linux_dsm_epyc7002/fs/dcache.c
Nick Piggin 99b7db7b8f fs: brlock vfsmount_lock
fs: brlock vfsmount_lock

Use a brlock for the vfsmount lock. It must be taken for write whenever
modifying the mount hash or associated fields, and may be taken for read when
performing mount hash lookups.

A new lock is added for the mnt-id allocator, so it doesn't need to take
the heavy vfsmount write-lock.

The number of atomics should remain the same for fastpath rlock cases, though
code would be slightly slower due to per-cpu access. Scalability is not not be
much improved in common cases yet, due to other locks (ie. dcache_lock) getting
in the way. However path lookups crossing mountpoints should be one case where
scalability is improved (currently requiring the global lock).

The slowpath is slower due to use of brlock. On a 64 core, 64 socket, 32 node
Altix system (high latency to remote nodes), a simple umount microbenchmark
(mount --bind mnt mnt2 ; umount mnt2 loop 1000 times), before this patch it
took 6.8s, afterwards took 7.1s, about 5% slower.

Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2010-08-18 08:35:48 -04:00

2482 lines
62 KiB
C

/*
* fs/dcache.c
*
* Complete reimplementation
* (C) 1997 Thomas Schoebel-Theuer,
* with heavy changes by Linus Torvalds
*/
/*
* Notes on the allocation strategy:
*
* The dcache is a master of the icache - whenever a dcache entry
* exists, the inode will always exist. "iput()" is done either when
* the dcache entry is deleted or garbage collected.
*/
#include <linux/syscalls.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <asm/uaccess.h>
#include <linux/security.h>
#include <linux/seqlock.h>
#include <linux/swap.h>
#include <linux/bootmem.h>
#include <linux/fs_struct.h>
#include <linux/hardirq.h>
#include "internal.h"
int sysctl_vfs_cache_pressure __read_mostly = 100;
EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
EXPORT_SYMBOL(dcache_lock);
static struct kmem_cache *dentry_cache __read_mostly;
#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
/*
* This is the single most critical data structure when it comes
* to the dcache: the hashtable for lookups. Somebody should try
* to make this good - I've just made it work.
*
* This hash-function tries to avoid losing too many bits of hash
* information, yet avoid using a prime hash-size or similar.
*/
#define D_HASHBITS d_hash_shift
#define D_HASHMASK d_hash_mask
static unsigned int d_hash_mask __read_mostly;
static unsigned int d_hash_shift __read_mostly;
static struct hlist_head *dentry_hashtable __read_mostly;
/* Statistics gathering. */
struct dentry_stat_t dentry_stat = {
.age_limit = 45,
};
static void __d_free(struct dentry *dentry)
{
WARN_ON(!list_empty(&dentry->d_alias));
if (dname_external(dentry))
kfree(dentry->d_name.name);
kmem_cache_free(dentry_cache, dentry);
}
static void d_callback(struct rcu_head *head)
{
struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
__d_free(dentry);
}
/*
* no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
* inside dcache_lock.
*/
static void d_free(struct dentry *dentry)
{
if (dentry->d_op && dentry->d_op->d_release)
dentry->d_op->d_release(dentry);
/* if dentry was never inserted into hash, immediate free is OK */
if (hlist_unhashed(&dentry->d_hash))
__d_free(dentry);
else
call_rcu(&dentry->d_u.d_rcu, d_callback);
}
/*
* Release the dentry's inode, using the filesystem
* d_iput() operation if defined.
*/
static void dentry_iput(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
{
struct inode *inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
if (!inode->i_nlink)
fsnotify_inoderemove(inode);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
} else {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
}
}
/*
* dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
*/
static void dentry_lru_add(struct dentry *dentry)
{
list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
}
static void dentry_lru_add_tail(struct dentry *dentry)
{
list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
}
static void dentry_lru_del(struct dentry *dentry)
{
if (!list_empty(&dentry->d_lru)) {
list_del(&dentry->d_lru);
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
}
static void dentry_lru_del_init(struct dentry *dentry)
{
if (likely(!list_empty(&dentry->d_lru))) {
list_del_init(&dentry->d_lru);
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
}
/**
* d_kill - kill dentry and return parent
* @dentry: dentry to kill
*
* The dentry must already be unhashed and removed from the LRU.
*
* If this is the root of the dentry tree, return NULL.
*/
static struct dentry *d_kill(struct dentry *dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
{
struct dentry *parent;
list_del(&dentry->d_u.d_child);
dentry_stat.nr_dentry--; /* For d_free, below */
/*drops the locks, at that point nobody can reach this dentry */
dentry_iput(dentry);
if (IS_ROOT(dentry))
parent = NULL;
else
parent = dentry->d_parent;
d_free(dentry);
return parent;
}
/*
* This is dput
*
* This is complicated by the fact that we do not want to put
* dentries that are no longer on any hash chain on the unused
* list: we'd much rather just get rid of them immediately.
*
* However, that implies that we have to traverse the dentry
* tree upwards to the parents which might _also_ now be
* scheduled for deletion (it may have been only waiting for
* its last child to go away).
*
* This tail recursion is done by hand as we don't want to depend
* on the compiler to always get this right (gcc generally doesn't).
* Real recursion would eat up our stack space.
*/
/*
* dput - release a dentry
* @dentry: dentry to release
*
* Release a dentry. This will drop the usage count and if appropriate
* call the dentry unlink method as well as removing it from the queues and
* releasing its resources. If the parent dentries were scheduled for release
* they too may now get deleted.
*
* no dcache lock, please.
*/
void dput(struct dentry *dentry)
{
if (!dentry)
return;
repeat:
if (atomic_read(&dentry->d_count) == 1)
might_sleep();
if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
return;
spin_lock(&dentry->d_lock);
if (atomic_read(&dentry->d_count)) {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return;
}
/*
* AV: ->d_delete() is _NOT_ allowed to block now.
*/
if (dentry->d_op && dentry->d_op->d_delete) {
if (dentry->d_op->d_delete(dentry))
goto unhash_it;
}
/* Unreachable? Get rid of it */
if (d_unhashed(dentry))
goto kill_it;
if (list_empty(&dentry->d_lru)) {
dentry->d_flags |= DCACHE_REFERENCED;
dentry_lru_add(dentry);
}
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return;
unhash_it:
__d_drop(dentry);
kill_it:
/* if dentry was on the d_lru list delete it from there */
dentry_lru_del(dentry);
dentry = d_kill(dentry);
if (dentry)
goto repeat;
}
EXPORT_SYMBOL(dput);
/**
* d_invalidate - invalidate a dentry
* @dentry: dentry to invalidate
*
* Try to invalidate the dentry if it turns out to be
* possible. If there are other dentries that can be
* reached through this one we can't delete it and we
* return -EBUSY. On success we return 0.
*
* no dcache lock.
*/
int d_invalidate(struct dentry * dentry)
{
/*
* If it's already been dropped, return OK.
*/
spin_lock(&dcache_lock);
if (d_unhashed(dentry)) {
spin_unlock(&dcache_lock);
return 0;
}
/*
* Check whether to do a partial shrink_dcache
* to get rid of unused child entries.
*/
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&dcache_lock);
shrink_dcache_parent(dentry);
spin_lock(&dcache_lock);
}
/*
* Somebody else still using it?
*
* If it's a directory, we can't drop it
* for fear of somebody re-populating it
* with children (even though dropping it
* would make it unreachable from the root,
* we might still populate it if it was a
* working directory or similar).
