mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
42b933b597
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so the context is pretty well defined. Read MSR_{FS,KERNEL_GS}_BASE from current->thread after calling save_fsgs() which takes care of X86_BUG_NULL_SEG case now and will do RD[FG,GS]BASE when FSGSBASE extensions are exposed to userspace (currently they are not). Acked-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
715 lines
19 KiB
C
715 lines
19 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
*
|
|
* X86-64 port
|
|
* Andi Kleen.
|
|
*
|
|
* CPU hotplug support - ashok.raj@intel.com
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of process handling..
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/syscalls.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/fpu/internal.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/prctl.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/syscalls.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/vdso.h>
|
|
#include <asm/intel_rdt_sched.h>
|
|
#include <asm/unistd.h>
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
/* Not included via unistd.h */
|
|
#include <asm/unistd_32_ia32.h>
|
|
#endif
|
|
|
|
__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
|
|
|
|
/* Prints also some state that isn't saved in the pt_regs */
|
|
void __show_regs(struct pt_regs *regs, int all)
|
|
{
|
|
unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
|
|
unsigned long d0, d1, d2, d3, d6, d7;
|
|
unsigned int fsindex, gsindex;
|
|
unsigned int ds, cs, es;
|
|
|
|
show_iret_regs(regs);
|
|
|
|
if (regs->orig_ax != -1)
|
|
pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
|
|
else
|
|
pr_cont("\n");
|
|
|
|
printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
|
|
regs->ax, regs->bx, regs->cx);
|
|
printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
|
|
regs->dx, regs->si, regs->di);
|
|
printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
|
|
regs->bp, regs->r8, regs->r9);
|
|
printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
|
|
regs->r10, regs->r11, regs->r12);
|
|
printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
|
|
regs->r13, regs->r14, regs->r15);
|
|
|
|
if (!all)
|
|
return;
|
|
|
|
asm("movl %%ds,%0" : "=r" (ds));
|
|
asm("movl %%cs,%0" : "=r" (cs));
|
|
asm("movl %%es,%0" : "=r" (es));
|
|
asm("movl %%fs,%0" : "=r" (fsindex));
|
|
asm("movl %%gs,%0" : "=r" (gsindex));
|
|
|
|
rdmsrl(MSR_FS_BASE, fs);
|
|
rdmsrl(MSR_GS_BASE, gs);
|
|
rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
|
|
|
|
cr0 = read_cr0();
|
|
cr2 = read_cr2();
|
|
cr3 = __read_cr3();
|
|
cr4 = __read_cr4();
|
|
|
|
printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
|
|
fs, fsindex, gs, gsindex, shadowgs);
|
|
printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
|
|
es, cr0);
|
|
printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
|
|
cr4);
|
|
|
|
get_debugreg(d0, 0);
|
|
get_debugreg(d1, 1);
|
|
get_debugreg(d2, 2);
|
|
get_debugreg(d3, 3);
|
|
get_debugreg(d6, 6);
|
|
get_debugreg(d7, 7);
|
|
|
|
/* Only print out debug registers if they are in their non-default state. */
|
|
if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
|
|
(d6 == DR6_RESERVED) && (d7 == 0x400))) {
|
|
printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
|
|
d0, d1, d2);
|
|
printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
|
|
d3, d6, d7);
|
|
}
|
|
|
|
if (boot_cpu_has(X86_FEATURE_OSPKE))
|
|
printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
|
|
}
|
|
|
|
void release_thread(struct task_struct *dead_task)
|
|
{
|
|
if (dead_task->mm) {
|
|
#ifdef CONFIG_MODIFY_LDT_SYSCALL
|
|
if (dead_task->mm->context.ldt) {
|
|
pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
|
|
dead_task->comm,
|
|
dead_task->mm->context.ldt->entries,
|
|
dead_task->mm->context.ldt->nr_entries);
|
|
BUG();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
enum which_selector {
|
|
FS,
|
|
GS
|
|
};
|
|
|
|
/*
|
|
* Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
|
|
* not available. The goal is to be reasonably fast on non-FSGSBASE systems.
