linux_dsm_epyc7002/drivers/net/wireless/ath/ath11k/ce.c
Dan Carpenter c76fa846b0 ath11k: checking for NULL vs IS_ERR()
The ath11k_ce_alloc_ring() function returns error pointers on error, not
NULL.  The rest of the driver assumes that "pipe->src_ring" is either
valid or NULL so this patch introduces a temporary varaible to avoid
leaving it as an error pointer.

Fixes: d5c65159f2 ("ath11k: driver for Qualcomm IEEE 802.11ax devices")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2019-12-18 19:55:32 +02:00

809 lines
18 KiB
C

// SPDX-License-Identifier: BSD-3-Clause-Clear
/*
* Copyright (c) 2018-2019 The Linux Foundation. All rights reserved.
*/
#include "dp_rx.h"
#include "debug.h"
static const struct ce_attr host_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 16,
.src_sz_max = 2048,
.dest_nentries = 0,
},
/* CE1: target->host HTT + HTC control */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath11k_htc_rx_completion_handler,
},
/* CE2: target->host WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath11k_htc_rx_completion_handler,
},
/* CE3: host->target WMI (mac0) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
},
/* CE4: host->target HTT */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = 2048,
.src_sz_max = 256,
.dest_nentries = 0,
},
/* CE5: target->host pktlog */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath11k_dp_htt_htc_t2h_msg_handler,
},
/* CE6: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE7: host->target WMI (mac1) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
},
/* CE8: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE9: host->target WMI (mac2) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
},
/* CE10: target->host HTT */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath11k_htc_rx_completion_handler,
},
/* CE11: Not used */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
};
static int ath11k_ce_rx_buf_enqueue_pipe(struct ath11k_ce_pipe *pipe,
struct sk_buff *skb, dma_addr_t paddr)
{
struct ath11k_base *ab = pipe->ab;
struct ath11k_ce_ring *ring = pipe->dest_ring;
struct hal_srng *srng;
unsigned int write_index;
unsigned int nentries_mask = ring->nentries_mask;
u32 *desc;
int ret;
lockdep_assert_held(&ab->ce.ce_lock);
write_index = ring->write_index;
srng = &ab->hal.srng_list[ring->hal_ring_id];
spin_lock_bh(&srng->lock);
ath11k_hal_srng_access_begin(ab, srng);
if (unlikely(ath11k_hal_srng_src_num_free(ab, srng, false) < 1)) {
ret = -ENOSPC;
goto exit;
}
desc = ath11k_hal_srng_src_get_next_entry(ab, srng);
if (!desc) {
ret = -ENOSPC;
goto exit;
}
ath11k_hal_ce_dst_set_desc(desc, paddr);
ring->skb[write_index] = skb;
write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
ring->write_index = write_index;
pipe->rx_buf_needed--;
ret = 0;
exit:
ath11k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
return ret;
}
static int ath11k_ce_rx_post_pipe(struct ath11k_ce_pipe *pipe)
{
struct ath11k_base *ab = pipe->ab;
struct sk_buff *skb;
dma_addr_t paddr;
int ret = 0;
if (!(pipe->dest_ring || pipe->status_ring))
return 0;
spin_lock_bh(&ab->ce.ce_lock);
while (pipe->rx_buf_needed) {
skb = dev_alloc_skb(pipe->buf_sz);
if (!skb) {
ret = -ENOMEM;
goto exit;
}
WARN_ON_ONCE(!IS_ALIGNED((unsigned long)skb->data, 4));
paddr = dma_map_single(ab->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ab->dev, paddr))) {
ath11k_warn(ab, "failed to dma map ce rx buf\n");
dev_kfree_skb_any(skb);
ret = -EIO;
goto exit;
}
ATH11K_SKB_RXCB(skb)->paddr = paddr;
ret = ath11k_ce_rx_buf_enqueue_pipe(pipe, skb, paddr);
if (ret) {
ath11k_warn(ab, "failed to enqueue rx buf: %d\n", ret);
dma_unmap_single(ab->dev, paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