*/
spin_lock(&dentry->d_lock);
if (atomic_read(&dentry->d_count) > 1) {
if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return -EBUSY;
}
}
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return 0;
}
EXPORT_SYMBOL(d_invalidate);
/* This should be called _only_ with dcache_lock held */
static inline struct dentry * __dget_locked(struct dentry *dentry)
{
atomic_inc(&dentry->d_count);
dentry_lru_del_init(dentry);
return dentry;
}
struct dentry * dget_locked(struct dentry *dentry)
{
return __dget_locked(dentry);
}
EXPORT_SYMBOL(dget_locked);
/**
* d_find_alias - grab a hashed alias of inode
* @inode: inode in question
* @want_discon: flag, used by d_splice_alias, to request
* that only a DISCONNECTED alias be returned.
*
* If inode has a hashed alias, or is a directory and has any alias,
* acquire the reference to alias and return it. Otherwise return NULL.
* Notice that if inode is a directory there can be only one alias and
* it can be unhashed only if it has no children, or if it is the root
* of a filesystem.
*
* If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
* any other hashed alias over that one unless @want_discon is set,
* in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
*/
static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
{
struct list_head *head, *next, *tmp;
struct dentry *alias, *discon_alias=NULL;
head = &inode->i_dentry;
next = inode->i_dentry.next;
while (next != head) {
tmp = next;
next = tmp->next;
prefetch(next);
alias = list_entry(tmp, struct dentry, d_alias);
if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
if (IS_ROOT(alias) &&
(alias->d_flags & DCACHE_DISCONNECTED))
discon_alias = alias;
else if (!want_discon) {
__dget_locked(alias);
return alias;
}
}
}
if (discon_alias)
__dget_locked(discon_alias);
return discon_alias;
}
struct dentry * d_find_alias(struct inode *inode)
{
struct dentry *de = NULL;
if (!list_empty(&inode->i_dentry)) {
spin_lock(&dcache_lock);
de = __d_find_alias(inode, 0);
spin_unlock(&dcache_lock);
}
return de;
}
EXPORT_SYMBOL(d_find_alias);
/*
* Try to kill dentries associated with this inode.
* WARNING: you must own a reference to inode.
*/
void d_prune_aliases(struct inode *inode)
{
struct dentry *dentry;
restart:
spin_lock(&dcache_lock);
list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
spin_lock(&dentry->d_lock);
if (!atomic_read(&dentry->d_count)) {
__dget_locked(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
dput(dentry);
goto restart;
}
spin_unlock(&dentry->d_lock);
}
spin_unlock(&dcache_lock);
}
EXPORT_SYMBOL(d_prune_aliases);
/*
* Throw away a dentry - free the inode, dput the parent. This requires that
* the LRU list has already been removed.
*
* Try to prune ancestors as well. This is necessary to prevent
* quadratic behavior of shrink_dcache_parent(), but is also expected
* to be beneficial in reducing dentry cache fragmentation.
*/
static void prune_one_dentry(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
__acquires(dcache_lock)
{
__d_drop(dentry);
dentry = d_kill(dentry);
/*
* Prune ancestors. Locking is simpler than in dput(),
* because dcache_lock needs to be taken anyway.
*/
spin_lock(&dcache_lock);
while (dentry) {
if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
return;
if (dentry->d_op && dentry->d_op->d_delete)
dentry->d_op->d_delete(dentry);
dentry_lru_del_init(dentry);
__d_drop(dentry);
dentry = d_kill(dentry);
spin_lock(&dcache_lock);
}
}
/*
* Shrink the dentry LRU on a given superblock.
* @sb : superblock to shrink dentry LRU.
* @count: If count is NULL, we prune all dentries on superblock.
* @flags: If flags is non-zero, we need to do special processing based on
* which flags are set. This means we don't need to maintain multiple
* similar copies of this loop.
*/
static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
{
LIST_HEAD(referenced);
LIST_HEAD(tmp);
struct dentry *dentry;
int cnt = 0;
BUG_ON(!sb);
BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
spin_lock(&dcache_lock);
if (count != NULL)
/* called from prune_dcache() and shrink_dcache_parent() */
cnt = *count;
restart:
if (count == NULL)
list_splice_init(&sb->s_dentry_lru, &tmp);
else {
while (!list_empty(&sb->s_dentry_lru)) {
dentry = list_entry(sb->s_dentry_lru.prev,
struct dentry, d_lru);
BUG_ON(dentry->d_sb != sb);
spin_lock(&dentry->d_lock);
/*
* If we are honouring the DCACHE_REFERENCED flag and
* the dentry has this flag set, don't free it. Clear
* the flag and put it back on the LRU.
*/
if ((flags & DCACHE_REFERENCED)
&& (dentry->d_flags & DCACHE_REFERENCED)) {
dentry->d_flags &= ~DCACHE_REFERENCED;
list_move(&dentry->d_lru, &referenced);
spin_unlock(&dentry->d_lock);
} else {
list_move_tail(&dentry->d_lru, &tmp);
spin_unlock(&dentry->d_lock);
cnt--;
if (!cnt)
break;
}
cond_resched_lock(&dcache_lock);
}
}
while (!list_empty(&tmp)) {
dentry = list_entry(tmp.prev, struct dentry, d_lru);
dentry_lru_del_init(dentry);
spin_lock(&dentry->d_lock);
/*
* We found an inuse dentry which was not removed from
* the LRU because of laziness during lookup. Do not free
* it - just keep it off the LRU list.
*/
if (atomic_read(&dentry->d_count)) {
spin_unlock(&dentry->d_lock);
continue;
}
prune_one_dentry(dentry);
/* dentry->d_lock was dropped in prune_one_dentry() */
cond_resched_lock(&dcache_lock);
}
if (count == NULL && !list_empty(&sb->s_dentry_lru))
goto restart;
if (count != NULL)
*count = cnt;
if (!list_empty(&referenced))
list_splice(&referenced, &sb->s_dentry_lru);
spin_unlock(&dcache_lock);
}
/**
* prune_dcache - shrink the dcache
* @count: number of entries to try to free
*
* Shrink the dcache. This is done when we need more memory, or simply when we
* need to unmount something (at which point we need to unuse all dentries).
*
* This function may fail to free any resources if all the dentries are in use.
*/
static void prune_dcache(int count)
{
struct super_block *sb, *p = NULL;
int w_count;
int unused = dentry_stat.nr_unused;
int prune_ratio;
int pruned;
if (unused == 0 || count == 0)
return;
spin_lock(&dcache_lock);
if (count >= unused)
prune_ratio = 1;
else
prune_ratio = unused / count;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (list_empty(&sb->s_instances))
continue;
if (sb->s_nr_dentry_unused == 0)
continue;
sb->s_count++;
/* Now, we reclaim unused dentrins with fairness.
* We reclaim them same percentage from each superblock.
* We calculate number of dentries to scan on this sb
* as follows, but the implementation is arranged to avoid
* overflows:
* number of dentries to scan on this sb =
* count * (number of dentries on this sb /
* number of dentries in the machine)
*/
spin_unlock(&sb_lock);
if (prune_ratio != 1)
w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
else
w_count = sb->s_nr_dentry_unused;
pruned = w_count;
/*
* We need to be sure this filesystem isn't being unmounted,
* otherwise we could race with generic_shutdown_super(), and
* end up holding a reference to an inode while the filesystem
* is unmounted. So we try to get s_umount, and make sure
* s_root isn't NULL.