|
|
* It's forcibly inlined because it'll generate better code and this function
|
|
* is hot.
|
|
*/
|
|
static __always_inline void save_base_legacy(struct task_struct *prev_p,
|
|
unsigned short selector,
|
|
enum which_selector which)
|
|
{
|
|
if (likely(selector == 0)) {
|
|
/*
|
|
* On Intel (without X86_BUG_NULL_SEG), the segment base could
|
|
* be the pre-existing saved base or it could be zero. On AMD
|
|
* (with X86_BUG_NULL_SEG), the segment base could be almost
|
|
* anything.
|
|
*
|
|
* This branch is very hot (it's hit twice on almost every
|
|
* context switch between 64-bit programs), and avoiding
|
|
* the RDMSR helps a lot, so we just assume that whatever
|
|
* value is already saved is correct. This matches historical
|
|
* Linux behavior, so it won't break existing applications.
|
|
*
|
|
* To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
|
|
* report that the base is zero, it needs to actually be zero:
|
|
* see the corresponding logic in load_seg_legacy.
|
|
*/
|
|
} else {
|
|
/*
|
|
* If the selector is 1, 2, or 3, then the base is zero on
|
|
* !X86_BUG_NULL_SEG CPUs and could be anything on
|
|
* X86_BUG_NULL_SEG CPUs. In the latter case, Linux
|
|
* has never attempted to preserve the base across context
|
|
* switches.
|
|
*
|
|
* If selector > 3, then it refers to a real segment, and
|
|
* saving the base isn't necessary.
|
|
*/
|
|
if (which == FS)
|
|
prev_p->thread.fsbase = 0;
|
|
else
|
|
prev_p->thread.gsbase = 0;
|
|
}
|
|
}
|
|
|
|
static __always_inline void save_fsgs(struct task_struct *task)
|
|
{
|
|
savesegment(fs, task->thread.fsindex);
|
|
savesegment(gs, task->thread.gsindex);
|
|
save_base_legacy(task, task->thread.fsindex, FS);
|
|
save_base_legacy(task, task->thread.gsindex, GS);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_KVM)
|
|
/*
|
|
* While a process is running,current->thread.fsbase and current->thread.gsbase
|
|
* may not match the corresponding CPU registers (see save_base_legacy()). KVM
|
|
* wants an efficient way to save and restore FSBASE and GSBASE.
|
|
* When FSGSBASE extensions are enabled, this will have to use RD{FS,GS}BASE.
|
|
*/
|
|
void save_fsgs_for_kvm(void)
|
|
{
|
|
save_fsgs(current);
|
|
}
|
|
EXPORT_SYMBOL_GPL(save_fsgs_for_kvm);
|
|
#endif
|
|
|
|
static __always_inline void loadseg(enum which_selector which,
|
|
unsigned short sel)
|
|
{
|
|
if (which == FS)
|
|
loadsegment(fs, sel);
|
|
else
|
|
load_gs_index(sel);
|
|
}
|
|
|
|
static __always_inline void load_seg_legacy(unsigned short prev_index,
|
|
unsigned long prev_base,
|
|
unsigned short next_index,
|
|
unsigned long next_base,
|
|
enum which_selector which)
|
|
{
|
|
if (likely(next_index <= 3)) {
|
|
/*
|
|
* The next task is using 64-bit TLS, is not using this
|
|
* segment at all, or is having fun with arcane CPU features.
|
|
*/
|
|
if (next_base == 0) {
|
|
/*
|
|
* Nasty case: on AMD CPUs, we need to forcibly zero
|
|
* the base.
|
|
*/
|
|
if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
|
|
loadseg(which, __USER_DS);
|
|
loadseg(which, next_index);
|
|
} else {
|
|
/*
|
|
* We could try to exhaustively detect cases
|
|
* under which we can skip the segment load,
|
|
* but there's really only one case that matters
|
|
* for performance: if both the previous and
|
|
* next states are fully zeroed, we can skip
|
|
* the load.
