mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 11:29:53 +07:00
3a230a554d
Since we temporarily disable the heartbeat and restore back to the default value, we can use the stored defaults on the engine and avoid using a local. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200519063123.20673-3-chris@chris-wilson.co.uk
1319 lines
30 KiB
C
1319 lines
30 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2020 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/pm_qos.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include "intel_engine_heartbeat.h"
|
|
#include "intel_engine_pm.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_gt_clock_utils.h"
|
|
#include "intel_gt_pm.h"
|
|
#include "intel_rc6.h"
|
|
#include "selftest_rps.h"
|
|
#include "selftests/igt_flush_test.h"
|
|
#include "selftests/igt_spinner.h"
|
|
#include "selftests/librapl.h"
|
|
|
|
/* Try to isolate the impact of cstates from determing frequency response */
|
|
#define CPU_LATENCY 0 /* -1 to disable pm_qos, 0 to disable cstates */
|
|
|
|
static void engine_heartbeat_disable(struct intel_engine_cs *engine)
|
|
{
|
|
engine->props.heartbeat_interval_ms = 0;
|
|
|
|
intel_engine_pm_get(engine);
|
|
intel_engine_park_heartbeat(engine);
|
|
}
|
|
|
|
static void engine_heartbeat_enable(struct intel_engine_cs *engine)
|
|
{
|
|
intel_engine_pm_put(engine);
|
|
|
|
engine->props.heartbeat_interval_ms =
|
|
engine->defaults.heartbeat_interval_ms;
|
|
}
|
|
|
|
static void dummy_rps_work(struct work_struct *wrk)
|
|
{
|
|
}
|
|
|
|
static int cmp_u64(const void *A, const void *B)
|
|
{
|
|
const u64 *a = A, *b = B;
|
|
|
|
if (a < b)
|
|
return -1;
|
|
else if (a > b)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int cmp_u32(const void *A, const void *B)
|
|
{
|
|
const u32 *a = A, *b = B;
|
|
|
|
if (a < b)
|
|
return -1;
|
|
else if (a > b)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *
|
|
create_spin_counter(struct intel_engine_cs *engine,
|
|
struct i915_address_space *vm,
|
|
bool srm,
|
|
u32 **cancel,
|
|
u32 **counter)
|
|
{
|
|
enum {
|
|
COUNT,
|
|
INC,
|
|
__NGPR__,
|
|
};
|
|
#define CS_GPR(x) GEN8_RING_CS_GPR(engine->mmio_base, x)
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_vma *vma;
|
|
unsigned long end;
|
|
u32 *base, *cs;
|
|
int loop, i;
|
|
int err;
|
|
|
|
obj = i915_gem_object_create_internal(vm->i915, 64 << 10);
|
|
if (IS_ERR(obj))
|
|
return ERR_CAST(obj);
|
|
|
|
end = obj->base.size / sizeof(u32) - 1;
|
|
|
|
vma = i915_vma_instance(obj, vm, NULL);
|
|
if (IS_ERR(vma)) {
|
|
i915_gem_object_put(obj);
|
|
return vma;
|
|
}
|
|
|
|
err = i915_vma_pin(vma, 0, 0, PIN_USER);
|
|
if (err) {
|
|
i915_vma_put(vma);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
base = i915_gem_object_pin_map(obj, I915_MAP_WC);
|
|
if (IS_ERR(base)) {
|
|
i915_gem_object_put(obj);
|
|
return ERR_CAST(base);
|
|
}
|
|
cs = base;
|
|
|
|
*cs++ = MI_LOAD_REGISTER_IMM(__NGPR__ * 2);
|
|
for (i = 0; i < __NGPR__; i++) {
|
|
*cs++ = i915_mmio_reg_offset(CS_GPR(i));
|
|
*cs++ = 0;
|
|
*cs++ = i915_mmio_reg_offset(CS_GPR(i)) + 4;
|
|
*cs++ = 0;
|
|
}
|
|
|
|
*cs++ = MI_LOAD_REGISTER_IMM(1);
|
|
*cs++ = i915_mmio_reg_offset(CS_GPR(INC));
|
|
*cs++ = 1;
|
|
|
|
loop = cs - base;
|
|
|
|
/* Unroll the loop to avoid MI_BB_START stalls impacting measurements */
|
|
for (i = 0; i < 1024; i++) {
|
|
*cs++ = MI_MATH(4);
|
|
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(COUNT));
|
|
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(INC));
|
|
*cs++ = MI_MATH_ADD;
|
|
*cs++ = MI_MATH_STORE(MI_MATH_REG(COUNT), MI_MATH_REG_ACCU);
|
|
|
|
if (srm) {
|
|
*cs++ = MI_STORE_REGISTER_MEM_GEN8;
|
|
*cs++ = i915_mmio_reg_offset(CS_GPR(COUNT));
|
|