*/
if (down_read_trylock(&sb->s_umount)) {
if ((sb->s_root != NULL) &&
(!list_empty(&sb->s_dentry_lru))) {
spin_unlock(&dcache_lock);
__shrink_dcache_sb(sb, &w_count,
DCACHE_REFERENCED);
pruned -= w_count;
spin_lock(&dcache_lock);
}
up_read(&sb->s_umount);
}
spin_lock(&sb_lock);
if (p)
__put_super(p);
count -= pruned;
p = sb;
/* more work left to do? */
if (count <= 0)
break;
}
if (p)
__put_super(p);
spin_unlock(&sb_lock);
spin_unlock(&dcache_lock);
}
/**
* shrink_dcache_sb - shrink dcache for a superblock
* @sb: superblock
*
* Shrink the dcache for the specified super block. This
* is used to free the dcache before unmounting a file
* system
*/
void shrink_dcache_sb(struct super_block * sb)
{
__shrink_dcache_sb(sb, NULL, 0);
}
EXPORT_SYMBOL(shrink_dcache_sb);
/*
* destroy a single subtree of dentries for unmount
* - see the comments on shrink_dcache_for_umount() for a description of the
* locking
*/
static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
{
struct dentry *parent;
unsigned detached = 0;
BUG_ON(!IS_ROOT(dentry));
/* detach this root from the system */
spin_lock(&dcache_lock);
dentry_lru_del_init(dentry);
__d_drop(dentry);
spin_unlock(&dcache_lock);
for (;;) {
/* descend to the first leaf in the current subtree */
while (!list_empty(&dentry->d_subdirs)) {
struct dentry *loop;
/* this is a branch with children - detach all of them
* from the system in one go */
spin_lock(&dcache_lock);
list_for_each_entry(loop, &dentry->d_subdirs,
d_u.d_child) {
dentry_lru_del_init(loop);
__d_drop(loop);
cond_resched_lock(&dcache_lock);
}
spin_unlock(&dcache_lock);
/* move to the first child */
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
}
/* consume the dentries from this leaf up through its parents
* until we find one with children or run out altogether */
do {
struct inode *inode;
if (atomic_read(&dentry->d_count) != 0) {
printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%s}"
" still in use (%d)"
" [unmount of %s %s]\n",
dentry,
dentry->d_inode ?
dentry->d_inode->i_ino : 0UL,
dentry->d_name.name,
atomic_read(&dentry->d_count),
dentry->d_sb->s_type->name,
dentry->d_sb->s_id);
BUG();
}
if (IS_ROOT(dentry))
parent = NULL;
else {
parent = dentry->d_parent;
atomic_dec(&parent->d_count);
}
list_del(&dentry->d_u.d_child);
detached++;
inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
}
d_free(dentry);
/* finished when we fall off the top of the tree,
* otherwise we ascend to the parent and move to the
* next sibling if there is one */
if (!parent)
goto out;
dentry = parent;
} while (list_empty(&dentry->d_subdirs));
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
}
out:
/* several dentries were freed, need to correct nr_dentry */
spin_lock(&dcache_lock);
dentry_stat.nr_dentry -= detached;
spin_unlock(&dcache_lock);
}
/*
* destroy the dentries attached to a superblock on unmounting
* - we don't need to use dentry->d_lock, and only need dcache_lock when
* removing the dentry from the system lists and hashes because:
* - the superblock is detached from all mountings and open files, so the
* dentry trees will not be rearranged by the VFS
* - s_umount is write-locked, so the memory pressure shrinker will ignore
* any dentries belonging to this superblock that it comes across
* - the filesystem itself is no longer permitted to rearrange the dentries
* in this superblock
*/
void shrink_dcache_for_umount(struct super_block *sb)
{
struct dentry *dentry;
if (down_read_trylock(&sb->s_umount))
BUG();
dentry = sb->s_root;
sb->s_root = NULL;
atomic_dec(&dentry->d_count);
shrink_dcache_for_umount_subtree(dentry);
while (!hlist_empty(&sb->s_anon)) {
dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
shrink_dcache_for_umount_subtree(dentry);
}
}
/*
* Search for at least 1 mount point in the dentry's subdirs.
* We descend to the next level whenever the d_subdirs
* list is non-empty and continue searching.
*/
/**
* have_submounts - check for mounts over a dentry
* @parent: dentry to check.
*
* Return true if the parent or its subdirectories contain
* a mount point
*/
int have_submounts(struct dentry *parent)
{
struct dentry *this_parent = parent;
struct list_head *next;
spin_lock(&dcache_lock);
if (d_mountpoint(parent))
goto positive;
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
/* Have we found a mount point ? */
if (d_mountpoint(dentry))
goto positive;
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
next = this_parent->d_u.d_child.next;
this_parent = this_parent->d_parent;
goto resume;
}
spin_unlock(&dcache_lock);
return 0; /* No mount points found in tree */
positive:
spin_unlock(&dcache_lock);
return 1;
}
EXPORT_SYMBOL(have_submounts);
/*
* Search the dentry child list for the specified parent,
* and move any unused dentries to the end of the unused
* list for prune_dcache(). We descend to the next level
* whenever the d_subdirs list is non-empty and continue
* searching.
*
* It returns zero iff there are no unused children,
* otherwise it returns the number of children moved to
* the end of the unused list. This may not be the total
* number of unused children, because select_parent can
* drop the lock and return early due to latency
* constraints.
*/
static int select_parent(struct dentry * parent)
{
struct dentry *this_parent = parent;
struct list_head *next;
int found = 0;
spin_lock(&dcache_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
dentry_lru_del_init(dentry);
/*
* move only zero ref count dentries to the end
* of the unused list for prune_dcache
*/
if (!atomic_read(&dentry->d_count)) {
dentry_lru_add_tail(dentry);
found++;
}
/*
* We can return to the caller if we have found some (this
* ensures forward progress). We'll be coming back to find
* the rest.
*/
if (found && need_resched())
goto out;
/*
* Descend a level if the d_subdirs list is non-empty.
*/
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
next = this_parent->d_u.d_child.next;
this_parent = this_parent->d_parent;
goto resume;
}
out:
spin_unlock(&dcache_lock);
return found;
}
/**
* shrink_dcache_parent - prune dcache
* @parent: parent of entries to prune
*
* Prune the dcache to remove unused children of the parent dentry.
*/
void shrink_dcache_parent(struct dentry * parent)
{
struct super_block *sb = parent->d_sb;
int found;
while ((found = select_parent(parent)) != 0)
__shrink_dcache_sb(sb, &found, 0);
}
EXPORT_SYMBOL(shrink_dcache_parent);
/*
* Scan `nr' dentries and return the number which remain.
*
* We need to avoid reentering the filesystem if the caller is performing a
* GFP_NOFS allocation attempt. One example deadlock is:
*
* ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
* prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
* ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
*
* In this case we return -1 to tell the caller that we baled.
*/
static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
{
if (nr) {
if (!(gfp_mask & __GFP_FS))
return -1;
prune_dcache(nr);
}
return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
}
static struct shrinker dcache_shrinker = {
.shrink = shrink_dcache_memory,
.seeks = DEFAULT_SEEKS,
};
/**
* d_alloc - allocate a dcache entry
* @parent: parent of entry to allocate
* @name: qstr of the name
*
* Allocates a dentry. It returns %NULL if there is insufficient memory
* available. On a success the dentry is returned. The name passed in is
* copied and the copy passed in may be reused after this call.
