mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 02:26:40 +07:00
96d4f267e4
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
422 lines
10 KiB
C
422 lines
10 KiB
C
/*
|
|
* PowerNV LPC bus handling.
|
|
*
|
|
* Copyright 2013 IBM Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/of.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/opal.h>
|
|
#include <asm/prom.h>
|
|
#include <linux/uaccess.h>
|
|
#include <asm/debugfs.h>
|
|
#include <asm/isa-bridge.h>
|
|
|
|
static int opal_lpc_chip_id = -1;
|
|
|
|
static u8 opal_lpc_inb(unsigned long port)
|
|
{
|
|
int64_t rc;
|
|
__be32 data;
|
|
|
|
if (opal_lpc_chip_id < 0 || port > 0xffff)
|
|
return 0xff;
|
|
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 1);
|
|
return rc ? 0xff : be32_to_cpu(data);
|
|
}
|
|
|
|
static __le16 __opal_lpc_inw(unsigned long port)
|
|
{
|
|
int64_t rc;
|
|
__be32 data;
|
|
|
|
if (opal_lpc_chip_id < 0 || port > 0xfffe)
|
|
return 0xffff;
|
|
if (port & 1)
|
|
return (__le16)opal_lpc_inb(port) << 8 | opal_lpc_inb(port + 1);
|
|
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 2);
|
|
return rc ? 0xffff : be32_to_cpu(data);
|
|
}
|
|
static u16 opal_lpc_inw(unsigned long port)
|
|
{
|
|
return le16_to_cpu(__opal_lpc_inw(port));
|
|
}
|
|
|
|
static __le32 __opal_lpc_inl(unsigned long port)
|
|
{
|
|
int64_t rc;
|
|
__be32 data;
|
|
|
|
if (opal_lpc_chip_id < 0 || port > 0xfffc)
|
|
return 0xffffffff;
|
|
if (port & 3)
|
|
return (__le32)opal_lpc_inb(port ) << 24 |
|
|
(__le32)opal_lpc_inb(port + 1) << 16 |
|
|
(__le32)opal_lpc_inb(port + 2) << 8 |
|
|
opal_lpc_inb(port + 3);
|
|
rc = opal_lpc_read(opal_lpc_chip_id, OPAL_LPC_IO, port, &data, 4);
|
|
return rc ? 0xffffffff : be32_to_cpu(data);
|
|
}
|
|
|
|
static u32 opal_lpc_inl(unsigned long port)
|
|
{
|
|
return le32_to_cpu(__opal_lpc_inl(port));
|
|
}
|
|
|
|
static void opal_lpc_outb(u8 val, unsigned long port)
|
|
{
|
|
if (opal_lpc_chip_id < 0 || port > 0xffff)
|
|
return;
|
|
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 1);
|
|
}
|
|
|
|
static void __opal_lpc_outw(__le16 val, unsigned long port)
|
|
{
|
|
if (opal_lpc_chip_id < 0 || port > 0xfffe)
|
|
return;
|
|
if (port & 1) {
|
|
opal_lpc_outb(val >> 8, port);
|
|
opal_lpc_outb(val , port + 1);
|
|
return;
|
|
}
|
|
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 2);
|
|
}
|
|
|
|
static void opal_lpc_outw(u16 val, unsigned long port)
|
|
{
|
|
__opal_lpc_outw(cpu_to_le16(val), port);
|
|
}
|
|
|
|
static void __opal_lpc_outl(__le32 val, unsigned long port)
|
|
{
|
|
if (opal_lpc_chip_id < 0 || port > 0xfffc)
|
|
return;
|
|
if (port & 3) {
|
|
opal_lpc_outb(val >> 24, port);
|
|
opal_lpc_outb(val >> 16, port + 1);
|
|
opal_lpc_outb(val >> 8, port + 2);
|
|
opal_lpc_outb(val , port + 3);
|
|
return;
|
|
}
|
|
opal_lpc_write(opal_lpc_chip_id, OPAL_LPC_IO, port, val, 4);
|
|
}
|
|
|
|
static void opal_lpc_outl(u32 val, unsigned long port)
|
|
{
|
|
__opal_lpc_outl(cpu_to_le32(val), port);
|
|
}
|
|
|
|
static void opal_lpc_insb(unsigned long p, void *b, unsigned long c)
|
|
{
|
|
u8 *ptr = b;
|
|
|
|
while(c--)
|
|
*(ptr++) = opal_lpc_inb(p);
|
|
}
|
|
|
|
static void opal_lpc_insw(unsigned long p, void *b, unsigned long c)
|
|
{
|
|
__le16 *ptr = b;
|
|
|
|
while(c--)
|
|
*(ptr++) = __opal_lpc_inw(p);
|
|
}
|
|
|
|
static void opal_lpc_insl(unsigned long p, void *b, unsigned long c)
|
|
{
|
|
__le32 *ptr = b;
|
|
|
|
while(c--)
|
|
*(ptr++) = __opal_lpc_inl(p);
|
|
}
|
|
|
|
static void opal_lpc_outsb(unsigned long p, const void *b, unsigned long c)
|
|
{
|
|
const u8 *ptr = b;
|
|
|
|
while(c--)
|
|
opal_lpc_outb(*(ptr++), p);
|
|
}
|
|
|
|
static void opal_lpc_outsw(unsigned long p, const void *b, unsigned long c)
|
|
{
|
|
const __le16 *ptr = b;
|
|
|
|
while(c--)
|
|