*cs++ = lower_32_bits(vma->node.start + end * sizeof(*cs));
|
|
*cs++ = upper_32_bits(vma->node.start + end * sizeof(*cs));
|
|
}
|
|
}
|
|
|
|
*cs++ = MI_BATCH_BUFFER_START_GEN8;
|
|
*cs++ = lower_32_bits(vma->node.start + loop * sizeof(*cs));
|
|
*cs++ = upper_32_bits(vma->node.start + loop * sizeof(*cs));
|
|
GEM_BUG_ON(cs - base > end);
|
|
|
|
i915_gem_object_flush_map(obj);
|
|
|
|
*cancel = base + loop;
|
|
*counter = srm ? memset32(base + end, 0, 1) : NULL;
|
|
return vma;
|
|
}
|
|
|
|
static u8 wait_for_freq(struct intel_rps *rps, u8 freq, int timeout_ms)
|
|
{
|
|
u8 history[64], i;
|
|
unsigned long end;
|
|
int sleep;
|
|
|
|
i = 0;
|
|
memset(history, freq, sizeof(history));
|
|
sleep = 20;
|
|
|
|
/* The PCU does not change instantly, but drifts towards the goal? */
|
|
end = jiffies + msecs_to_jiffies(timeout_ms);
|
|
do {
|
|
u8 act;
|
|
|
|
act = read_cagf(rps);
|
|
if (time_after(jiffies, end))
|
|
return act;
|
|
|
|
/* Target acquired */
|
|
if (act == freq)
|
|
return act;
|
|
|
|
/* Any change within the last N samples? */
|
|
if (!memchr_inv(history, act, sizeof(history)))
|
|
return act;
|
|
|
|
history[i] = act;
|
|
i = (i + 1) % ARRAY_SIZE(history);
|
|
|
|
usleep_range(sleep, 2 * sleep);
|
|
sleep *= 2;
|
|
if (sleep > timeout_ms * 20)
|
|
sleep = timeout_ms * 20;
|
|
} while (1);
|
|
}
|
|
|
|
static u8 rps_set_check(struct intel_rps *rps, u8 freq)
|
|
{
|
|
mutex_lock(&rps->lock);
|
|
GEM_BUG_ON(!intel_rps_is_active(rps));
|
|
intel_rps_set(rps, freq);
|
|
GEM_BUG_ON(rps->last_freq != freq);
|
|
mutex_unlock(&rps->lock);
|
|
|
|
return wait_for_freq(rps, freq, 50);
|
|
}
|
|
|
|
static void show_pstate_limits(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
|
|
if (IS_BROXTON(i915)) {
|
|
pr_info("P_STATE_CAP[%x]: 0x%08x\n",
|
|
i915_mmio_reg_offset(BXT_RP_STATE_CAP),
|
|
intel_uncore_read(rps_to_uncore(rps),
|
|
BXT_RP_STATE_CAP));
|
|
} else if (IS_GEN(i915, 9)) {
|
|
pr_info("P_STATE_LIMITS[%x]: 0x%08x\n",
|
|
i915_mmio_reg_offset(GEN9_RP_STATE_LIMITS),
|
|
intel_uncore_read(rps_to_uncore(rps),
|
|
GEN9_RP_STATE_LIMITS));
|
|
}
|
|
}
|
|
|
|
int live_rps_clock_interval(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
int err = 0;
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
intel_gt_pm_get(gt);
|
|
intel_rps_disable(>->rps);
|
|
|
|
intel_gt_check_clock_frequency(gt);
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
u32 cycles;
|
|
u64 dt;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
continue;
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
engine_heartbeat_enable(engine);
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
pr_err("%s: RPS spinner did not start\n",
|
|
engine->name);
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
intel_gt_set_wedged(engine->gt);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
intel_uncore_write_fw(gt->uncore, GEN6_RP_CUR_UP_EI, 0);
|
|
|
|
/* Set the evaluation interval to infinity! */
|
|
intel_uncore_write_fw(gt->uncore,
|
|
GEN6_RP_UP_EI, 0xffffffff);
|
|
intel_uncore_write_fw(gt->uncore,
|
|
GEN6_RP_UP_THRESHOLD, 0xffffffff);
|
|
|
|
intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL,
|
|
GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG);
|
|
|
|
if (wait_for(intel_uncore_read_fw(gt->uncore,
|
|
GEN6_RP_CUR_UP_EI),
|
|
10)) {
|
|
/* Just skip the test; assume lack of HW support */
|
|
pr_notice("%s: rps evaluation interval not ticking\n",
|
|
engine->name);
|
|
err = -ENODEV;
|
|
} else {
|
|
ktime_t dt_[5];
|
|
u32 cycles_[5];
|
|
int i;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
preempt_disable();
|
|
|
|
dt_[i] = ktime_get();
|
|
cycles_[i] = -intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI);
|
|
|