*/
struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
{
struct dentry *dentry;
char *dname;
dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
if (!dentry)
return NULL;
if (name->len > DNAME_INLINE_LEN-1) {
dname = kmalloc(name->len + 1, GFP_KERNEL);
if (!dname) {
kmem_cache_free(dentry_cache, dentry);
return NULL;
}
} else {
dname = dentry->d_iname;
}
dentry->d_name.name = dname;
dentry->d_name.len = name->len;
dentry->d_name.hash = name->hash;
memcpy(dname, name->name, name->len);
dname[name->len] = 0;
atomic_set(&dentry->d_count, 1);
dentry->d_flags = DCACHE_UNHASHED;
spin_lock_init(&dentry->d_lock);
dentry->d_inode = NULL;
dentry->d_parent = NULL;
dentry->d_sb = NULL;
dentry->d_op = NULL;
dentry->d_fsdata = NULL;
dentry->d_mounted = 0;
INIT_HLIST_NODE(&dentry->d_hash);
INIT_LIST_HEAD(&dentry->d_lru);
INIT_LIST_HEAD(&dentry->d_subdirs);
INIT_LIST_HEAD(&dentry->d_alias);
if (parent) {
dentry->d_parent = dget(parent);
dentry->d_sb = parent->d_sb;
} else {
INIT_LIST_HEAD(&dentry->d_u.d_child);
}
spin_lock(&dcache_lock);
if (parent)
list_add(&dentry->d_u.d_child, &parent->d_subdirs);
dentry_stat.nr_dentry++;
spin_unlock(&dcache_lock);
return dentry;
}
EXPORT_SYMBOL(d_alloc);
struct dentry *d_alloc_name(struct dentry *parent, const char *name)
{
struct qstr q;
q.name = name;
q.len = strlen(name);
q.hash = full_name_hash(q.name, q.len);
return d_alloc(parent, &q);
}
EXPORT_SYMBOL(d_alloc_name);
/* the caller must hold dcache_lock */
static void __d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (inode)
list_add(&dentry->d_alias, &inode->i_dentry);
dentry->d_inode = inode;
fsnotify_d_instantiate(dentry, inode);
}
/**
* d_instantiate - fill in inode information for a dentry
* @entry: dentry to complete
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry.
*
* This turns negative dentries into productive full members
* of society.
*
* NOTE! This assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
void d_instantiate(struct dentry *entry, struct inode * inode)
{
BUG_ON(!list_empty(&entry->d_alias));
spin_lock(&dcache_lock);
__d_instantiate(entry, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(entry, inode);
}
EXPORT_SYMBOL(d_instantiate);
/**
* d_instantiate_unique - instantiate a non-aliased dentry
* @entry: dentry to instantiate
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry. On success, it returns NULL.
* If an unhashed alias of "entry" already exists, then we return the
* aliased dentry instead and drop one reference to inode.
*
* Note that in order to avoid conflicts with rename() etc, the caller
* had better be holding the parent directory semaphore.
*
* This also assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
static struct dentry *__d_instantiate_unique(struct dentry *entry,
struct inode *inode)
{
struct dentry *alias;
int len = entry->d_name.len;
const char *name = entry->d_name.name;
unsigned int hash = entry->d_name.hash;
if (!inode) {
__d_instantiate(entry, NULL);
return NULL;
}
list_for_each_entry(alias, &inode->i_dentry, d_alias) {
struct qstr *qstr = &alias->d_name;
if (qstr->hash != hash)
continue;
if (alias->d_parent != entry->d_parent)
continue;
if (qstr->len != len)
continue;
if (memcmp(qstr->name, name, len))
continue;
dget_locked(alias);
return alias;
}
__d_instantiate(entry, inode);
return NULL;
}
struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
{
struct dentry *result;
BUG_ON(!list_empty(&entry->d_alias));
spin_lock(&dcache_lock);
result = __d_instantiate_unique(entry, inode);
spin_unlock(&dcache_lock);
if (!result) {
security_d_instantiate(entry, inode);
return NULL;
}
BUG_ON(!d_unhashed(result));
iput(inode);
return result;
}
EXPORT_SYMBOL(d_instantiate_unique);
/**
* d_alloc_root - allocate root dentry
* @root_inode: inode to allocate the root for
*
* Allocate a root ("/") dentry for the inode given. The inode is
* instantiated and returned. %NULL is returned if there is insufficient
* memory or the inode passed is %NULL.
*/
struct dentry * d_alloc_root(struct inode * root_inode)
{
struct dentry *res = NULL;
if (root_inode) {
static const struct qstr name = { .name = "/", .len = 1 };
res = d_alloc(NULL, &name);
if (res) {
res->d_sb = root_inode->i_sb;
res->d_parent = res;
d_instantiate(res, root_inode);
}
}
return res;
}
EXPORT_SYMBOL(d_alloc_root);
static inline struct hlist_head *d_hash(struct dentry *parent,
unsigned long hash)
{
hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
return dentry_hashtable + (hash & D_HASHMASK);
}
/**
* d_obtain_alias - find or allocate a dentry for a given inode
* @inode: inode to allocate the dentry for
*
* Obtain a dentry for an inode resulting from NFS filehandle conversion or
* similar open by handle operations. The returned dentry may be anonymous,
* or may have a full name (if the inode was already in the cache).
*
* When called on a directory inode, we must ensure that the inode only ever
* has one dentry. If a dentry is found, that is returned instead of
* allocating a new one.
*
* On successful return, the reference to the inode has been transferred
* to the dentry. In case of an error the reference on the inode is released.
* To make it easier to use in export operations a %NULL or IS_ERR inode may
* be passed in and will be the error will be propagate to the return value,
* with a %NULL @inode replaced by ERR_PTR(-ESTALE).
*/
struct dentry *d_obtain_alias(struct inode *inode)
{
static const struct qstr anonstring = { .name = "" };
struct dentry *tmp;
struct dentry *res;
if (!inode)
return ERR_PTR(-ESTALE);
if (IS_ERR(inode))
return ERR_CAST(inode);
res = d_find_alias(inode);
if (res)
goto out_iput;
tmp = d_alloc(NULL, &anonstring);
if (!tmp) {
res = ERR_PTR(-ENOMEM);
goto out_iput;
}
tmp->d_parent = tmp; /* make sure dput doesn't croak */
spin_lock(&dcache_lock);
res = __d_find_alias(inode, 0);
if (res) {
spin_unlock(&dcache_lock);
dput(tmp);
goto out_iput;
}
/* attach a disconnected dentry */
spin_lock(&tmp->d_lock);
tmp->d_sb = inode->i_sb;
tmp->d_inode = inode;
tmp->d_flags |= DCACHE_DISCONNECTED;
tmp->d_flags &= ~DCACHE_UNHASHED;
list_add(&tmp->d_alias, &inode->i_dentry);
hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
spin_unlock(&tmp->d_lock);
spin_unlock(&dcache_lock);
return tmp;
out_iput:
iput(inode);
return res;
}
EXPORT_SYMBOL(d_obtain_alias);
/**
* d_splice_alias - splice a disconnected dentry into the tree if one exists
* @inode: the inode which may have a disconnected dentry
* @dentry: a negative dentry which we want to point to the inode.
*
* If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
* DCACHE_DISCONNECTED), then d_move that in place of the given dentry
* and return it, else simply d_add the inode to the dentry and return NULL.
*
* This is needed in the lookup routine of any filesystem that is exportable
* (via knfsd) so that we can build dcache paths to directories effectively.
