 0x00000400:
|
|
return 0;
|
|
case 0x00000800:
|
|
if (mast & 0x01000000)
|
|
return read_pll(dev, 0x004028) >> P;
|
|
return read_pll(dev, 0x004030) >> P;
|
|
case 0x00000c00:
|
|
return read_clk(dev, clk_src_nvclk) >> P;
|
|
}
|
|
break;
|
|
case 0x98:
|
|
switch (mast & 0x00000c00) {
|
|
case 0x00000000:
|
|
return read_clk(dev, clk_src_nvclk) >> P;
|
|
case 0x00000400:
|
|
return 0;
|
|
case 0x00000800:
|
|
return read_clk(dev, clk_src_hclkm3d2) >> P;
|
|
case 0x00000c00:
|
|
return read_clk(dev, clk_src_mclk) >> P;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case clk_src_dom6:
|
|
switch (nv_device(drm->device)->chipset) {
|
|
case 0x50:
|
|
case 0xa0:
|
|
return read_pll(dev, 0x00e810) >> 2;
|
|
case 0x84:
|
|
case 0x86:
|
|
case 0x92:
|
|
case 0x94:
|
|
case 0x96:
|
|
case 0x98:
|
|
P = (read_div(dev) & 0x00000007) >> 0;
|
|
switch (mast & 0x0c000000) {
|
|
case 0x00000000: return read_clk(dev, clk_src_href);
|
|
case 0x04000000: break;
|
|
case 0x08000000: return read_clk(dev, clk_src_hclk);
|
|
case 0x0c000000:
|
|
return read_clk(dev, clk_src_hclkm3) >> P;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
NV_DEBUG(drm, "unknown clock source %d 0x%08x\n", src, mast);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
if (nv_device(drm->device)->chipset == 0xaa ||
|
|
nv_device(drm->device)->chipset == 0xac)
|
|
return 0;
|
|
|
|
perflvl->core = read_clk(dev, clk_src_nvclk);
|
|
perflvl->shader = read_clk(dev, clk_src_sclk);
|
|
perflvl->memory = read_clk(dev, clk_src_mclk);
|
|
if (nv_device(drm->device)->chipset != 0x50) {
|
|
perflvl->vdec = read_clk(dev, clk_src_vdec);
|
|
perflvl->dom6 = read_clk(dev, clk_src_dom6);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct nv50_pm_state {
|
|
struct nouveau_pm_level *perflvl;
|
|
struct hwsq_ucode eclk_hwsq;
|
|
struct hwsq_ucode mclk_hwsq;
|
|
u32 mscript;
|
|
u32 mmast;
|
|
u32 mctrl;
|
|
u32 mcoef;
|
|
};
|
|
|
|
static u32
|
|
calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll,
|
|
u32 clk, int *N1, int *M1, int *log2P)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_bios *bios = nouveau_bios(device);
|
|
struct nouveau_clock *pclk = nouveau_clock(device);
|
|
struct nouveau_pll_vals coef;
|
|
int ret;
|
|
|
|
ret = nvbios_pll_parse(bios, reg, pll);
|
|
if (ret)
|
|
return 0;
|
|
|
|
pll->vco2.max_freq = 0;
|
|
pll->refclk = read_pll_ref(dev, reg);
|
|
if (!pll->refclk)
|
|
return 0;
|
|
|
|
ret = pclk->pll_calc(pclk, pll, clk, &coef);
|
|
if (ret == 0)
|
|
return 0;
|
|
|
|
*N1 = coef.N1;
|
|
*M1 = coef.M1;
|
|
*log2P = coef.log2P;
|
|
return ret;
|
|
}
|
|
|
|
static inline u32
|
|
calc_div(u32 src, u32 target, int *div)
|
|
{
|
|
u32 clk0 = src, clk1 = src;
|
|
for (*div = 0; *div <= 7; (*div)++) {
|
|
if (clk0 <= target) {
|
|
clk1 = clk0 << (*div ? 1 : 0);
|
|
break;
|
|
}
|
|
clk0 >>= 1;
|
|
}
|
|
|
|
if (target - clk0 <= clk1 - target)
|
|
return clk0;
|
|
(*div)--;
|
|
return clk1;
|
|
}
|
|
|
|
static inline u32
|
|
clk_same(u32 a, u32 b)
|
|
{
|
|
return ((a / 1000) == (b / 1000));
|
|
}
|
|
|
|
static void
|
|
mclk_precharge(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
hwsq_wr32(hwsq, 0x1002d4, 0x00000001);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
hwsq_wr32(hwsq, 0x1002d0, 0x00000001);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
|
|
{
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000);
|
|
}
|
|
|
|
static void
|
|
mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
|
|
{
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
if (nsec > 1000)
|
|
hwsq_usec(hwsq, (nsec + 500) / 1000);
|
|
}
|
|
|
|
static u32
|
|
mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
if (mr <= 1)
|
|
return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
|
|
if (mr <= 3)
|
|
return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nouveau_fb *pfb = nouveau_fb(device);
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
|