|
udelay(1000);
|
|
|
|
dt_[i] = ktime_sub(ktime_get(), dt_[i]);
|
|
cycles_[i] += intel_uncore_read_fw(gt->uncore, GEN6_RP_CUR_UP_EI);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/* Use the median of both cycle/dt; close enough */
|
|
sort(cycles_, 5, sizeof(*cycles_), cmp_u32, NULL);
|
|
cycles = (cycles_[1] + 2 * cycles_[2] + cycles_[3]) / 4;
|
|
sort(dt_, 5, sizeof(*dt_), cmp_u64, NULL);
|
|
dt = div_u64(dt_[1] + 2 * dt_[2] + dt_[3], 4);
|
|
}
|
|
|
|
intel_uncore_write_fw(gt->uncore, GEN6_RP_CONTROL, 0);
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
|
|
if (err == 0) {
|
|
u64 time = intel_gt_pm_interval_to_ns(gt, cycles);
|
|
u32 expected =
|
|
intel_gt_ns_to_pm_interval(gt, dt);
|
|
|
|
pr_info("%s: rps counted %d C0 cycles [%lldns] in %lldns [%d cycles], using GT clock frequency of %uKHz\n",
|
|
engine->name, cycles, time, dt, expected,
|
|
gt->clock_frequency / 1000);
|
|
|
|
if (10 * time < 8 * dt ||
|
|
8 * time > 10 * dt) {
|
|
pr_err("%s: rps clock time does not match walltime!\n",
|
|
engine->name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (10 * expected < 8 * cycles ||
|
|
8 * expected > 10 * cycles) {
|
|
pr_err("%s: walltime does not match rps clock ticks!\n",
|
|
engine->name);
|
|
err = -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
|
|
break; /* once is enough */
|
|
}
|
|
|
|
intel_rps_enable(>->rps);
|
|
intel_gt_pm_put(gt);
|
|
|
|
igt_spinner_fini(&spin);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
if (err == -ENODEV) /* skipped, don't report a fail */
|
|
err = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int live_rps_control(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Check that the actual frequency matches our requested frequency,
|
|
* to verify our control mechanism. We have to be careful that the
|
|
* PCU may throttle the GPU in which case the actual frequency used
|
|
* will be lowered than requested.
|
|
*/
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (IS_CHERRYVIEW(gt->i915)) /* XXX fragile PCU */
|
|
return 0;
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
intel_gt_pm_get(gt);
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
ktime_t min_dt, max_dt;
|
|
int f, limit;
|
|
int min, max;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
continue;
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
pr_err("%s: RPS spinner did not start\n",
|
|
engine->name);
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
intel_gt_set_wedged(engine->gt);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (rps_set_check(rps, rps->min_freq) != rps->min_freq) {
|
|
pr_err("%s: could not set minimum frequency [%x], only %x!\n",
|
|
engine->name, rps->min_freq, read_cagf(rps));
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
show_pstate_limits(rps);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
for (f = rps->min_freq + 1; f < rps->max_freq; f++) {
|
|
if (rps_set_check(rps, f) < f)
|
|
break;
|
|
}
|
|
|
|
limit = rps_set_check(rps, f);
|
|
|
|
if (rps_set_check(rps, rps->min_freq) != rps->min_freq) {
|
|
pr_err("%s: could not restore minimum frequency [%x], only %x!\n",
|
|
engine->name, rps->min_freq, read_cagf(rps));
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
show_pstate_limits(rps);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
max_dt = ktime_get();
|
|
max = rps_set_check(rps, limit);
|
|
max_dt = ktime_sub(ktime_get(), max_dt);
|
|
|
|
min_dt = ktime_get();
|
|
min = rps_set_check(rps, rps->min_freq);
|
|
min_dt = ktime_sub(ktime_get(), min_dt);
|
|
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
|
|
pr_info("%s: range:[%x:%uMHz, %x:%uMHz] limit:[%x:%uMHz], %x:%x response %lluns:%lluns\n",
|
|
engine->name,
|
|