*
* If a dentry was found and moved, then it is returned. Otherwise NULL
* is returned. This matches the expected return value of ->lookup.
*
*/
struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
{
struct dentry *new = NULL;
if (inode && S_ISDIR(inode->i_mode)) {
spin_lock(&dcache_lock);
new = __d_find_alias(inode, 1);
if (new) {
BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
spin_unlock(&dcache_lock);
security_d_instantiate(new, inode);
d_move(new, dentry);
iput(inode);
} else {
/* already taking dcache_lock, so d_add() by hand */
__d_instantiate(dentry, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(dentry, inode);
d_rehash(dentry);
}
} else
d_add(dentry, inode);
return new;
}
EXPORT_SYMBOL(d_splice_alias);
/**
* d_add_ci - lookup or allocate new dentry with case-exact name
* @inode: the inode case-insensitive lookup has found
* @dentry: the negative dentry that was passed to the parent's lookup func
* @name: the case-exact name to be associated with the returned dentry
*
* This is to avoid filling the dcache with case-insensitive names to the
* same inode, only the actual correct case is stored in the dcache for
* case-insensitive filesystems.
*
* For a case-insensitive lookup match and if the the case-exact dentry
* already exists in in the dcache, use it and return it.
*
* If no entry exists with the exact case name, allocate new dentry with
* the exact case, and return the spliced entry.
*/
struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
struct qstr *name)
{
int error;
struct dentry *found;
struct dentry *new;
/*
* First check if a dentry matching the name already exists,
* if not go ahead and create it now.
*/
found = d_hash_and_lookup(dentry->d_parent, name);
if (!found) {
new = d_alloc(dentry->d_parent, name);
if (!new) {
error = -ENOMEM;
goto err_out;
}
found = d_splice_alias(inode, new);
if (found) {
dput(new);
return found;
}
return new;
}
/*
* If a matching dentry exists, and it's not negative use it.
*
* Decrement the reference count to balance the iget() done
* earlier on.
*/
if (found->d_inode) {
if (unlikely(found->d_inode != inode)) {
/* This can't happen because bad inodes are unhashed. */
BUG_ON(!is_bad_inode(inode));
BUG_ON(!is_bad_inode(found->d_inode));
}
iput(inode);
return found;
}
/*
* Negative dentry: instantiate it unless the inode is a directory and
* already has a dentry.
*/
spin_lock(&dcache_lock);
if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
__d_instantiate(found, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(found, inode);
return found;
}
/*
* In case a directory already has a (disconnected) entry grab a
* reference to it, move it in place and use it.
*/
new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dget_locked(new);
spin_unlock(&dcache_lock);
security_d_instantiate(found, inode);
d_move(new, found);
iput(inode);
dput(found);
return new;
err_out:
iput(inode);
return ERR_PTR(error);
}
EXPORT_SYMBOL(d_add_ci);
/**
* d_lookup - search for a dentry
* @parent: parent dentry
* @name: qstr of name we wish to find
* Returns: dentry, or NULL
*
* d_lookup searches the children of the parent dentry for the name in
* question. If the dentry is found its reference count is incremented and the
* dentry is returned. The caller must use dput to free the entry when it has
* finished using it. %NULL is returned if the dentry does not exist.
*/
struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
{
struct dentry * dentry = NULL;
unsigned long seq;
do {
seq = read_seqbegin(&rename_lock);
dentry = __d_lookup(parent, name);
if (dentry)
break;
} while (read_seqretry(&rename_lock, seq));
return dentry;
}
EXPORT_SYMBOL(d_lookup);
/*
* __d_lookup - search for a dentry (racy)
* @parent: parent dentry
* @name: qstr of name we wish to find
* Returns: dentry, or NULL
*
* __d_lookup is like d_lookup, however it may (rarely) return a
* false-negative result due to unrelated rename activity.
*
* __d_lookup is slightly faster by avoiding rename_lock read seqlock,
* however it must be used carefully, eg. with a following d_lookup in
* the case of failure.
*
* __d_lookup callers must be commented.
*/
struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
{
unsigned int len = name->len;
unsigned int hash = name->hash;
const unsigned char *str = name->name;
struct hlist_head *head = d_hash(parent,hash);
struct dentry *found = NULL;
struct hlist_node *node;
struct dentry *dentry;
/*
* The hash list is protected using RCU.
*
* Take d_lock when comparing a candidate dentry, to avoid races
* with d_move().
*
* It is possible that concurrent renames can mess up our list
* walk here and result in missing our dentry, resulting in the
* false-negative result. d_lookup() protects against concurrent
* renames using rename_lock seqlock.
*
* See Documentation/vfs/dcache-locking.txt for more details.
*/
rcu_read_lock();
hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
struct qstr *qstr;
if (dentry->d_name.hash != hash)
continue;
if (dentry->d_parent != parent)
continue;
spin_lock(&dentry->d_lock);
/*
* Recheck the dentry after taking the lock - d_move may have
* changed things. Don't bother checking the hash because
* we're about to compare the whole name anyway.
*/
if (dentry->d_parent != parent)
goto next;
/* non-existing due to RCU? */
if (d_unhashed(dentry))
goto next;
/*
* It is safe to compare names since d_move() cannot
* change the qstr (protected by d_lock).
*/
qstr = &dentry->d_name;
if (parent->d_op && parent->d_op->d_compare) {
if (parent->d_op->d_compare(parent, qstr, name))
goto next;
} else {
if (qstr->len != len)
goto next;
if (memcmp(qstr->name, str, len))
goto next;
}
atomic_inc(&dentry->d_count);
found = dentry;
spin_unlock(&dentry->d_lock);
break;
next:
spin_unlock(&dentry->d_lock);
}
rcu_read_unlock();
return found;
}
/**
* d_hash_and_lookup - hash the qstr then search for a dentry
* @dir: Directory to search in
* @name: qstr of name we wish to find
*
* On hash failure or on lookup failure NULL is returned.
*/
struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
{
struct dentry *dentry = NULL;
/*
* Check for a fs-specific hash function. Note that we must
* calculate the standard hash first, as the d_op->d_hash()
* routine may choose to leave the hash value unchanged.
*/
name->hash = full_name_hash(name->name, name->len);
if (dir->d_op && dir->d_op->d_hash) {
if (dir->d_op->d_hash(dir, name) < 0)
goto out;
}
dentry = d_lookup(dir, name);
out:
return dentry;
}
/**
* d_validate - verify dentry provided from insecure source
* @dentry: The dentry alleged to be valid child of @dparent
* @dparent: The parent dentry (known to be valid)
*
* An insecure source has sent us a dentry, here we verify it and dget() it.
* This is used by ncpfs in its readdir implementation.
* Zero is returned in the dentry is invalid.
*/
int d_validate(struct dentry *dentry, struct dentry *dparent)
{
struct hlist_head *base;
struct hlist_node *lhp;
/* Check whether the ptr might be valid at all.. */
if (!kmem_ptr_validate(dentry_cache, dentry))
goto out;
if (dentry->d_parent != dparent)
goto out;
spin_lock(&dcache_lock);
base = d_hash(dparent, dentry->d_name.hash);
hlist_for_each(lhp,base) {
/* hlist_for_each_entry_rcu() not required for d_hash list
* as it is parsed under dcache_lock
*/
if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
__dget_locked(dentry);
spin_unlock(&dcache_lock);
return 1;
}
}
spin_unlock(&dcache_lock);
out:
return 0;
}
EXPORT_SYMBOL(d_validate);
/*
* When a file is deleted, we have two options:
* - turn this dentry into a negative dentry
* - unhash this dentry and free it.
