linux_dsm_epyc7002/drivers/gpu/drm/nouveau/nvkm/falcon/base.c
Alexandre Courbot 31214108ad drm/nouveau/core: add falcon library functions
Falcon processors are used in various places of GPU chips. Although there
exist different versions of the falcon, and some variants exist, the
base set of actions performed on them is the same, which results in lots
of duplicated code.

This patch consolidates the current nvkm_falcon structure and extends it
with the following features:

* Ability for an engine to obtain and later release a given falcon,
* Abstractions for basic operations (IMEM/DMEM access, start, etc)
* Abstractions for secure operations if a falcon is secure

Abstractions make it easy to e.g. start a falcon, without having to care
about its details. For instance, falcons in secure mode need to be
started by writing to a different register.

Right now the abstractions variants only cover secure vs. non-secure
falcon, but more will come as e.g. SEC2 support is added.

This is still a WIP as other functions previously done by
engine/falcon.c need to be reimplemented. However this first step allows
to keep things simple and to discuss basic design.

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2017-02-17 15:14:30 +10:00

192 lines
4.7 KiB
C

/*
* Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include <subdev/mc.h>
void
nvkm_falcon_load_imem(struct nvkm_falcon *falcon, void *data, u32 start,
u32 size, u16 tag, u8 port, bool secure)
{
if (secure && !falcon->secret) {
nvkm_warn(falcon->user,
"writing with secure tag on a non-secure falcon!\n");
return;
}
falcon->func->load_imem(falcon, data, start, size, tag, port,
secure);
}
void
nvkm_falcon_load_dmem(struct nvkm_falcon *falcon, void *data, u32 start,
u32 size, u8 port)
{
falcon->func->load_dmem(falcon, data, start, size, port);
}
void
nvkm_falcon_read_dmem(struct nvkm_falcon *falcon, u32 start, u32 size, u8 port,
void *data)
{
falcon->func->read_dmem(falcon, start, size, port, data);
}
void
nvkm_falcon_bind_context(struct nvkm_falcon *falcon, struct nvkm_gpuobj *inst)
{
if (!falcon->func->bind_context) {
nvkm_error(falcon->user,
"Context binding not supported on this falcon!\n");
return;
}
falcon->func->bind_context(falcon, inst);
}
void
nvkm_falcon_set_start_addr(struct nvkm_falcon *falcon, u32 start_addr)
{
falcon->func->set_start_addr(falcon, start_addr);
}
void
nvkm_falcon_start(struct nvkm_falcon *falcon)
{
falcon->func->start(falcon);
}
int
nvkm_falcon_enable(struct nvkm_falcon *falcon)
{
struct nvkm_device *device = falcon->owner->device;
enum nvkm_devidx id = falcon->owner->index;
int ret;
nvkm_mc_enable(device, id);
ret = falcon->func->enable(falcon);
if (ret) {
nvkm_mc_disable(device, id);
return ret;
}
return 0;
}
void
nvkm_falcon_disable(struct nvkm_falcon *falcon)
{
struct nvkm_device *device = falcon->owner->device;
enum nvkm_devidx id = falcon->owner->index;
/* already disabled, return or wait_idle will timeout */
if (!nvkm_mc_enabled(device, id))
return;
falcon->func->disable(falcon);
nvkm_mc_disable(device, id);
}
int
nvkm_falcon_reset(struct nvkm_falcon *falcon)
{
nvkm_falcon_disable(falcon);
return nvkm_falcon_enable(falcon);
}
int
nvkm_falcon_wait_for_halt(struct nvkm_falcon *falcon, u32 ms)
{
return falcon->func->wait_for_halt(falcon, ms);
}
int
nvkm_falcon_clear_interrupt(struct nvkm_falcon *falcon, u32 mask)
{
return falcon->func->clear_interrupt(falcon, mask);
}
void
nvkm_falcon_put(struct nvkm_falcon *falcon, const struct nvkm_subdev *user)
{
mutex_lock(&falcon->mutex);
if (falcon->user == user) {
nvkm_debug(falcon->user, "released %s falcon\n", falcon->name);
falcon->user = NULL;
}
mutex_unlock(&falcon->mutex);
}
int
nvkm_falcon_get(struct nvkm_falcon *falcon, const struct nvkm_subdev *user)
{
mutex_lock(&falcon->mutex);
if (falcon->user) {
nvkm_error(user, "%s falcon already acquired by %s!\n",
falcon->name, nvkm_subdev_name[falcon->user->index]);
mutex_unlock(&falcon->mutex);
return -EBUSY;
}
nvkm_debug(user, "acquired %s falcon\n", falcon->name);
falcon->user = user;
mutex_unlock(&falcon->mutex);
return 0;
}
void
nvkm_falcon_ctor(const struct nvkm_falcon_func *func,
struct nvkm_subdev *subdev, const char *name, u32 addr,
struct nvkm_falcon *falcon)
{
u32 reg;
falcon->func = func;
falcon->owner = subdev;
falcon->name = name;
falcon->addr = addr;
mutex_init(&falcon->mutex);
reg = nvkm_falcon_rd32(falcon, 0x12c);
falcon->version = reg & 0xf;
falcon->secret = (reg >> 4) & 0x3;
falcon->code.ports = (reg >> 8) & 0xf;
falcon->data.ports = (reg >> 12) & 0xf;
reg = nvkm_falcon_rd32(falcon, 0x108);
falcon->code.limit = (reg & 0x1ff) << 8;
falcon->data.limit = (reg & 0x3fe00) >> 1;
reg = nvkm_falcon_rd32(falcon, 0xc08);
falcon->debug = (reg >> 20) & 0x1;
}
void
nvkm_falcon_del(struct nvkm_falcon **pfalcon)
{
if (*pfalcon) {
kfree(*pfalcon);
*pfalcon = NULL;
}
}