|
|
*
|
|
* (This assumes that prev_base == 0 has no
|
|
* false positives. This is the case on
|
|
* Intel-style CPUs.)
|
|
*/
|
|
if (likely(prev_index | next_index | prev_base))
|
|
loadseg(which, next_index);
|
|
}
|
|
} else {
|
|
if (prev_index != next_index)
|
|
loadseg(which, next_index);
|
|
wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
|
|
next_base);
|
|
}
|
|
} else {
|
|
/*
|
|
* The next task is using a real segment. Loading the selector
|
|
* is sufficient.
|
|
*/
|
|
loadseg(which, next_index);
|
|
}
|
|
}
|
|
|
|
int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
|
|
unsigned long arg, struct task_struct *p, unsigned long tls)
|
|
{
|
|
int err;
|
|
struct pt_regs *childregs;
|
|
struct fork_frame *fork_frame;
|
|
struct inactive_task_frame *frame;
|
|
struct task_struct *me = current;
|
|
|
|
childregs = task_pt_regs(p);
|
|
fork_frame = container_of(childregs, struct fork_frame, regs);
|
|
frame = &fork_frame->frame;
|
|
frame->bp = 0;
|
|
frame->ret_addr = (unsigned long) ret_from_fork;
|
|
p->thread.sp = (unsigned long) fork_frame;
|
|
p->thread.io_bitmap_ptr = NULL;
|
|
|
|
savesegment(gs, p->thread.gsindex);
|
|
p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
|
|
savesegment(fs, p->thread.fsindex);
|
|
p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
|
|
savesegment(es, p->thread.es);
|
|
savesegment(ds, p->thread.ds);
|
|
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
|
|
|
|
if (unlikely(p->flags & PF_KTHREAD)) {
|
|
/* kernel thread */
|
|
memset(childregs, 0, sizeof(struct pt_regs));
|
|
frame->bx = sp; /* function */
|
|
frame->r12 = arg;
|
|
return 0;
|
|
}
|
|
frame->bx = 0;
|
|
*childregs = *current_pt_regs();
|
|
|
|
childregs->ax = 0;
|
|
if (sp)
|
|
childregs->sp = sp;
|
|
|
|
err = -ENOMEM;
|
|
if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
|
|
p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
|
|
IO_BITMAP_BYTES, GFP_KERNEL);
|
|
if (!p->thread.io_bitmap_ptr) {
|
|
p->thread.io_bitmap_max = 0;
|
|
return -ENOMEM;
|
|
}
|
|
set_tsk_thread_flag(p, TIF_IO_BITMAP);
|
|
}
|
|
|
|
/*
|
|
* Set a new TLS for the child thread?
|
|
*/
|
|
if (clone_flags & CLONE_SETTLS) {
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
if (in_ia32_syscall())
|
|
err = do_set_thread_area(p, -1,
|
|
(struct user_desc __user *)tls, 0);
|
|
else
|
|
#endif
|
|
err = do_arch_prctl_64(p, ARCH_SET_FS, tls);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
err = 0;
|
|
out:
|
|
if (err && p->thread.io_bitmap_ptr) {
|
|
kfree(p->thread.io_bitmap_ptr);
|
|
p->thread.io_bitmap_max = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
|
unsigned long new_sp,
|
|
unsigned int _cs, unsigned int _ss, unsigned int _ds)
|
|
{
|
|
WARN_ON_ONCE(regs != current_pt_regs());
|
|
|
|
if (static_cpu_has(X86_BUG_NULL_SEG)) {
|
|
/* Loading zero below won't clear the base. */
|
|
loadsegment(fs, __USER_DS);
|
|
load_gs_index(__USER_DS);
|
|
}
|
|
|
|
loadsegment(fs, 0);
|
|
loadsegment(es, _ds);
|
|
loadsegment(ds, _ds);
|
|
load_gs_index(0);
|
|
|
|
regs->ip = new_ip;
|
|
regs->sp = new_sp;
|
|
regs->cs = _cs;
|
|
regs->ss = _ss;
|
|
regs->flags = X86_EFLAGS_IF;
|
|
force_iret();
|
|
}
|
|
|
|
void
|
|
start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
__USER_CS, __USER_DS, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
|
|
{
|
|
start_thread_common(regs, new_ip, new_sp,
|
|
test_thread_flag(TIF_X32)
|
|
? __USER_CS : __USER32_CS,
|
|
__USER_DS, __USER_DS);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* switch_to(x,y) should switch tasks from x to y.