goto exit;
}
}
exit:
spin_unlock_bh(&ab->ce.ce_lock);
return ret;
}
static int ath11k_ce_completed_recv_next(struct ath11k_ce_pipe *pipe,
struct sk_buff **skb, int *nbytes)
{
struct ath11k_base *ab = pipe->ab;
struct hal_srng *srng;
unsigned int sw_index;
unsigned int nentries_mask;
u32 *desc;
int ret = 0;
spin_lock_bh(&ab->ce.ce_lock);
sw_index = pipe->dest_ring->sw_index;
nentries_mask = pipe->dest_ring->nentries_mask;
srng = &ab->hal.srng_list[pipe->status_ring->hal_ring_id];
spin_lock_bh(&srng->lock);
ath11k_hal_srng_access_begin(ab, srng);
desc = ath11k_hal_srng_dst_get_next_entry(ab, srng);
if (!desc) {
ret = -EIO;
goto err;
}
*nbytes = ath11k_hal_ce_dst_status_get_length(desc);
if (*nbytes == 0) {
ret = -EIO;
goto err;
}
*skb = pipe->dest_ring->skb[sw_index];
pipe->dest_ring->skb[sw_index] = NULL;
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
pipe->dest_ring->sw_index = sw_index;
pipe->rx_buf_needed++;
err:
ath11k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
spin_unlock_bh(&ab->ce.ce_lock);
return ret;
}
static void ath11k_ce_recv_process_cb(struct ath11k_ce_pipe *pipe)
{
struct ath11k_base *ab = pipe->ab;
struct sk_buff *skb;
struct sk_buff_head list;
unsigned int nbytes, max_nbytes;
int ret;
__skb_queue_head_init(&list);
while (ath11k_ce_completed_recv_next(pipe, &skb, &nbytes) == 0) {
max_nbytes = skb->len + skb_tailroom(skb);
dma_unmap_single(ab->dev, ATH11K_SKB_RXCB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
if (unlikely(max_nbytes < nbytes)) {
ath11k_warn(ab, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
dev_kfree_skb_any(skb);
continue;
}
skb_put(skb, nbytes);
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list))) {
ath11k_dbg(ab, ATH11K_DBG_AHB, "rx ce pipe %d len %d\n",
pipe->pipe_num, skb->len);
pipe->recv_cb(ab, skb);
}
ret = ath11k_ce_rx_post_pipe(pipe);
if (ret && ret != -ENOSPC) {
ath11k_warn(ab, "failed to post rx buf to pipe: %d err: %d\n",
pipe->pipe_num, ret);
mod_timer(&ab->rx_replenish_retry,
jiffies + ATH11K_CE_RX_POST_RETRY_JIFFIES);
}
}
static struct sk_buff *ath11k_ce_completed_send_next(struct ath11k_ce_pipe *pipe)
{
struct ath11k_base *ab = pipe->ab;
struct hal_srng *srng;
unsigned int sw_index;
unsigned int nentries_mask;
struct sk_buff *skb;
u32 *desc;
spin_lock_bh(&ab->ce.ce_lock);
sw_index = pipe->src_ring->sw_index;
nentries_mask = pipe->src_ring->nentries_mask;
srng = &ab->hal.srng_list[pipe->src_ring->hal_ring_id];
spin_lock_bh(&srng->lock);
ath11k_hal_srng_access_begin(ab, srng);
desc = ath11k_hal_srng_src_reap_next(ab, srng);
if (!desc) {
skb = ERR_PTR(-EIO);
goto err_unlock;
}
skb = pipe->src_ring->skb[sw_index];
pipe->src_ring->skb[sw_index] = NULL;
sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
pipe->src_ring->sw_index = sw_index;
err_unlock:
spin_unlock_bh(&srng->lock);
spin_unlock_bh(&ab->ce.ce_lock);
return skb;
}
static void ath11k_ce_send_done_cb(struct ath11k_ce_pipe *pipe)
{
struct ath11k_base *ab = pipe->ab;
struct sk_buff *skb;
while (!IS_ERR(skb = ath11k_ce_completed_send_next(pipe))) {
if (!skb)
continue;
dma_unmap_single(ab->dev, ATH11K_SKB_CB(skb)->paddr, skb->len,
DMA_TO_DEVICE);
dev_kfree_skb_any(skb);
}
}
static int ath11k_ce_init_ring(struct ath11k_base *ab,
struct ath11k_ce_ring *ce_ring,
int ce_id, enum hal_ring_type type)
{
struct hal_srng_params params = { 0 };
int ret;
params.ring_base_paddr = ce_ring->base_addr_ce_space;
params.ring_base_vaddr = ce_ring->base_addr_owner_space;
params.num_entries = ce_ring->nentries;
switch (type) {
case HAL_CE_SRC:
if (!(CE_ATTR_DIS_INTR & host_ce_config_wlan[ce_id].flags))
params.intr_batch_cntr_thres_entries = 1;