*
* Usually, we want to just turn this into
* a negative dentry, but if anybody else is
* currently using the dentry or the inode
* we can't do that and we fall back on removing
* it from the hash queues and waiting for
* it to be deleted later when it has no users
*/
/**
* d_delete - delete a dentry
* @dentry: The dentry to delete
*
* Turn the dentry into a negative dentry if possible, otherwise
* remove it from the hash queues so it can be deleted later
*/
void d_delete(struct dentry * dentry)
{
int isdir = 0;
/*
* Are we the only user?
*/
spin_lock(&dcache_lock);
spin_lock(&dentry->d_lock);
isdir = S_ISDIR(dentry->d_inode->i_mode);
if (atomic_read(&dentry->d_count) == 1) {
dentry->d_flags &= ~DCACHE_CANT_MOUNT;
dentry_iput(dentry);
fsnotify_nameremove(dentry, isdir);
return;
}
if (!d_unhashed(dentry))
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
fsnotify_nameremove(dentry, isdir);
}
EXPORT_SYMBOL(d_delete);
static void __d_rehash(struct dentry * entry, struct hlist_head *list)
{
entry->d_flags &= ~DCACHE_UNHASHED;
hlist_add_head_rcu(&entry->d_hash, list);
}
static void _d_rehash(struct dentry * entry)
{
__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
}
/**
* d_rehash - add an entry back to the hash
* @entry: dentry to add to the hash
*
* Adds a dentry to the hash according to its name.
*/
void d_rehash(struct dentry * entry)
{
spin_lock(&dcache_lock);
spin_lock(&entry->d_lock);
_d_rehash(entry);
spin_unlock(&entry->d_lock);
spin_unlock(&dcache_lock);
}
EXPORT_SYMBOL(d_rehash);
/*
* When switching names, the actual string doesn't strictly have to
* be preserved in the target - because we're dropping the target
* anyway. As such, we can just do a simple memcpy() to copy over
* the new name before we switch.
*
* Note that we have to be a lot more careful about getting the hash
* switched - we have to switch the hash value properly even if it
* then no longer matches the actual (corrupted) string of the target.
* The hash value has to match the hash queue that the dentry is on..
*/
static void switch_names(struct dentry *dentry, struct dentry *target)
{
if (dname_external(target)) {
if (dname_external(dentry)) {
/*
* Both external: swap the pointers
*/
swap(target->d_name.name, dentry->d_name.name);
} else {
/*
* dentry:internal, target:external. Steal target's
* storage and make target internal.
*/
memcpy(target->d_iname, dentry->d_name.name,
dentry->d_name.len + 1);
dentry->d_name.name = target->d_name.name;
target->d_name.name = target->d_iname;
}
} else {
if (dname_external(dentry)) {
/*
* dentry:external, target:internal. Give dentry's
* storage to target and make dentry internal
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
target->d_name.name = dentry->d_name.name;
dentry->d_name.name = dentry->d_iname;
} else {
/*
* Both are internal. Just copy target to dentry
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
dentry->d_name.len = target->d_name.len;
return;
}
}
swap(dentry->d_name.len, target->d_name.len);
}
/*
* We cannibalize "target" when moving dentry on top of it,
* because it's going to be thrown away anyway. We could be more
* polite about it, though.
*
* This forceful removal will result in ugly /proc output if
* somebody holds a file open that got deleted due to a rename.
* We could be nicer about the deleted file, and let it show
* up under the name it had before it was deleted rather than
* under the original name of the file that was moved on top of it.
*/
/*
* d_move_locked - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way.
*/
static void d_move_locked(struct dentry * dentry, struct dentry * target)
{
struct hlist_head *list;
if (!dentry->d_inode)
printk(KERN_WARNING "VFS: moving negative dcache entry\n");
write_seqlock(&rename_lock);
/*
* XXXX: do we really need to take target->d_lock?
*/
if (target < dentry) {
spin_lock(&target->d_lock);
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
} else {
spin_lock(&dentry->d_lock);
spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
}
/* Move the dentry to the target hash queue, if on different bucket */
if (d_unhashed(dentry))
goto already_unhashed;
hlist_del_rcu(&dentry->d_hash);
already_unhashed:
list = d_hash(target->d_parent, target->d_name.hash);
__d_rehash(dentry, list);
/* Unhash the target: dput() will then get rid of it */
__d_drop(target);
list_del(&dentry->d_u.d_child);
list_del(&target->d_u.d_child);
/* Switch the names.. */
switch_names(dentry, target);
swap(dentry->d_name.hash, target->d_name.hash);
/* ... and switch the parents */
if (IS_ROOT(dentry)) {
dentry->d_parent = target->d_parent;
target->d_parent = target;
INIT_LIST_HEAD(&target->d_u.d_child);
} else {
swap(dentry->d_parent, target->d_parent);
/* And add them back to the (new) parent lists */
list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
}
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
spin_unlock(&target->d_lock);
fsnotify_d_move(dentry);
spin_unlock(&dentry->d_lock);
write_sequnlock(&rename_lock);
}
/**
* d_move - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way.
*/
void d_move(struct dentry * dentry, struct dentry * target)
{
spin_lock(&dcache_lock);
d_move_locked(dentry, target);
spin_unlock(&dcache_lock);
}
EXPORT_SYMBOL(d_move);
/**
* d_ancestor - search for an ancestor
* @p1: ancestor dentry
* @p2: child dentry
*
* Returns the ancestor dentry of p2 which is a child of p1, if p1 is
* an ancestor of p2, else NULL.
*/
struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
{
struct dentry *p;
for (p = p2; !IS_ROOT(p); p = p->d_parent) {
if (p->d_parent == p1)
return p;
}
return NULL;
}
/*
* This helper attempts to cope with remotely renamed directories
*
* It assumes that the caller is already holding
* dentry->d_parent->d_inode->i_mutex and the dcache_lock
*
* Note: If ever the locking in lock_rename() changes, then please
* remember to update this too...
*/
static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
__releases(dcache_lock)
{
struct mutex *m1 = NULL, *m2 = NULL;
struct dentry *ret;
/* If alias and dentry share a parent, then no extra locks required */
if (alias->d_parent == dentry->d_parent)
goto out_unalias;
/* Check for loops */
ret = ERR_PTR(-ELOOP);
if (d_ancestor(alias, dentry))
goto out_err;
/* See lock_rename() */
ret = ERR_PTR(-EBUSY);
if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
goto out_err;
m1 = &dentry->d_sb->s_vfs_rename_mutex;
if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
goto out_err;
m2 = &alias->d_parent->d_inode->i_mutex;
out_unalias:
d_move_locked(alias, dentry);
ret = alias;
out_err:
spin_unlock(&dcache_lock);
if (m2)
mutex_unlock(m2);
if (m1)
mutex_unlock(m1);
return ret;
}
/*
* Prepare an anonymous dentry for life in the superblock's dentry tree as a
* named dentry in place of the dentry to be replaced.