|
|
*
|
|
* This could still be optimized:
|
|
* - fold all the options into a flag word and test it with a single test.
|
|
* - could test fs/gs bitsliced
|
|
*
|
|
* Kprobes not supported here. Set the probe on schedule instead.
|
|
* Function graph tracer not supported too.
|
|
*/
|
|
__visible __notrace_funcgraph struct task_struct *
|
|
__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
|
|
{
|
|
struct thread_struct *prev = &prev_p->thread;
|
|
struct thread_struct *next = &next_p->thread;
|
|
struct fpu *prev_fpu = &prev->fpu;
|
|
struct fpu *next_fpu = &next->fpu;
|
|
int cpu = smp_processor_id();
|
|
struct tss_struct *tss = &per_cpu(cpu_tss_rw, cpu);
|
|
|
|
WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
|
|
this_cpu_read(irq_count) != -1);
|
|
|
|
switch_fpu_prepare(prev_fpu, cpu);
|
|
|
|
/* We must save %fs and %gs before load_TLS() because
|
|
* %fs and %gs may be cleared by load_TLS().
|
|
*
|
|
* (e.g. xen_load_tls())
|
|
*/
|
|
save_fsgs(prev_p);
|
|
|
|
/*
|
|
* Load TLS before restoring any segments so that segment loads
|
|
* reference the correct GDT entries.
|
|
*/
|
|
load_TLS(next, cpu);
|
|
|
|
/*
|
|
* Leave lazy mode, flushing any hypercalls made here. This
|
|
* must be done after loading TLS entries in the GDT but before
|
|
* loading segments that might reference them, and and it must
|
|
* be done before fpu__restore(), so the TS bit is up to
|
|
* date.
|
|
*/
|
|
arch_end_context_switch(next_p);
|
|
|
|
/* Switch DS and ES.
|
|
*
|
|
* Reading them only returns the selectors, but writing them (if
|
|
* nonzero) loads the full descriptor from the GDT or LDT. The
|
|
* LDT for next is loaded in switch_mm, and the GDT is loaded
|
|
* above.
|
|
*
|
|
* We therefore need to write new values to the segment
|
|
* registers on every context switch unless both the new and old
|
|
* values are zero.
|
|
*
|
|
* Note that we don't need to do anything for CS and SS, as
|
|
* those are saved and restored as part of pt_regs.
|
|
*/
|
|
savesegment(es, prev->es);
|
|
if (unlikely(next->es | prev->es))
|
|
loadsegment(es, next->es);
|
|
|
|
savesegment(ds, prev->ds);
|
|
if (unlikely(next->ds | prev->ds))
|
|
loadsegment(ds, next->ds);
|
|
|
|
load_seg_legacy(prev->fsindex, prev->fsbase,
|
|
next->fsindex, next->fsbase, FS);
|
|
load_seg_legacy(prev->gsindex, prev->gsbase,
|
|
next->gsindex, next->gsbase, GS);
|
|
|
|
switch_fpu_finish(next_fpu, cpu);
|
|
|
|
/*
|
|
* Switch the PDA and FPU contexts.