rps->min_freq, intel_gpu_freq(rps, rps->min_freq),
|
|
rps->max_freq, intel_gpu_freq(rps, rps->max_freq),
|
|
limit, intel_gpu_freq(rps, limit),
|
|
min, max, ktime_to_ns(min_dt), ktime_to_ns(max_dt));
|
|
|
|
if (limit == rps->min_freq) {
|
|
pr_err("%s: GPU throttled to minimum!\n",
|
|
engine->name);
|
|
show_pstate_limits(rps);
|
|
err = -ENODEV;
|
|
break;
|
|
}
|
|
|
|
if (igt_flush_test(gt->i915)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
intel_gt_pm_put(gt);
|
|
|
|
igt_spinner_fini(&spin);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void show_pcu_config(struct intel_rps *rps)
|
|
{
|
|
struct drm_i915_private *i915 = rps_to_i915(rps);
|
|
unsigned int max_gpu_freq, min_gpu_freq;
|
|
intel_wakeref_t wakeref;
|
|
int gpu_freq;
|
|
|
|
if (!HAS_LLC(i915))
|
|
return;
|
|
|
|
min_gpu_freq = rps->min_freq;
|
|
max_gpu_freq = rps->max_freq;
|
|
if (INTEL_GEN(i915) >= 9) {
|
|
/* Convert GT frequency to 50 HZ units */
|
|
min_gpu_freq /= GEN9_FREQ_SCALER;
|
|
max_gpu_freq /= GEN9_FREQ_SCALER;
|
|
}
|
|
|
|
wakeref = intel_runtime_pm_get(rps_to_uncore(rps)->rpm);
|
|
|
|
pr_info("%5s %5s %5s\n", "GPU", "eCPU", "eRing");
|
|
for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
|
|
int ia_freq = gpu_freq;
|
|
|
|
sandybridge_pcode_read(i915,
|
|
GEN6_PCODE_READ_MIN_FREQ_TABLE,
|
|
&ia_freq, NULL);
|
|
|
|
pr_info("%5d %5d %5d\n",
|
|
gpu_freq * 50,
|
|
((ia_freq >> 0) & 0xff) * 100,
|
|
((ia_freq >> 8) & 0xff) * 100);
|
|
}
|
|
|
|
intel_runtime_pm_put(rps_to_uncore(rps)->rpm, wakeref);
|
|
}
|
|
|
|
static u64 __measure_frequency(u32 *cntr, int duration_ms)
|
|
{
|
|
u64 dc, dt;
|
|
|
|
dt = ktime_get();
|
|
dc = READ_ONCE(*cntr);
|
|
usleep_range(1000 * duration_ms, 2000 * duration_ms);
|
|
dc = READ_ONCE(*cntr) - dc;
|
|
dt = ktime_get() - dt;
|
|
|
|
return div64_u64(1000 * 1000 * dc, dt);
|
|
}
|
|
|
|
static u64 measure_frequency_at(struct intel_rps *rps, u32 *cntr, int *freq)
|
|
{
|
|
u64 x[5];
|
|
int i;
|
|
|
|
*freq = rps_set_check(rps, *freq);
|
|
for (i = 0; i < 5; i++)
|
|
x[i] = __measure_frequency(cntr, 2);
|
|
*freq = (*freq + read_cagf(rps)) / 2;
|
|
|
|
/* A simple triangle filter for better result stability */
|
|
sort(x, 5, sizeof(*x), cmp_u64, NULL);
|
|
return div_u64(x[1] + 2 * x[2] + x[3], 4);
|
|
}
|
|
|
|
static u64 __measure_cs_frequency(struct intel_engine_cs *engine,
|
|
int duration_ms)
|
|
{
|
|
u64 dc, dt;
|
|
|
|
dt = ktime_get();
|
|
dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0));
|
|
usleep_range(1000 * duration_ms, 2000 * duration_ms);
|
|
dc = intel_uncore_read_fw(engine->uncore, CS_GPR(0)) - dc;
|
|
dt = ktime_get() - dt;
|
|
|
|
return div64_u64(1000 * 1000 * dc, dt);
|
|
}
|
|
|
|
static u64 measure_cs_frequency_at(struct intel_rps *rps,
|
|
struct intel_engine_cs *engine,
|
|
int *freq)
|
|
{
|
|
u64 x[5];
|
|
int i;
|
|
|
|
*freq = rps_set_check(rps, *freq);
|
|
for (i = 0; i < 5; i++)
|
|
x[i] = __measure_cs_frequency(engine, 2);
|
|
*freq = (*freq + read_cagf(rps)) / 2;
|
|
|
|
/* A simple triangle filter for better result stability */
|
|
sort(x, 5, sizeof(*x), cmp_u64, NULL);
|
|
return div_u64(x[1] + 2 * x[2] + x[3], 4);
|
|
}
|
|
|
|
static bool scaled_within(u64 x, u64 y, u32 f_n, u32 f_d)
|
|
{
|
|
return f_d * x > f_n * y && f_n * x < f_d * y;
|
|
}
|
|
|
|
int live_rps_frequency_cs(void *arg)
|
|
{
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
struct intel_engine_cs *engine;
|
|
struct pm_qos_request qos;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
/*
|
|
* The premise is that the GPU does change freqency at our behest.
|
|
* Let's check there is a correspondence between the requested
|
|
* frequency, the actual frequency, and the observed clock rate.