*/
static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
{
struct dentry *dparent, *aparent;
switch_names(dentry, anon);
swap(dentry->d_name.hash, anon->d_name.hash);
dparent = dentry->d_parent;
aparent = anon->d_parent;
dentry->d_parent = (aparent == anon) ? dentry : aparent;
list_del(&dentry->d_u.d_child);
if (!IS_ROOT(dentry))
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&dentry->d_u.d_child);
anon->d_parent = (dparent == dentry) ? anon : dparent;
list_del(&anon->d_u.d_child);
if (!IS_ROOT(anon))
list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&anon->d_u.d_child);
anon->d_flags &= ~DCACHE_DISCONNECTED;
}
/**
* d_materialise_unique - introduce an inode into the tree
* @dentry: candidate dentry
* @inode: inode to bind to the dentry, to which aliases may be attached
*
* Introduces an dentry into the tree, substituting an extant disconnected
* root directory alias in its place if there is one
*/
struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
{
struct dentry *actual;
BUG_ON(!d_unhashed(dentry));
spin_lock(&dcache_lock);
if (!inode) {
actual = dentry;
__d_instantiate(dentry, NULL);
goto found_lock;
}
if (S_ISDIR(inode->i_mode)) {
struct dentry *alias;
/* Does an aliased dentry already exist? */
alias = __d_find_alias(inode, 0);
if (alias) {
actual = alias;
/* Is this an anonymous mountpoint that we could splice
* into our tree? */
if (IS_ROOT(alias)) {
spin_lock(&alias->d_lock);
__d_materialise_dentry(dentry, alias);
__d_drop(alias);
goto found;
}
/* Nope, but we must(!) avoid directory aliasing */
actual = __d_unalias(dentry, alias);
if (IS_ERR(actual))
dput(alias);
goto out_nolock;
}
}
/* Add a unique reference */
actual = __d_instantiate_unique(dentry, inode);
if (!actual)
actual = dentry;
else if (unlikely(!d_unhashed(actual)))
goto shouldnt_be_hashed;
found_lock:
spin_lock(&actual->d_lock);
found:
_d_rehash(actual);
spin_unlock(&actual->d_lock);
spin_unlock(&dcache_lock);
out_nolock:
if (actual == dentry) {
security_d_instantiate(dentry, inode);
return NULL;
}
iput(inode);
return actual;
shouldnt_be_hashed:
spin_unlock(&dcache_lock);
BUG();
}
EXPORT_SYMBOL_GPL(d_materialise_unique);
static int prepend(char **buffer, int *buflen, const char *str, int namelen)
{
*buflen -= namelen;
if (*buflen < 0)
return -ENAMETOOLONG;
*buffer -= namelen;
memcpy(*buffer, str, namelen);
return 0;
}
static int prepend_name(char **buffer, int *buflen, struct qstr *name)
{
return prepend(buffer, buflen, name->name, name->len);
}
/**
* Prepend path string to a buffer
*
* @path: the dentry/vfsmount to report
* @root: root vfsmnt/dentry (may be modified by this function)
* @buffer: pointer to the end of the buffer
* @buflen: pointer to buffer length
*
* Caller holds the dcache_lock.
*
* If path is not reachable from the supplied root, then the value of
* root is changed (without modifying refcounts).
*/
static int prepend_path(const struct path *path, struct path *root,
char **buffer, int *buflen)
{
struct dentry *dentry = path->dentry;
struct vfsmount *vfsmnt = path->mnt;
bool slash = false;
int error = 0;
br_read_lock(vfsmount_lock);
while (dentry != root->dentry || vfsmnt != root->mnt) {
struct dentry * parent;
if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
/* Global root? */
if (vfsmnt->mnt_parent == vfsmnt) {
goto global_root;
}
dentry = vfsmnt->mnt_mountpoint;
vfsmnt = vfsmnt->mnt_parent;
continue;
}
parent = dentry->d_parent;
prefetch(parent);
error = prepend_name(buffer, buflen, &dentry->d_name);
if (!error)
error = prepend(buffer, buflen, "/", 1);
if (error)
break;
slash = true;
dentry = parent;
}
out:
if (!error && !slash)
error = prepend(buffer, buflen, "/", 1);
br_read_unlock(vfsmount_lock);
return error;
global_root:
/*
* Filesystems needing to implement special "root names"
* should do so with ->d_dname()
*/
if (IS_ROOT(dentry) &&
(dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
WARN(1, "Root dentry has weird name <%.*s>\n",
(int) dentry->d_name.len, dentry->d_name.name);
}
root->mnt = vfsmnt;
root->dentry = dentry;
goto out;
}
/**
* __d_path - return the path of a dentry
* @path: the dentry/vfsmount to report
* @root: root vfsmnt/dentry (may be modified by this function)
* @buf: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name.
*
* Returns a pointer into the buffer or an error code if the
* path was too long.
*
* "buflen" should be positive. Caller holds the dcache_lock.
*
* If path is not reachable from the supplied root, then the value of
* root is changed (without modifying refcounts).
*/
char *__d_path(const struct path *path, struct path *root,
char *buf, int buflen)
{
char *res = buf + buflen;
int error;
prepend(&res, &buflen, "\0", 1);
error = prepend_path(path, root, &res, &buflen);
if (error)
return ERR_PTR(error);
return res;
}
/*
* same as __d_path but appends "(deleted)" for unlinked files.
*/
static int path_with_deleted(const struct path *path, struct path *root,
char **buf, int *buflen)
{
prepend(buf, buflen, "\0", 1);
if (d_unlinked(path->dentry)) {
int error = prepend(buf, buflen, " (deleted)", 10);
if (error)
return error;
}
return prepend_path(path, root, buf, buflen);
}
static int prepend_unreachable(char **buffer, int *buflen)
{
return prepend(buffer, buflen, "(unreachable)", 13);
}
/**
* d_path - return the path of a dentry
* @path: path to report
* @buf: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name. If the entry has been deleted
* the string " (deleted)" is appended. Note that this is ambiguous.
*
* Returns a pointer into the buffer or an error code if the path was
* too long. Note: Callers should use the returned pointer, not the passed
* in buffer, to use the name! The implementation often starts at an offset
* into the buffer, and may leave 0 bytes at the start.
*
* "buflen" should be positive.
*/
char *d_path(const struct path *path, char *buf, int buflen)
{
char *res = buf + buflen;
struct path root;
struct path tmp;
int error;
/*
* We have various synthetic filesystems that never get mounted. On
* these filesystems dentries are never used for lookup purposes, and
* thus don't need to be hashed. They also don't need a name until a
* user wants to identify the object in /proc/pid/fd/. The little hack
* below allows us to generate a name for these objects on demand:
*/
if (path->dentry->d_op && path->dentry->d_op->d_dname)
return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
get_fs_root(current->fs, &root);
spin_lock(&dcache_lock);
tmp = root;
error = path_with_deleted(path, &tmp, &res, &buflen);
if (error)
res = ERR_PTR(error);
spin_unlock(&dcache_lock);
path_put(&root);
return res;
}
EXPORT_SYMBOL(d_path);
/**
* d_path_with_unreachable - return the path of a dentry
* @path: path to report
* @buf: buffer to return value in
* @buflen: buffer length
*
* The difference from d_path() is that this prepends "(unreachable)"
* to paths which are unreachable from the current process' root.
*/
char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
{
char *res = buf + buflen;
struct path root;
struct path tmp;
int error;
if (path->dentry->d_op && path->dentry->d_op->d_dname)
return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
get_fs_root(current->fs, &root);
spin_lock(&dcache_lock);
tmp = root;
error = path_with_deleted(path, &tmp, &res, &buflen);
if (!error && !path_equal(&tmp, &root))
error = prepend_unreachable(&res, &buflen);
spin_unlock(&dcache_lock);
path_put(&root);
if (error)
res = ERR_PTR(error);
return res;
}
/*
* Helper function for dentry_operations.d_dname() members
*/
char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
const char *fmt, ...)