|
|
*/
|
|
this_cpu_write(current_task, next_p);
|
|
this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
|
|
|
|
/* Reload sp0. */
|
|
update_sp0(next_p);
|
|
|
|
/*
|
|
* Now maybe reload the debug registers and handle I/O bitmaps
|
|
*/
|
|
if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
|
|
task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
|
|
__switch_to_xtra(prev_p, next_p, tss);
|
|
|
|
#ifdef CONFIG_XEN_PV
|
|
/*
|
|
* On Xen PV, IOPL bits in pt_regs->flags have no effect, and
|
|
* current_pt_regs()->flags may not match the current task's
|
|
* intended IOPL. We need to switch it manually.
|
|
*/
|
|
if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
|
|
prev->iopl != next->iopl))
|
|
xen_set_iopl_mask(next->iopl);
|
|
#endif
|
|
|
|
if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
|
|
/*
|
|
* AMD CPUs have a misfeature: SYSRET sets the SS selector but
|
|
* does not update the cached descriptor. As a result, if we
|
|
* do SYSRET while SS is NULL, we'll end up in user mode with
|
|
* SS apparently equal to __USER_DS but actually unusable.
|
|
*
|
|
* The straightforward workaround would be to fix it up just
|
|
* before SYSRET, but that would slow down the system call
|
|
* fast paths. Instead, we ensure that SS is never NULL in
|
|
* system call context. We do this by replacing NULL SS
|
|
* selectors at every context switch. SYSCALL sets up a valid
|
|
* SS, so the only way to get NULL is to re-enter the kernel
|
|
* from CPL 3 through an interrupt. Since that can't happen
|
|
* in the same task as a running syscall, we are guaranteed to
|
|
* context switch between every interrupt vector entry and a
|
|
* subsequent SYSRET.
|
|
*
|
|
* We read SS first because SS reads are much faster than
|
|
* writes. Out of caution, we force SS to __KERNEL_DS even if
|
|
* it previously had a different non-NULL value.
|
|
*/
|
|
unsigned short ss_sel;
|
|
savesegment(ss, ss_sel);
|
|
if (ss_sel != __KERNEL_DS)
|
|
loadsegment(ss, __KERNEL_DS);
|
|
}
|
|
|
|
/* Load the Intel cache allocation PQR MSR. */
|
|
intel_rdt_sched_in();
|
|
|
|
return prev_p;
|
|
}
|
|
|
|
void set_personality_64bit(void)
|
|
{
|
|
/* inherit personality from parent */
|
|
|
|
/* Make sure to be in 64bit mode */
|
|
clear_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_ADDR32);
|
|
clear_thread_flag(TIF_X32);
|
|
/* Pretend that this comes from a 64bit execve */
|
|
task_pt_regs(current)->orig_ax = __NR_execve;
|
|
|
|
/* Ensure the corresponding mm is not marked. */
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = 0;
|
|
|
|
/* TBD: overwrites user setup. Should have two bits.
|
|
But 64bit processes have always behaved this way,
|
|
so it's not too bad. The main problem is just that
|
|
32bit childs are affected again. */
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
}
|
|
|
|
static void __set_personality_x32(void)
|
|
{
|
|
#ifdef CONFIG_X86_X32
|
|
clear_thread_flag(TIF_IA32);
|
|
set_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_X32;
|
|
current->personality &= ~READ_IMPLIES_EXEC;
|
|
/*
|
|
* in_compat_syscall() uses the presence of the x32 syscall bit
|
|
* flag to determine compat status. The x86 mmap() code relies on
|
|
* the syscall bitness so set x32 syscall bit right here to make
|
|
* in_compat_syscall() work during exec().
|
|
*
|
|
* Pretend to come from a x32 execve.