|
if (mr <= 1) {
|
|
if (pfb->ram.ranks > 1)
|
|
hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data);
|
|
hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data);
|
|
} else
|
|
if (mr <= 3) {
|
|
if (pfb->ram.ranks > 1)
|
|
hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data);
|
|
hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mclk_clock_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
u32 ctrl = nv_rd32(device, 0x004008);
|
|
|
|
info->mmast = nv_rd32(device, 0x00c040);
|
|
info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */
|
|
info->mmast |= 0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
|
|
|
|
hwsq_wr32(hwsq, 0xc040, info->mmast);
|
|
hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */
|
|
if (info->mctrl & 0x80000000)
|
|
hwsq_wr32(hwsq, 0x400c, info->mcoef);
|
|
hwsq_wr32(hwsq, 0x4008, info->mctrl);
|
|
}
|
|
|
|
static void
|
|
mclk_timing_set(struct nouveau_mem_exec_func *exec)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(exec->dev);
|
|
struct nv50_pm_state *info = exec->priv;
|
|
struct nouveau_pm_level *perflvl = info->perflvl;
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
int i;
|
|
|
|
for (i = 0; i < 9; i++) {
|
|
u32 reg = 0x100220 + (i * 4);
|
|
u32 val = nv_rd32(device, reg);
|
|
if (val != perflvl->timing.reg[i])
|
|
hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]);
|
|
}
|
|
}
|
|
|
|
static int
|
|
calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl,
|
|
struct nv50_pm_state *info)
|
|
{
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
u32 crtc_mask = nv50_display_active_crtcs(dev);
|
|
struct nouveau_mem_exec_func exec = {
|
|
.dev = dev,
|
|
.precharge = mclk_precharge,
|
|
.refresh = mclk_refresh,
|
|
.refresh_auto = mclk_refresh_auto,
|
|
.refresh_self = mclk_refresh_self,
|
|
.wait = mclk_wait,
|
|
.mrg = mclk_mrg,
|
|
.mrs = mclk_mrs,
|
|
.clock_set = mclk_clock_set,
|
|
.timing_set = mclk_timing_set,
|
|
.priv = info
|
|
};
|
|
struct hwsq_ucode *hwsq = &info->mclk_hwsq;
|
|
struct nvbios_pll pll;
|
|
int N, M, P;
|
|
int ret;
|
|
|
|
/* use pcie refclock if possible, otherwise use mpll */
|
|
info->mctrl = nv_rd32(device, 0x004008);
|
|
info->mctrl &= ~0x81ff0200;
|
|
if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
|
|
info->mctrl |= 0x00000200 | (pll.bias_p << 19);
|
|
} else {
|
|
ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P);
|
|
if (ret == 0)
|
|
return -EINVAL;
|
|
|
|
info->mctrl |= 0x80000000 | (P << 22) | (P << 16);
|
|
info->mctrl |= pll.bias_p << 19;
|
|
info->mcoef = (N << 8) | M;
|
|
}
|
|
|
|
/* build the ucode which will reclock the memory for us */
|
|
hwsq_init(hwsq);
|
|
if (crtc_mask) {
|
|
hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
|
|
hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
|
|
}
|
|
if (nv_device(drm->device)->chipset >= 0x92)
|
|
hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
|
|
hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
|
|
hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
|
|
|
|
ret = nouveau_mem_exec(&exec, perflvl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
|
|
hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
|
|
if (nv_device(drm->device)->chipset >= 0x92)
|
|
hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
|
|
hwsq_fini(hwsq);
|
|
return 0;
|
|
}
|
|
|
|
void *
|
|
nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
struct nv50_pm_state *info;
|
|
struct hwsq_ucode *hwsq;
|
|
struct nvbios_pll pll;
|
|
u32 out, mast, divs, ctrl;
|
|
int clk, ret = -EINVAL;
|
|
int N, M, P1, P2;
|
|
|
|
if (nv_device(drm->device)->chipset == 0xaa ||
|
|
nv_device(drm->device)->chipset == 0xac)
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
info = kmalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return ERR_PTR(-ENOMEM);
|
|
info->perflvl = perflvl;
|
|
|
|
/* memory: build hwsq ucode which we'll use to reclock memory.