{
va_list args;
char temp[64];
int sz;
va_start(args, fmt);
sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
va_end(args);
if (sz > sizeof(temp) || sz > buflen)
return ERR_PTR(-ENAMETOOLONG);
buffer += buflen - sz;
return memcpy(buffer, temp, sz);
}
/*
* Write full pathname from the root of the filesystem into the buffer.
*/
char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
{
char *end = buf + buflen;
char *retval;
prepend(&end, &buflen, "\0", 1);
if (buflen < 1)
goto Elong;
/* Get '/' right */
retval = end-1;
*retval = '/';
while (!IS_ROOT(dentry)) {
struct dentry *parent = dentry->d_parent;
prefetch(parent);
if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
(prepend(&end, &buflen, "/", 1) != 0))
goto Elong;
retval = end;
dentry = parent;
}
return retval;
Elong:
return ERR_PTR(-ENAMETOOLONG);
}
EXPORT_SYMBOL(__dentry_path);
char *dentry_path(struct dentry *dentry, char *buf, int buflen)
{
char *p = NULL;
char *retval;
spin_lock(&dcache_lock);
if (d_unlinked(dentry)) {
p = buf + buflen;
if (prepend(&p, &buflen, "//deleted", 10) != 0)
goto Elong;
buflen++;
}
retval = __dentry_path(dentry, buf, buflen);
spin_unlock(&dcache_lock);
if (!IS_ERR(retval) && p)
*p = '/'; /* restore '/' overriden with '\0' */
return retval;
Elong:
spin_unlock(&dcache_lock);
return ERR_PTR(-ENAMETOOLONG);
}
/*
* NOTE! The user-level library version returns a
* character pointer. The kernel system call just
* returns the length of the buffer filled (which
* includes the ending '\0' character), or a negative
* error value. So libc would do something like
*
* char *getcwd(char * buf, size_t size)
* {
* int retval;
*
* retval = sys_getcwd(buf, size);
* if (retval >= 0)
* return buf;
* errno = -retval;
* return NULL;
* }
*/
SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
{
int error;
struct path pwd, root;
char *page = (char *) __get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
get_fs_root_and_pwd(current->fs, &root, &pwd);
error = -ENOENT;
spin_lock(&dcache_lock);
if (!d_unlinked(pwd.dentry)) {
unsigned long len;
struct path tmp = root;
char *cwd = page + PAGE_SIZE;
int buflen = PAGE_SIZE;
prepend(&cwd, &buflen, "\0", 1);
error = prepend_path(&pwd, &tmp, &cwd, &buflen);
spin_unlock(&dcache_lock);
if (error)
goto out;
/* Unreachable from current root */
if (!path_equal(&tmp, &root)) {
error = prepend_unreachable(&cwd, &buflen);
if (error)
goto out;
}
error = -ERANGE;
len = PAGE_SIZE + page - cwd;
if (len <= size) {
error = len;
if (copy_to_user(buf, cwd, len))
error = -EFAULT;
}
} else
spin_unlock(&dcache_lock);
out:
path_put(&pwd);
path_put(&root);
free_page((unsigned long) page);
return error;
}
/*
* Test whether new_dentry is a subdirectory of old_dentry.
*
* Trivially implemented using the dcache structure
*/
/**
* is_subdir - is new dentry a subdirectory of old_dentry
* @new_dentry: new dentry
* @old_dentry: old dentry
*
* Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
* Returns 0 otherwise.
* Caller must ensure that "new_dentry" is pinned before calling is_subdir()
*/
int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
{
int result;
unsigned long seq;
if (new_dentry == old_dentry)
return 1;
/*
* Need rcu_readlock to protect against the d_parent trashing
* due to d_move
*/
rcu_read_lock();
do {
/* for restarting inner loop in case of seq retry */
seq = read_seqbegin(&rename_lock);
if (d_ancestor(old_dentry, new_dentry))
result = 1;
else
result = 0;
} while (read_seqretry(&rename_lock, seq));
rcu_read_unlock();
return result;
}
int path_is_under(struct path *path1, struct path *path2)
{
struct vfsmount *mnt = path1->mnt;
struct dentry *dentry = path1->dentry;
int res;
br_read_lock(vfsmount_lock);
if (mnt != path2->mnt) {
for (;;) {
if (mnt->mnt_parent == mnt) {
br_read_unlock(vfsmount_lock);
return 0;
}
if (mnt->mnt_parent == path2->mnt)
break;
mnt = mnt->mnt_parent;
}
dentry = mnt->mnt_mountpoint;
}
res = is_subdir(dentry, path2->dentry);
br_read_unlock(vfsmount_lock);
return res;
}
EXPORT_SYMBOL(path_is_under);
void d_genocide(struct dentry *root)
{
struct dentry *this_parent = root;
struct list_head *next;
spin_lock(&dcache_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
if (d_unhashed(dentry)||!dentry->d_inode)
continue;
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
atomic_dec(&dentry->d_count);
}
if (this_parent != root) {
next = this_parent->d_u.d_child.next;
atomic_dec(&this_parent->d_count);
this_parent = this_parent->d_parent;
goto resume;
}
spin_unlock(&dcache_lock);
}
/**
* find_inode_number - check for dentry with name
* @dir: directory to check
* @name: Name to find.
*
* Check whether a dentry already exists for the given name,
* and return the inode number if it has an inode. Otherwise
* 0 is returned.
*
* This routine is used to post-process directory listings for
* filesystems using synthetic inode numbers, and is necessary
* to keep getcwd() working.
*/
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
struct dentry * dentry;
ino_t ino = 0;
dentry = d_hash_and_lookup(dir, name);
if (dentry) {
if (dentry->d_inode)
ino = dentry->d_inode->i_ino;
dput(dentry);
}
return ino;
}
EXPORT_SYMBOL(find_inode_number);
static __initdata unsigned long dhash_entries;
static int __init set_dhash_entries(char *str)
{
if (!str)
return 0;
dhash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("dhash_entries=", set_dhash_entries);
static void __init dcache_init_early(void)
{
int loop;
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_head),
dhash_entries,
13,
HASH_EARLY,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1 << d_hash_shift); loop++)
INIT_HLIST_HEAD(&dentry_hashtable[loop]);
}
static void __init dcache_init(void)
{
int loop;
/*
* A constructor could be added for stable state like the lists,
* but it is probably not worth it because of the cache nature
* of the dcache.
*/
dentry_cache = KMEM_CACHE(dentry,
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
register_shrinker(&dcache_shrinker);
/* Hash may have been set up in dcache_init_early */
if (!hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_head),
dhash_entries,
13,
0,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1 << d_hash_shift); loop++)
INIT_HLIST_HEAD(&dentry_hashtable[loop]);
}
/* SLAB cache for __getname() consumers */
struct kmem_cache *names_cachep __read_mostly;
EXPORT_SYMBOL(names_cachep);
EXPORT_SYMBOL(d_genocide);
void __init vfs_caches_init_early(void)
{
dcache_init_early();
inode_init_early();
}
void __init vfs_caches_init(unsigned long mempages)
{
unsigned long reserve;
/* Base hash sizes on available memory, with a reserve equal to
150% of current kernel size */
reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
mempages -= reserve;
names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
dcache_init();
inode_init();
files_init(mempages);
mnt_init();
bdev_cache_init();
chrdev_init();
}