break;
case HAL_CE_DST:
params.max_buffer_len = host_ce_config_wlan[ce_id].src_sz_max;
if (!(host_ce_config_wlan[ce_id].flags & CE_ATTR_DIS_INTR)) {
params.intr_timer_thres_us = 1024;
params.flags |= HAL_SRNG_FLAGS_LOW_THRESH_INTR_EN;
params.low_threshold = ce_ring->nentries - 3;
}
break;
case HAL_CE_DST_STATUS:
if (!(host_ce_config_wlan[ce_id].flags & CE_ATTR_DIS_INTR)) {
params.intr_batch_cntr_thres_entries = 1;
params.intr_timer_thres_us = 0x1000;
}
break;
default:
ath11k_warn(ab, "Invalid CE ring type %d\n", type);
return -EINVAL;
}
/* TODO: Init other params needed by HAL to init the ring */
ret = ath11k_hal_srng_setup(ab, type, ce_id, 0, &params);
if (ret < 0) {
ath11k_warn(ab, "failed to setup srng: %d ring_id %d\n",
ret, ce_id);
return ret;
}
ce_ring->hal_ring_id = ret;
return 0;
}
static struct ath11k_ce_ring *
ath11k_ce_alloc_ring(struct ath11k_base *ab, int nentries, int desc_sz)
{
struct ath11k_ce_ring *ce_ring;
dma_addr_t base_addr;
ce_ring = kzalloc(struct_size(ce_ring, skb, nentries), GFP_KERNEL);
if (ce_ring == NULL)
return ERR_PTR(-ENOMEM);
ce_ring->nentries = nentries;
ce_ring->nentries_mask = nentries - 1;
/* Legacy platforms that do not support cache
* coherent DMA are unsupported
*/
ce_ring->base_addr_owner_space_unaligned =
dma_alloc_coherent(ab->dev,
nentries * desc_sz + CE_DESC_RING_ALIGN,
&base_addr, GFP_KERNEL);
if (!ce_ring->base_addr_owner_space_unaligned) {
kfree(ce_ring);
return ERR_PTR(-ENOMEM);
}
ce_ring->base_addr_ce_space_unaligned = base_addr;
ce_ring->base_addr_owner_space = PTR_ALIGN(
ce_ring->base_addr_owner_space_unaligned,
CE_DESC_RING_ALIGN);
ce_ring->base_addr_ce_space = ALIGN(
ce_ring->base_addr_ce_space_unaligned,
CE_DESC_RING_ALIGN);
return ce_ring;
}
static int ath11k_ce_alloc_pipe(struct ath11k_base *ab, int ce_id)
{
struct ath11k_ce_pipe *pipe = &ab->ce.ce_pipe[ce_id];
const struct ce_attr *attr = &host_ce_config_wlan[ce_id];
struct ath11k_ce_ring *ring;
int nentries;
int desc_sz;
pipe->attr_flags = attr->flags;
if (attr->src_nentries) {
pipe->send_cb = ath11k_ce_send_done_cb;
nentries = roundup_pow_of_two(attr->src_nentries);
desc_sz = ath11k_hal_ce_get_desc_size(HAL_CE_DESC_SRC);
ring = ath11k_ce_alloc_ring(ab, nentries, desc_sz);
if (IS_ERR(ring))
return PTR_ERR(ring);
pipe->src_ring = ring;
}
if (attr->dest_nentries) {
pipe->recv_cb = attr->recv_cb;
nentries = roundup_pow_of_two(attr->dest_nentries);
desc_sz = ath11k_hal_ce_get_desc_size(HAL_CE_DESC_DST);
ring = ath11k_ce_alloc_ring(ab, nentries, desc_sz);
if (IS_ERR(ring))
return PTR_ERR(ring);
pipe->dest_ring = ring;
desc_sz = ath11k_hal_ce_get_desc_size(HAL_CE_DESC_DST_STATUS);
ring = ath11k_ce_alloc_ring(ab, nentries, desc_sz);
if (IS_ERR(ring))
return PTR_ERR(ring);
pipe->status_ring = ring;
}
return 0;
}
void ath11k_ce_per_engine_service(struct ath11k_base *ab, u16 ce_id)
{
struct ath11k_ce_pipe *pipe = &ab->ce.ce_pipe[ce_id];
if (pipe->send_cb)
pipe->send_cb(pipe);
if (pipe->recv_cb)
ath11k_ce_recv_process_cb(pipe);
}
void ath11k_ce_poll_send_completed(struct ath11k_base *ab, u8 pipe_id)
{
struct ath11k_ce_pipe *pipe = &ab->ce.ce_pipe[pipe_id];
if ((pipe->attr_flags & CE_ATTR_DIS_INTR) && pipe->send_cb)
pipe->send_cb(pipe);
}
int ath11k_ce_send(struct ath11k_base *ab, struct sk_buff *skb, u8 pipe_id,
u16 transfer_id)
{
struct ath11k_ce_pipe *pipe = &ab->ce.ce_pipe[pipe_id];
struct hal_srng *srng;
u32 *desc;
unsigned int write_index, sw_index;
unsigned int nentries_mask;
int ret = 0;
u8 byte_swap_data = 0;
int num_used;
/* Check if some entries could be regained by handling tx completion if
* the CE has interrupts disabled and the used entries is more than the
* defined usage threshold.