|
|
*/
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (INTEL_GEN(gt->i915) < 8) /* for CS simplicity */
|
|
return 0;
|
|
|
|
if (CPU_LATENCY >= 0)
|
|
cpu_latency_qos_add_request(&qos, CPU_LATENCY);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
struct i915_vma *vma;
|
|
u32 *cancel, *cntr;
|
|
struct {
|
|
u64 count;
|
|
int freq;
|
|
} min, max;
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
vma = create_spin_counter(engine,
|
|
engine->kernel_context->vm, false,
|
|
&cancel, &cntr);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
engine_heartbeat_enable(engine);
|
|
break;
|
|
}
|
|
|
|
rq = intel_engine_create_kernel_request(engine);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_vma;
|
|
}
|
|
|
|
i915_vma_lock(vma);
|
|
err = i915_request_await_object(rq, vma->obj, false);
|
|
if (!err)
|
|
err = i915_vma_move_to_active(vma, rq, 0);
|
|
if (!err)
|
|
err = rq->engine->emit_bb_start(rq,
|
|
vma->node.start,
|
|
PAGE_SIZE, 0);
|
|
i915_vma_unlock(vma);
|
|
i915_request_add(rq);
|
|
if (err)
|
|
goto err_vma;
|
|
|
|
if (wait_for(intel_uncore_read(engine->uncore, CS_GPR(0)),
|
|
10)) {
|
|
pr_err("%s: timed loop did not start\n",
|
|
engine->name);
|
|
goto err_vma;
|
|
}
|
|
|
|
min.freq = rps->min_freq;
|
|
min.count = measure_cs_frequency_at(rps, engine, &min.freq);
|
|
|
|
max.freq = rps->max_freq;
|
|
max.count = measure_cs_frequency_at(rps, engine, &max.freq);
|
|
|
|
pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n",
|
|
engine->name,
|
|
min.count, intel_gpu_freq(rps, min.freq),
|
|
max.count, intel_gpu_freq(rps, max.freq),
|
|
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count,
|
|
max.freq * min.count));
|
|
|
|
if (!scaled_within(max.freq * min.count,
|
|
min.freq * max.count,
|
|
2, 3)) {
|
|
int f;
|
|
|
|
pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n",
|
|
engine->name,
|
|
max.freq * min.count,
|
|
min.freq * max.count);
|
|
show_pcu_config(rps);
|
|
|
|
for (f = min.freq + 1; f <= rps->max_freq; f++) {
|
|
int act = f;
|
|
u64 count;
|
|
|
|
count = measure_cs_frequency_at(rps, engine, &act);
|
|
if (act < f)
|
|
break;
|
|
|
|
pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n",
|
|
engine->name,
|
|
act, intel_gpu_freq(rps, act), count,
|
|
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count,
|
|
act * min.count));
|
|
|
|
f = act; /* may skip ahead [pcu granularity] */
|
|
}
|
|
|
|
err = -EINVAL;
|
|
}
|
|
|
|
err_vma:
|
|
*cancel = MI_BATCH_BUFFER_END;
|
|
i915_gem_object_flush_map(vma->obj);
|
|
i915_gem_object_unpin_map(vma->obj);
|
|
i915_vma_unpin(vma);
|
|
i915_vma_put(vma);
|
|
|
|
engine_heartbeat_enable(engine);
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
if (CPU_LATENCY >= 0)
|
|
cpu_latency_qos_remove_request(&qos);
|
|
|
|
return err;
|
|
}
|
|
|
|
int live_rps_frequency_srm(void *arg)
|
|
{
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
struct intel_engine_cs *engine;
|
|
struct pm_qos_request qos;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
/*
|
|
* The premise is that the GPU does change freqency at our behest.
|
|
* Let's check there is a correspondence between the requested
|
|
* frequency, the actual frequency, and the observed clock rate.
|
|
*/
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (INTEL_GEN(gt->i915) < 8) /* for CS simplicity */
|
|
return 0;
|
|
|
|
if (CPU_LATENCY >= 0)
|
|
cpu_latency_qos_add_request(&qos, CPU_LATENCY);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
struct i915_vma *vma;
|
|
u32 *cancel, *cntr;
|
|
struct {
|
|
u64 count;
|
|
int freq;
|
|
} min, max;
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
vma = create_spin_counter(engine,
|
|
engine->kernel_context->vm, true,
|
|
&cancel, &cntr);
|
|
if (IS_ERR(vma)) {
|
|
err = PTR_ERR(vma);
|
|
engine_heartbeat_enable(engine);
|
|
break;
|
|
}
|
|
|
|
rq = intel_engine_create_kernel_request(engine);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err_vma;
|
|
}
|
|
|
|
i915_vma_lock(vma);
|
|
err = i915_request_await_object(rq, vma->obj, false);
|
|
if (!err)
|
|
err = i915_vma_move_to_active(vma, rq, 0);
|
|
if (!err)
|
|
err = rq->engine->emit_bb_start(rq,
|
|
vma->node.start,
|
|
PAGE_SIZE, 0);