|
|
* use pcie refclock if possible, otherwise use mpll */
|
|
info->mclk_hwsq.len = 0;
|
|
if (perflvl->memory) {
|
|
ret = calc_mclk(dev, perflvl, info);
|
|
if (ret)
|
|
goto error;
|
|
info->mscript = perflvl->memscript;
|
|
}
|
|
|
|
divs = read_div(dev);
|
|
mast = info->mmast;
|
|
|
|
/* start building HWSQ script for engine reclocking */
|
|
hwsq = &info->eclk_hwsq;
|
|
hwsq_init(hwsq);
|
|
hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
|
|
hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */
|
|
|
|
/* vdec/dom6: switch to "safe" clocks temporarily */
|
|
if (perflvl->vdec) {
|
|
mast &= ~0x00000c00;
|
|
divs &= ~0x00000700;
|
|
}
|
|
|
|
if (perflvl->dom6) {
|
|
mast &= ~0x0c000000;
|
|
divs &= ~0x00000007;
|
|
}
|
|
|
|
hwsq_wr32(hwsq, 0x00c040, mast);
|
|
|
|
/* vdec: avoid modifying xpll until we know exactly how the other
|
|
* clock domains work, i suspect at least some of them can also be
|
|
* tied to xpll...
|
|
*/
|
|
if (perflvl->vdec) {
|
|
/* see how close we can get using nvclk as a source */
|
|
clk = calc_div(perflvl->core, perflvl->vdec, &P1);
|
|
|
|
/* see how close we can get using xpll/hclk as a source */
|
|
if (nv_device(drm->device)->chipset != 0x98)
|
|
out = read_pll(dev, 0x004030);
|
|
else
|
|
out = read_clk(dev, clk_src_hclkm3d2);
|
|
out = calc_div(out, perflvl->vdec, &P2);
|
|
|
|
/* select whichever gets us closest */
|
|
if (abs((int)perflvl->vdec - clk) <=
|
|
abs((int)perflvl->vdec - out)) {
|
|
if (nv_device(drm->device)->chipset != 0x98)
|
|
mast |= 0x00000c00;
|
|
divs |= P1 << 8;
|
|
} else {
|
|
mast |= 0x00000800;
|
|
divs |= P2 << 8;
|
|
}
|
|
}
|
|
|
|
/* dom6: nfi what this is, but we're limited to various combinations
|
|
* of the host clock frequency
|
|
*/
|
|
if (perflvl->dom6) {
|
|
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
|
|
mast |= 0x00000000;
|
|
} else
|
|
if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
|
|
mast |= 0x08000000;
|
|
} else {
|
|
clk = read_clk(dev, clk_src_hclk) * 3;
|
|
clk = calc_div(clk, perflvl->dom6, &P1);
|
|
|
|
mast |= 0x0c000000;
|
|
divs |= P1;
|
|
}
|
|
}
|
|
|
|
/* vdec/dom6: complete switch to new clocks */
|
|
switch (nv_device(drm->device)->chipset) {
|
|
case 0x92:
|
|
case 0x94:
|
|
case 0x96:
|
|
hwsq_wr32(hwsq, 0x004800, divs);
|
|
break;
|
|
default:
|
|
hwsq_wr32(hwsq, 0x004700, divs);
|
|
break;
|
|
}
|
|
|
|
hwsq_wr32(hwsq, 0x00c040, mast);
|
|
|
|
/* core/shader: make sure sclk/nvclk are disconnected from their
|
|
* PLLs (nvclk to dom6, sclk to hclk)
|
|
*/
|
|
if (nv_device(drm->device)->chipset < 0x92)
|
|
mast = (mast & ~0x001000b0) | 0x00100080;
|
|
else
|
|
mast = (mast & ~0x000000b3) | 0x00000081;
|
|
|
|
hwsq_wr32(hwsq, 0x00c040, mast);
|
|
|
|
/* core: for the moment at least, always use nvpll */
|
|
clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
|
|
if (clk == 0)
|
|
goto error;
|
|
|
|
ctrl = nv_rd32(device, 0x004028) & ~0xc03f0100;
|
|
mast &= ~0x00100000;
|
|
mast |= 3;
|
|
|
|
hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl);
|
|
hwsq_wr32(hwsq, 0x00402c, (N << 8) | M);
|
|
|
|
/* shader: tie to nvclk if possible, otherwise use spll. have to be
|
|
* very careful that the shader clock is at least twice the core, or
|
|
* some chipsets will be very unhappy. i expect most or all of these
|
|
* cases will be handled by tying to nvclk, but it's possible there's
|
|
* corners