*/
if (pipe->attr_flags & CE_ATTR_DIS_INTR) {
spin_lock_bh(&ab->ce.ce_lock);
write_index = pipe->src_ring->write_index;
sw_index = pipe->src_ring->sw_index;
if (write_index >= sw_index)
num_used = write_index - sw_index;
else
num_used = pipe->src_ring->nentries - sw_index +
write_index;
spin_unlock_bh(&ab->ce.ce_lock);
if (num_used > ATH11K_CE_USAGE_THRESHOLD)
ath11k_ce_poll_send_completed(ab, pipe->pipe_num);
}
if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ab->dev_flags))
return -ESHUTDOWN;
spin_lock_bh(&ab->ce.ce_lock);
write_index = pipe->src_ring->write_index;
nentries_mask = pipe->src_ring->nentries_mask;
srng = &ab->hal.srng_list[pipe->src_ring->hal_ring_id];
spin_lock_bh(&srng->lock);
ath11k_hal_srng_access_begin(ab, srng);
if (unlikely(ath11k_hal_srng_src_num_free(ab, srng, false) < 1)) {
ath11k_hal_srng_access_end(ab, srng);
ret = -ENOBUFS;
goto err_unlock;
}
desc = ath11k_hal_srng_src_get_next_reaped(ab, srng);
if (!desc) {
ath11k_hal_srng_access_end(ab, srng);
ret = -ENOBUFS;
goto err_unlock;
}
if (pipe->attr_flags & CE_ATTR_BYTE_SWAP_DATA)
byte_swap_data = 1;
ath11k_hal_ce_src_set_desc(desc, ATH11K_SKB_CB(skb)->paddr,
skb->len, transfer_id, byte_swap_data);
pipe->src_ring->skb[write_index] = skb;
pipe->src_ring->write_index = CE_RING_IDX_INCR(nentries_mask,
write_index);
ath11k_hal_srng_access_end(ab, srng);
spin_unlock_bh(&srng->lock);
spin_unlock_bh(&ab->ce.ce_lock);
return 0;
err_unlock:
spin_unlock_bh(&srng->lock);
spin_unlock_bh(&ab->ce.ce_lock);
return ret;
}
static void ath11k_ce_rx_pipe_cleanup(struct ath11k_ce_pipe *pipe)
{
struct ath11k_base *ab = pipe->ab;
struct ath11k_ce_ring *ring = pipe->dest_ring;
struct sk_buff *skb;
int i;
if (!(ring && pipe->buf_sz))
return;
for (i = 0; i < ring->nentries; i++) {
skb = ring->skb[i];
if (!skb)
continue;
ring->skb[i] = NULL;
dma_unmap_single(ab->dev, ATH11K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb), DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
void ath11k_ce_cleanup_pipes(struct ath11k_base *ab)
{
struct ath11k_ce_pipe *pipe;
int pipe_num;
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
pipe = &ab->ce.ce_pipe[pipe_num];
ath11k_ce_rx_pipe_cleanup(pipe);
/* Cleanup any src CE's which have interrupts disabled */
ath11k_ce_poll_send_completed(ab, pipe_num);
/* NOTE: Should we also clean up tx buffer in all pipes? */
}
}
void ath11k_ce_rx_post_buf(struct ath11k_base *ab)
{
struct ath11k_ce_pipe *pipe;
int i;
int ret;
for (i = 0; i < CE_COUNT; i++) {
pipe = &ab->ce.ce_pipe[i];
ret = ath11k_ce_rx_post_pipe(pipe);
if (ret) {
if (ret == -ENOSPC)
continue;
ath11k_warn(ab, "failed to post rx buf to pipe: %d err: %d\n",
i, ret);
mod_timer(&ab->rx_replenish_retry,
jiffies + ATH11K_CE_RX_POST_RETRY_JIFFIES);
return;
}
}
}
void ath11k_ce_rx_replenish_retry(struct timer_list *t)
{
struct ath11k_base *ab = from_timer(ab, t, rx_replenish_retry);
ath11k_ce_rx_post_buf(ab);
}
int ath11k_ce_init_pipes(struct ath11k_base *ab)
{
struct ath11k_ce_pipe *pipe;
int i;
int ret;
for (i = 0; i < CE_COUNT; i++) {
pipe = &ab->ce.ce_pipe[i];
if (pipe->src_ring) {
ret = ath11k_ce_init_ring(ab, pipe->src_ring, i,
HAL_CE_SRC);
if (ret) {
ath11k_warn(ab, "failed to init src ring: %d\n",
ret);
/* Should we clear any partial init */
return ret;
}
pipe->src_ring->write_index = 0;
pipe->src_ring->sw_index = 0;
}
if (pipe->dest_ring) {
ret = ath11k_ce_init_ring(ab, pipe->dest_ring, i,
HAL_CE_DST);
if (ret) {
ath11k_warn(ab, "failed to init dest ring: %d\n",
ret);
/* Should we clear any partial init */
return ret;
}
pipe->rx_buf_needed = pipe->dest_ring->nentries ?