|
|
i915_vma_unlock(vma);
|
|
i915_request_add(rq);
|
|
if (err)
|
|
goto err_vma;
|
|
|
|
if (wait_for(READ_ONCE(*cntr), 10)) {
|
|
pr_err("%s: timed loop did not start\n",
|
|
engine->name);
|
|
goto err_vma;
|
|
}
|
|
|
|
min.freq = rps->min_freq;
|
|
min.count = measure_frequency_at(rps, cntr, &min.freq);
|
|
|
|
max.freq = rps->max_freq;
|
|
max.count = measure_frequency_at(rps, cntr, &max.freq);
|
|
|
|
pr_info("%s: min:%lluKHz @ %uMHz, max:%lluKHz @ %uMHz [%d%%]\n",
|
|
engine->name,
|
|
min.count, intel_gpu_freq(rps, min.freq),
|
|
max.count, intel_gpu_freq(rps, max.freq),
|
|
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * max.count,
|
|
max.freq * min.count));
|
|
|
|
if (!scaled_within(max.freq * min.count,
|
|
min.freq * max.count,
|
|
1, 2)) {
|
|
int f;
|
|
|
|
pr_err("%s: CS did not scale with frequency! scaled min:%llu, max:%llu\n",
|
|
engine->name,
|
|
max.freq * min.count,
|
|
min.freq * max.count);
|
|
show_pcu_config(rps);
|
|
|
|
for (f = min.freq + 1; f <= rps->max_freq; f++) {
|
|
int act = f;
|
|
u64 count;
|
|
|
|
count = measure_frequency_at(rps, cntr, &act);
|
|
if (act < f)
|
|
break;
|
|
|
|
pr_info("%s: %x:%uMHz: %lluKHz [%d%%]\n",
|
|
engine->name,
|
|
act, intel_gpu_freq(rps, act), count,
|
|
(int)DIV64_U64_ROUND_CLOSEST(100 * min.freq * count,
|
|
act * min.count));
|
|
|
|
f = act; /* may skip ahead [pcu granularity] */
|
|
}
|
|
|
|
err = -EINVAL;
|
|
}
|
|
|
|
err_vma:
|
|
*cancel = MI_BATCH_BUFFER_END;
|
|
i915_gem_object_flush_map(vma->obj);
|
|
i915_gem_object_unpin_map(vma->obj);
|
|
i915_vma_unpin(vma);
|
|
i915_vma_put(vma);
|
|
|
|
engine_heartbeat_enable(engine);
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
if (CPU_LATENCY >= 0)
|
|
cpu_latency_qos_remove_request(&qos);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void sleep_for_ei(struct intel_rps *rps, int timeout_us)
|
|
{
|
|
/* Flush any previous EI */
|
|
usleep_range(timeout_us, 2 * timeout_us);
|
|
|
|
/* Reset the interrupt status */
|
|
rps_disable_interrupts(rps);
|
|
GEM_BUG_ON(rps->pm_iir);
|
|
rps_enable_interrupts(rps);
|
|
|
|
/* And then wait for the timeout, for real this time */
|
|
usleep_range(2 * timeout_us, 3 * timeout_us);
|
|
}
|
|
|
|
static int __rps_up_interrupt(struct intel_rps *rps,
|
|
struct intel_engine_cs *engine,
|
|
struct igt_spinner *spin)
|
|
{
|
|
struct intel_uncore *uncore = engine->uncore;
|
|
struct i915_request *rq;
|
|
u32 timeout;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
return 0;
|
|
|
|
rps_set_check(rps, rps->min_freq);
|
|
|
|
rq = igt_spinner_create_request(spin, engine->kernel_context, MI_NOOP);
|
|
if (IS_ERR(rq))
|
|
return PTR_ERR(rq);
|
|
|
|
i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
|
|
if (!igt_wait_for_spinner(spin, rq)) {
|
|
pr_err("%s: RPS spinner did not start\n",
|
|
engine->name);
|
|
i915_request_put(rq);
|
|
intel_gt_set_wedged(engine->gt);
|
|
return -EIO;
|
|
}
|
|
|
|
if (!intel_rps_is_active(rps)) {
|
|
pr_err("%s: RPS not enabled on starting spinner\n",
|
|
engine->name);
|
|
igt_spinner_end(spin);
|
|
i915_request_put(rq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(rps->pm_events & GEN6_PM_RP_UP_THRESHOLD)) {
|
|
pr_err("%s: RPS did not register UP interrupt\n",
|
|
engine->name);
|
|
i915_request_put(rq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rps->last_freq != rps->min_freq) {
|
|
pr_err("%s: RPS did not program min frequency\n",
|
|
engine->name);
|
|
i915_request_put(rq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
timeout = intel_uncore_read(uncore, GEN6_RP_UP_EI);
|
|
timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout);
|
|
timeout = DIV_ROUND_UP(timeout, 1000);
|
|
|
|
sleep_for_ei(rps, timeout);
|
|
GEM_BUG_ON(i915_request_completed(rq));
|
|
|
|
igt_spinner_end(spin);
|
|
i915_request_put(rq);
|
|
|
|
if (rps->cur_freq != rps->min_freq) {
|
|
pr_err("%s: Frequency unexpectedly changed [up], now %d!\n",
|
|
engine->name, intel_rps_read_actual_frequency(rps));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(rps->pm_iir & GEN6_PM_RP_UP_THRESHOLD)) {
|
|
pr_err("%s: UP interrupt not recorded for spinner, pm_iir:%x, prev_up:%x, up_threshold:%x, up_ei:%x\n",
|
|