|
|
*/
|
|
task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
|
|
current_thread_info()->status &= ~TS_COMPAT;
|
|
#endif
|
|
}
|
|
|
|
static void __set_personality_ia32(void)
|
|
{
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
set_thread_flag(TIF_IA32);
|
|
clear_thread_flag(TIF_X32);
|
|
if (current->mm)
|
|
current->mm->context.ia32_compat = TIF_IA32;
|
|
current->personality |= force_personality32;
|
|
/* Prepare the first "return" to user space */
|
|
task_pt_regs(current)->orig_ax = __NR_ia32_execve;
|
|
current_thread_info()->status |= TS_COMPAT;
|
|
#endif
|
|
}
|
|
|
|
void set_personality_ia32(bool x32)
|
|
{
|
|
/* Make sure to be in 32bit mode */
|
|
set_thread_flag(TIF_ADDR32);
|
|
|
|
if (x32)
|
|
__set_personality_x32();
|
|
else
|
|
__set_personality_ia32();
|
|
}
|
|
EXPORT_SYMBOL_GPL(set_personality_ia32);
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
|
|
{
|
|
int ret;
|
|
|
|
ret = map_vdso_once(image, addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return (long)image->size;
|
|
}
|
|
#endif
|
|
|
|
long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
|
|
{
|
|
int ret = 0;
|
|
int doit = task == current;
|
|
int cpu;
|
|
|
|
switch (option) {
|
|
case ARCH_SET_GS:
|
|
if (arg2 >= TASK_SIZE_MAX)
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
task->thread.gsindex = 0;
|
|
task->thread.gsbase = arg2;
|
|
if (doit) {
|
|
load_gs_index(0);
|
|
ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, arg2);
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_SET_FS:
|
|
/* Not strictly needed for fs, but do it for symmetry
|
|
with gs */
|
|
if (arg2 >= TASK_SIZE_MAX)
|
|
return -EPERM;
|
|
cpu = get_cpu();
|
|
task->thread.fsindex = 0;
|
|
task->thread.fsbase = arg2;
|
|
if (doit) {
|
|
/* set the selector to 0 to not confuse __switch_to */
|
|
loadsegment(fs, 0);
|
|
ret = wrmsrl_safe(MSR_FS_BASE, arg2);
|
|
}
|
|
put_cpu();
|
|
break;
|
|
case ARCH_GET_FS: {
|
|
unsigned long base;
|
|
|
|
if (doit)
|
|
rdmsrl(MSR_FS_BASE, base);
|
|
else
|
|
base = task->thread.fsbase;
|
|
ret = put_user(base, (unsigned long __user *)arg2);
|
|
break;
|
|
}
|
|
case ARCH_GET_GS: {
|
|
unsigned long base;
|
|
|
|
if (doit)
|
|
rdmsrl(MSR_KERNEL_GS_BASE, base);
|
|
else
|
|
base = task->thread.gsbase;
|
|
ret = put_user(base, (unsigned long __user *)arg2);
|
|
break;
|
|
}
|
|
|
|
#ifdef CONFIG_CHECKPOINT_RESTORE
|
|
# ifdef CONFIG_X86_X32_ABI
|
|
case ARCH_MAP_VDSO_X32:
|
|
return prctl_map_vdso(&vdso_image_x32, arg2);
|
|
# endif
|
|
# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
|
|
case ARCH_MAP_VDSO_32:
|
|
return prctl_map_vdso(&vdso_image_32, arg2);
|
|
# endif
|
|
case ARCH_MAP_VDSO_64:
|
|
return prctl_map_vdso(&vdso_image_64, arg2);
|
|
#endif
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
|
|
{
|
|
long ret;
|
|
|
|
ret = do_arch_prctl_64(current, option, arg2);
|
|
if (ret == -EINVAL)
|
|
ret = do_arch_prctl_common(current, option, arg2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_IA32_EMULATION
|
|
COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
|
|
{
|
|
return do_arch_prctl_common(current, option, arg2);
|
|
}
|
|
#endif
|
|
|
|
unsigned long KSTK_ESP(struct task_struct *task)
|
|
{
|
|
return task_pt_regs(task)->sp;
|
|
}
|