__opal_lpc_outw(*(ptr++), p);
|
|
}
|
|
|
|
static void opal_lpc_outsl(unsigned long p, const void *b, unsigned long c)
|
|
{
|
|
const __le32 *ptr = b;
|
|
|
|
while(c--)
|
|
__opal_lpc_outl(*(ptr++), p);
|
|
}
|
|
|
|
static const struct ppc_pci_io opal_lpc_io = {
|
|
.inb = opal_lpc_inb,
|
|
.inw = opal_lpc_inw,
|
|
.inl = opal_lpc_inl,
|
|
.outb = opal_lpc_outb,
|
|
.outw = opal_lpc_outw,
|
|
.outl = opal_lpc_outl,
|
|
.insb = opal_lpc_insb,
|
|
.insw = opal_lpc_insw,
|
|
.insl = opal_lpc_insl,
|
|
.outsb = opal_lpc_outsb,
|
|
.outsw = opal_lpc_outsw,
|
|
.outsl = opal_lpc_outsl,
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct lpc_debugfs_entry {
|
|
enum OpalLPCAddressType lpc_type;
|
|
};
|
|
|
|
static ssize_t lpc_debug_read(struct file *filp, char __user *ubuf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct lpc_debugfs_entry *lpc = filp->private_data;
|
|
u32 data, pos, len, todo;
|
|
int rc;
|
|
|
|
if (!access_ok(ubuf, count))
|
|
return -EFAULT;
|
|
|
|
todo = count;
|
|
while (todo) {
|
|
pos = *ppos;
|
|
|
|
/*
|
|
* Select access size based on count and alignment and
|
|
* access type. IO and MEM only support byte acceses,
|
|
* FW supports all 3.
|
|
*/
|
|
len = 1;
|
|
if (lpc->lpc_type == OPAL_LPC_FW) {
|
|
if (todo > 3 && (pos & 3) == 0)
|
|
len = 4;
|
|
else if (todo > 1 && (pos & 1) == 0)
|
|
len = 2;
|
|
}
|
|
rc = opal_lpc_read(opal_lpc_chip_id, lpc->lpc_type, pos,
|
|
&data, len);
|
|
if (rc)
|
|
return -ENXIO;
|
|
|
|
/*
|
|
* Now there is some trickery with the data returned by OPAL
|
|
* as it's the desired data right justified in a 32-bit BE
|
|
* word.
|
|
*
|
|
* This is a very bad interface and I'm to blame for it :-(
|
|
*
|
|
* So we can't just apply a 32-bit swap to what comes from OPAL,
|
|
* because user space expects the *bytes* to be in their proper
|
|
* respective positions (ie, LPC position).
|
|
*
|
|
* So what we really want to do here is to shift data right
|
|
* appropriately on a LE kernel.
|
|
*
|
|
* IE. If the LPC transaction has bytes B0, B1, B2 and B3 in that
|
|
* order, we have in memory written to by OPAL at the "data"
|
|
* pointer:
|
|
*
|
|
* Bytes: OPAL "data" LE "data"
|
|
* 32-bit: B0 B1 B2 B3 B0B1B2B3 B3B2B1B0
|
|
* 16-bit: B0 B1 0000B0B1 B1B00000
|
|
* 8-bit: B0 000000B0 B0000000
|
|
*
|
|
* So a BE kernel will have the leftmost of the above in the MSB
|
|
* and rightmost in the LSB and can just then "cast" the u32 "data"
|
|
* down to the appropriate quantity and write it.
|
|
*
|
|
* However, an LE kernel can't. It doesn't need to swap because a
|
|
* load from data followed by a store to user are going to preserve
|
|
* the byte ordering which is the wire byte order which is what the
|
|
* user wants, but in order to "crop" to the right size, we need to
|
|
* shift right first.
|
|
*/
|
|
switch(len) {
|
|
case 4:
|
|
rc = __put_user((u32)data, (u32 __user *)ubuf);
|
|
break;
|
|
case 2:
|
|
#ifdef __LITTLE_ENDIAN__
|
|
data >>= 16;
|
|
#endif
|
|
rc = __put_user((u16)data, (u16 __user *)ubuf);
|
|
break;
|
|
default:
|
|
#ifdef __LITTLE_ENDIAN__
|
|
data >>= 24;
|
|
#endif
|
|
rc = __put_user((u8)data, (u8 __user *)ubuf);
|
|
break;
|
|
}
|
|
if (rc)
|
|
return -EFAULT;
|
|
*ppos += len;
|
|
ubuf += len;
|
|
todo -= len;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t lpc_debug_write(struct file *filp, const char __user *ubuf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct lpc_debugfs_entry *lpc = filp->private_data;
|
|
u32 data, pos, len, todo;
|
|
int rc;
|
|
|
|
if (!access_ok(ubuf, count))
|
|
return -EFAULT;
|
|
|
|
todo = count;
|
|
while (todo) {
|
|
pos = *ppos;
|
|
|
|
/*
|
|
* Select access size based on count and alignment and
|
|
* access type. IO and MEM only support byte acceses,
|
|
* FW supports all 3.