engine->name, rps->pm_iir,
|
|
intel_uncore_read(uncore, GEN6_RP_PREV_UP),
|
|
intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD),
|
|
intel_uncore_read(uncore, GEN6_RP_UP_EI));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rps_down_interrupt(struct intel_rps *rps,
|
|
struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_uncore *uncore = engine->uncore;
|
|
u32 timeout;
|
|
|
|
rps_set_check(rps, rps->max_freq);
|
|
|
|
if (!(rps->pm_events & GEN6_PM_RP_DOWN_THRESHOLD)) {
|
|
pr_err("%s: RPS did not register DOWN interrupt\n",
|
|
engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (rps->last_freq != rps->max_freq) {
|
|
pr_err("%s: RPS did not program max frequency\n",
|
|
engine->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
timeout = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
|
|
timeout = intel_gt_pm_interval_to_ns(engine->gt, timeout);
|
|
timeout = DIV_ROUND_UP(timeout, 1000);
|
|
|
|
sleep_for_ei(rps, timeout);
|
|
|
|
if (rps->cur_freq != rps->max_freq) {
|
|
pr_err("%s: Frequency unexpectedly changed [down], now %d!\n",
|
|
engine->name,
|
|
intel_rps_read_actual_frequency(rps));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!(rps->pm_iir & (GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT))) {
|
|
pr_err("%s: DOWN interrupt not recorded for idle, pm_iir:%x, prev_down:%x, down_threshold:%x, down_ei:%x [prev_up:%x, up_threshold:%x, up_ei:%x]\n",
|
|
engine->name, rps->pm_iir,
|
|
intel_uncore_read(uncore, GEN6_RP_PREV_DOWN),
|
|
intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD),
|
|
intel_uncore_read(uncore, GEN6_RP_DOWN_EI),
|
|
intel_uncore_read(uncore, GEN6_RP_PREV_UP),
|
|
intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD),
|
|
intel_uncore_read(uncore, GEN6_RP_UP_EI));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int live_rps_interrupt(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
u32 pm_events;
|
|
int err = 0;
|
|
|
|
/*
|
|
* First, let's check whether or not we are receiving interrupts.
|
|
*/
|
|
|
|
if (!intel_rps_has_interrupts(rps))
|
|
return 0;
|
|
|
|
intel_gt_pm_get(gt);
|
|
pm_events = rps->pm_events;
|
|
intel_gt_pm_put(gt);
|
|
if (!pm_events) {
|
|
pr_err("No RPS PM events registered, but RPS is enabled?\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
/* Keep the engine busy with a spinner; expect an UP! */
|
|
if (pm_events & GEN6_PM_RP_UP_THRESHOLD) {
|
|
intel_gt_pm_wait_for_idle(engine->gt);
|
|
GEM_BUG_ON(intel_rps_is_active(rps));
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
err = __rps_up_interrupt(rps, engine, &spin);
|
|
|
|
engine_heartbeat_enable(engine);
|
|
if (err)
|
|
goto out;
|
|
|
|
intel_gt_pm_wait_for_idle(engine->gt);
|
|
}
|
|
|
|
/* Keep the engine awake but idle and check for DOWN */
|
|
if (pm_events & GEN6_PM_RP_DOWN_THRESHOLD) {
|
|
engine_heartbeat_disable(engine);
|
|
intel_rc6_disable(>->rc6);
|
|
|
|
err = __rps_down_interrupt(rps, engine);
|
|
|
|
intel_rc6_enable(>->rc6);
|
|
engine_heartbeat_enable(engine);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
|
|
igt_spinner_fini(&spin);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
return err;
|
|
}
|
|
|
|
static u64 __measure_power(int duration_ms)
|
|
{
|
|
u64 dE, dt;
|
|
|
|
dt = ktime_get();
|
|
dE = librapl_energy_uJ();
|
|
usleep_range(1000 * duration_ms, 2000 * duration_ms);
|
|
dE = librapl_energy_uJ() - dE;
|
|
dt = ktime_get() - dt;
|
|
|
|
return div64_u64(1000 * 1000 * dE, dt);
|
|
}
|
|
|
|
static u64 measure_power_at(struct intel_rps *rps, int *freq)
|
|
{
|
|
u64 x[5];
|
|
int i;
|
|
|
|
*freq = rps_set_check(rps, *freq);
|
|
for (i = 0; i < 5; i++)
|
|
x[i] = __measure_power(5);
|
|
*freq = (*freq + read_cagf(rps)) / 2;
|
|
|
|
/* A simple triangle filter for better result stability */
|
|
sort(x, 5, sizeof(*x), cmp_u64, NULL);
|
|
return div_u64(x[1] + 2 * x[2] + x[3], 4);
|
|
}
|
|
|
|
int live_rps_power(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
void (*saved_work)(struct work_struct *wrk);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Our fundamental assumption is that running at lower frequency
|
|
* actually saves power. Let's see if our RAPL measurement support
|
|
* that theory.