pipe->dest_ring->nentries - 2 : 0;
pipe->dest_ring->write_index = 0;
pipe->dest_ring->sw_index = 0;
}
if (pipe->status_ring) {
ret = ath11k_ce_init_ring(ab, pipe->status_ring, i,
HAL_CE_DST_STATUS);
if (ret) {
ath11k_warn(ab, "failed to init dest status ing: %d\n",
ret);
/* Should we clear any partial init */
return ret;
}
pipe->status_ring->write_index = 0;
pipe->status_ring->sw_index = 0;
}
}
return 0;
}
void ath11k_ce_free_pipes(struct ath11k_base *ab)
{
struct ath11k_ce_pipe *pipe;
int desc_sz;
int i;
for (i = 0; i < CE_COUNT; i++) {
pipe = &ab->ce.ce_pipe[i];
if (pipe->src_ring) {
desc_sz = ath11k_hal_ce_get_desc_size(HAL_CE_DESC_SRC);
dma_free_coherent(ab->dev,
pipe->src_ring->nentries * desc_sz +
CE_DESC_RING_ALIGN,
pipe->src_ring->base_addr_owner_space,
pipe->src_ring->base_addr_ce_space);
kfree(pipe->src_ring);
pipe->src_ring = NULL;
}
if (pipe->dest_ring) {
desc_sz = ath11k_hal_ce_get_desc_size(HAL_CE_DESC_DST);
dma_free_coherent(ab->dev,
pipe->dest_ring->nentries * desc_sz +
CE_DESC_RING_ALIGN,
pipe->dest_ring->base_addr_owner_space,
pipe->dest_ring->base_addr_ce_space);
kfree(pipe->dest_ring);
pipe->dest_ring = NULL;
}
if (pipe->status_ring) {
desc_sz =
ath11k_hal_ce_get_desc_size(HAL_CE_DESC_DST_STATUS);
dma_free_coherent(ab->dev,
pipe->status_ring->nentries * desc_sz +
CE_DESC_RING_ALIGN,
pipe->status_ring->base_addr_owner_space,
pipe->status_ring->base_addr_ce_space);
kfree(pipe->status_ring);
pipe->status_ring = NULL;
}
}
}
int ath11k_ce_alloc_pipes(struct ath11k_base *ab)
{
struct ath11k_ce_pipe *pipe;
int i;
int ret;
const struct ce_attr *attr;
spin_lock_init(&ab->ce.ce_lock);
for (i = 0; i < CE_COUNT; i++) {
attr = &host_ce_config_wlan[i];
pipe = &ab->ce.ce_pipe[i];
pipe->pipe_num = i;
pipe->ab = ab;
pipe->buf_sz = attr->src_sz_max;
ret = ath11k_ce_alloc_pipe(ab, i);
if (ret) {
/* Free any parial successful allocation */
ath11k_ce_free_pipes(ab);
return ret;
}
}
return 0;
}
/* For Big Endian Host, Copy Engine byte_swap is enabled
* When Copy Engine does byte_swap, need to byte swap again for the
* Host to get/put buffer content in the correct byte order
*/
void ath11k_ce_byte_swap(void *mem, u32 len)
{
int i;
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) {
if (!mem)
return;
for (i = 0; i < (len / 4); i++) {
*(u32 *)mem = swab32(*(u32 *)mem);
mem += 4;
}
}
}
int ath11k_ce_get_attr_flags(int ce_id)
{
if (ce_id >= CE_COUNT)
return -EINVAL;
return host_ce_config_wlan[ce_id].flags;
}