|
|
*/
|
|
len = 1;
|
|
if (lpc->lpc_type == OPAL_LPC_FW) {
|
|
if (todo > 3 && (pos & 3) == 0)
|
|
len = 4;
|
|
else if (todo > 1 && (pos & 1) == 0)
|
|
len = 2;
|
|
}
|
|
|
|
/*
|
|
* Similarly to the read case, we have some trickery here but
|
|
* it's different to handle. We need to pass the value to OPAL in
|
|
* a register whose layout depends on the access size. We want
|
|
* to reproduce the memory layout of the user, however we aren't
|
|
* doing a load from user and a store to another memory location
|
|
* which would achieve that. Here we pass the value to OPAL via
|
|
* a register which is expected to contain the "BE" interpretation
|
|
* of the byte sequence. IE: for a 32-bit access, byte 0 should be
|
|
* in the MSB. So here we *do* need to byteswap on LE.
|
|
*
|
|
* User bytes: LE "data" OPAL "data"
|
|
* 32-bit: B0 B1 B2 B3 B3B2B1B0 B0B1B2B3
|
|
* 16-bit: B0 B1 0000B1B0 0000B0B1
|
|
* 8-bit: B0 000000B0 000000B0
|
|
*/
|
|
switch(len) {
|
|
case 4:
|
|
rc = __get_user(data, (u32 __user *)ubuf);
|
|
data = cpu_to_be32(data);
|
|
break;
|
|
case 2:
|
|
rc = __get_user(data, (u16 __user *)ubuf);
|
|
data = cpu_to_be16(data);
|
|
break;
|
|
default:
|
|
rc = __get_user(data, (u8 __user *)ubuf);
|
|
break;
|
|
}
|
|
if (rc)
|
|
return -EFAULT;
|
|
|
|
rc = opal_lpc_write(opal_lpc_chip_id, lpc->lpc_type, pos,
|
|
data, len);
|
|
if (rc)
|
|
return -ENXIO;
|
|
*ppos += len;
|
|
ubuf += len;
|
|
todo -= len;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations lpc_fops = {
|
|
.read = lpc_debug_read,
|
|
.write = lpc_debug_write,
|
|
.open = simple_open,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
static int opal_lpc_debugfs_create_type(struct dentry *folder,
|
|
const char *fname,
|
|
enum OpalLPCAddressType type)
|
|
{
|
|
struct lpc_debugfs_entry *entry;
|
|
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
entry->lpc_type = type;
|
|
debugfs_create_file(fname, 0600, folder, entry, &lpc_fops);
|
|
return 0;
|
|
}
|
|
|
|
static int opal_lpc_init_debugfs(void)
|
|
{
|
|
struct dentry *root;
|
|
int rc = 0;
|
|
|
|
if (opal_lpc_chip_id < 0)
|
|
return -ENODEV;
|
|
|
|
root = debugfs_create_dir("lpc", powerpc_debugfs_root);
|
|
|
|
rc |= opal_lpc_debugfs_create_type(root, "io", OPAL_LPC_IO);
|
|
rc |= opal_lpc_debugfs_create_type(root, "mem", OPAL_LPC_MEM);
|
|
rc |= opal_lpc_debugfs_create_type(root, "fw", OPAL_LPC_FW);
|
|
return rc;
|
|
}
|
|
machine_device_initcall(powernv, opal_lpc_init_debugfs);
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
void __init opal_lpc_init(void)
|
|
{
|
|
struct device_node *np;
|
|
|
|
/*
|
|
* Look for a Power8 LPC bus tagged as "primary",
|
|
* we currently support only one though the OPAL APIs
|
|
* support any number.
|
|
*/
|
|
for_each_compatible_node(np, NULL, "ibm,power8-lpc") {
|
|
if (!of_device_is_available(np))
|
|
continue;
|
|
if (!of_get_property(np, "primary", NULL))
|
|
continue;
|
|
opal_lpc_chip_id = of_get_ibm_chip_id(np);
|
|
break;
|
|
}
|
|
if (opal_lpc_chip_id < 0)
|
|
return;
|
|
|
|
/* Does it support direct mapping ? */
|
|
if (of_get_property(np, "ranges", NULL)) {
|
|
pr_info("OPAL: Found memory mapped LPC bus on chip %d\n",
|
|
opal_lpc_chip_id);
|
|
isa_bridge_init_non_pci(np);
|
|
} else {
|
|
pr_info("OPAL: Found non-mapped LPC bus on chip %d\n",
|
|
opal_lpc_chip_id);
|
|
|
|
/* Setup special IO ops */
|
|
ppc_pci_io = opal_lpc_io;
|
|
isa_io_special = true;
|
|
}
|
|
}
|