|
|
*/
|
|
ctrl = nv_rd32(device, 0x004020) & ~0xc03f0100;
|
|
|
|
if (P1-- && perflvl->shader == (perflvl->core << 1)) {
|
|
hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
|
|
hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast);
|
|
} else {
|
|
clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
|
|
if (clk == 0)
|
|
goto error;
|
|
ctrl |= 0x80000000;
|
|
|
|
hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
|
|
hwsq_wr32(hwsq, 0x004024, (N << 8) | M);
|
|
hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast);
|
|
}
|
|
|
|
hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
|
|
hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */
|
|
hwsq_fini(hwsq);
|
|
|
|
return info;
|
|
error:
|
|
kfree(info);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int
|
|
prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nouveau_drm *drm = nouveau_drm(dev);
|
|
u32 hwsq_data, hwsq_kick;
|
|
int i;
|
|
|
|
if (nv_device(drm->device)->chipset < 0x94) {
|
|
hwsq_data = 0x001400;
|
|
hwsq_kick = 0x00000003;
|
|
} else {
|
|
hwsq_data = 0x080000;
|
|
hwsq_kick = 0x00000001;
|
|
}
|
|
/* upload hwsq ucode */
|
|
nv_mask(device, 0x001098, 0x00000008, 0x00000000);
|
|
nv_wr32(device, 0x001304, 0x00000000);
|
|
if (nv_device(drm->device)->chipset >= 0x92)
|
|
nv_wr32(device, 0x001318, 0x00000000);
|
|
for (i = 0; i < hwsq->len / 4; i++)
|
|
nv_wr32(device, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
|
|
nv_mask(device, 0x001098, 0x00000018, 0x00000018);
|
|
|
|
/* launch, and wait for completion */
|
|
nv_wr32(device, 0x00130c, hwsq_kick);
|
|
if (!nv_wait(device, 0x001308, 0x00000100, 0x00000000)) {
|
|
NV_ERROR(drm, "hwsq ucode exec timed out\n");
|
|
NV_ERROR(drm, "0x001308: 0x%08x\n", nv_rd32(device, 0x001308));
|
|
for (i = 0; i < hwsq->len / 4; i++) {
|
|
NV_ERROR(drm, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
|
|
nv_rd32(device, 0x001400 + (i * 4)));
|
|
}
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nv50_pm_clocks_set(struct drm_device *dev, void *data)
|
|
{
|
|
struct nouveau_device *device = nouveau_dev(dev);
|
|
struct nv50_pm_state *info = data;
|
|
struct bit_entry M;
|
|
int ret = -EBUSY;
|
|
|
|
/* halt and idle execution engines */
|
|
nv_mask(device, 0x002504, 0x00000001, 0x00000001);
|
|
if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010))
|
|
goto resume;
|
|
if (!nv_wait(device, 0x00251c, 0x0000003f, 0x0000003f))
|
|
goto resume;
|
|
|
|
/* program memory clock, if necessary - must come before engine clock
|
|
* reprogramming due to how we construct the hwsq scripts in pre()
|
|
*/
|
|
#define nouveau_bios_init_exec(a,b) nouveau_bios_run_init_table((a), (b), NULL, 0)
|
|
if (info->mclk_hwsq.len) {
|
|
/* execute some scripts that do ??? from the vbios.. */
|
|
if (!bit_table(dev, 'M', &M) && M.version == 1) {
|
|
if (M.length >= 6)
|
|
nouveau_bios_init_exec(dev, ROM16(M.data[5]));
|
|
if (M.length >= 8)
|
|
nouveau_bios_init_exec(dev, ROM16(M.data[7]));
|
|
if (M.length >= 10)
|
|
nouveau_bios_init_exec(dev, ROM16(M.data[9]));
|
|
nouveau_bios_init_exec(dev, info->mscript);
|
|
}
|
|
|
|
ret = prog_hwsq(dev, &info->mclk_hwsq);
|
|
if (ret)
|
|
goto resume;
|
|
}
|
|
|
|
/* program engine clocks */
|
|
ret = prog_hwsq(dev, &info->eclk_hwsq);
|
|
|
|
resume:
|
|
nv_mask(device, 0x002504, 0x00000001, 0x00000000);
|
|
kfree(info);
|
|
return ret;
|
|
}
|