|
|
*/
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (!librapl_energy_uJ())
|
|
return 0;
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
saved_work = rps->work.func;
|
|
rps->work.func = dummy_rps_work;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
struct {
|
|
u64 power;
|
|
int freq;
|
|
} min, max;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
continue;
|
|
|
|
engine_heartbeat_disable(engine);
|
|
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
engine_heartbeat_enable(engine);
|
|
err = PTR_ERR(rq);
|
|
break;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
|
|
if (!igt_wait_for_spinner(&spin, rq)) {
|
|
pr_err("%s: RPS spinner did not start\n",
|
|
engine->name);
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
intel_gt_set_wedged(engine->gt);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
max.freq = rps->max_freq;
|
|
max.power = measure_power_at(rps, &max.freq);
|
|
|
|
min.freq = rps->min_freq;
|
|
min.power = measure_power_at(rps, &min.freq);
|
|
|
|
igt_spinner_end(&spin);
|
|
engine_heartbeat_enable(engine);
|
|
|
|
pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n",
|
|
engine->name,
|
|
min.power, intel_gpu_freq(rps, min.freq),
|
|
max.power, intel_gpu_freq(rps, max.freq));
|
|
|
|
if (10 * min.freq >= 9 * max.freq) {
|
|
pr_notice("Could not control frequency, ran at [%d:%uMHz, %d:%uMhz]\n",
|
|
min.freq, intel_gpu_freq(rps, min.freq),
|
|
max.freq, intel_gpu_freq(rps, max.freq));
|
|
continue;
|
|
}
|
|
|
|
if (11 * min.power > 10 * max.power) {
|
|
pr_err("%s: did not conserve power when setting lower frequency!\n",
|
|
engine->name);
|
|
err = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (igt_flush_test(gt->i915)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
igt_spinner_fini(&spin);
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
rps->work.func = saved_work;
|
|
|
|
return err;
|
|
}
|
|
|
|
int live_rps_dynamic(void *arg)
|
|
{
|
|
struct intel_gt *gt = arg;
|
|
struct intel_rps *rps = >->rps;
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
struct igt_spinner spin;
|
|
int err = 0;
|
|
|
|
/*
|
|
* We've looked at the bascs, and have established that we
|
|
* can change the clock frequency and that the HW will generate
|
|
* interrupts based on load. Now we check how we integrate those
|
|
* moving parts into dynamic reclocking based on load.
|
|
*/
|
|
|
|
if (!intel_rps_is_enabled(rps))
|
|
return 0;
|
|
|
|
if (igt_spinner_init(&spin, gt))
|
|
return -ENOMEM;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct i915_request *rq;
|
|
struct {
|
|
ktime_t dt;
|
|
u8 freq;
|
|
} min, max;
|
|
|
|
if (!intel_engine_can_store_dword(engine))
|
|
continue;
|
|
|
|
intel_gt_pm_wait_for_idle(gt);
|
|
GEM_BUG_ON(intel_rps_is_active(rps));
|
|
rps->cur_freq = rps->min_freq;
|
|
|
|
intel_engine_pm_get(engine);
|
|
intel_rc6_disable(>->rc6);
|
|
GEM_BUG_ON(rps->last_freq != rps->min_freq);
|
|
|
|
rq = igt_spinner_create_request(&spin,
|
|
engine->kernel_context,
|
|
MI_NOOP);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
goto err;
|
|
}
|
|
|
|
i915_request_add(rq);
|
|
|
|
max.dt = ktime_get();
|
|
max.freq = wait_for_freq(rps, rps->max_freq, 500);
|
|
max.dt = ktime_sub(ktime_get(), max.dt);
|
|
|
|
igt_spinner_end(&spin);
|
|
|
|
min.dt = ktime_get();
|
|
min.freq = wait_for_freq(rps, rps->min_freq, 2000);
|
|
min.dt = ktime_sub(ktime_get(), min.dt);
|
|
|
|
pr_info("%s: dynamically reclocked to %u:%uMHz while busy in %lluns, and %u:%uMHz while idle in %lluns\n",
|
|
engine->name,
|
|
max.freq, intel_gpu_freq(rps, max.freq),
|
|
ktime_to_ns(max.dt),
|
|
min.freq, intel_gpu_freq(rps, min.freq),
|
|
ktime_to_ns(min.dt));
|
|
if (min.freq >= max.freq) {
|
|
pr_err("%s: dynamic reclocking of spinner failed\n!",
|
|
engine->name);
|
|
err = -EINVAL;
|
|
}
|
|
|
|
err:
|
|
intel_rc6_enable(>->rc6);
|
|
intel_engine_pm_put(engine);
|
|
|
|
if (igt_flush_test(gt->i915))
|
|
err = -EIO;
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
igt_spinner_fini(&spin);
|
|
|
|
return err;
|
|
}
|