mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 22:36:42 +07:00
116c81f427
Systems with differing CPU i-cache/d-cache line sizes can cause problems with the cache management by software when the execution is migrated from one to another. Usually, the application reads the cache size on a CPU and then uses that length to perform cache operations. However, if it gets migrated to another CPU with a smaller cache line size, things could go completely wrong. To prevent such cases, always use the smallest cache line size among the CPUs. The kernel CPU feature infrastructure already keeps track of the safe value for all CPUID registers including CTR. This patch works around the problem by : For kernel, dynamically patch the kernel to read the cache size from the system wide copy of CTR_EL0. For applications, trap read accesses to CTR_EL0 (by clearing the SCTLR.UCT) and emulate the mrs instruction to return the system wide safe value of CTR_EL0. For faster access (i.e, avoiding to lookup the system wide value of CTR_EL0 via read_system_reg), we keep track of the pointer to table entry for CTR_EL0 in the CPU feature infrastructure. Cc: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
232 lines
6.2 KiB
C
232 lines
6.2 KiB
C
/*
|
|
* Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#ifndef __ASM_CPUFEATURE_H
|
|
#define __ASM_CPUFEATURE_H
|
|
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm/hwcap.h>
|
|
#include <asm/sysreg.h>
|
|
|
|
/*
|
|
* In the arm64 world (as in the ARM world), elf_hwcap is used both internally
|
|
* in the kernel and for user space to keep track of which optional features
|
|
* are supported by the current system. So let's map feature 'x' to HWCAP_x.
|
|
* Note that HWCAP_x constants are bit fields so we need to take the log.
|
|
*/
|
|
|
|
#define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap))
|
|
#define cpu_feature(x) ilog2(HWCAP_ ## x)
|
|
|
|
#define ARM64_WORKAROUND_CLEAN_CACHE 0
|
|
#define ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE 1
|
|
#define ARM64_WORKAROUND_845719 2
|
|
#define ARM64_HAS_SYSREG_GIC_CPUIF 3
|
|
#define ARM64_HAS_PAN 4
|
|
#define ARM64_HAS_LSE_ATOMICS 5
|
|
#define ARM64_WORKAROUND_CAVIUM_23154 6
|
|
#define ARM64_WORKAROUND_834220 7
|
|
#define ARM64_HAS_NO_HW_PREFETCH 8
|
|
#define ARM64_HAS_UAO 9
|
|
#define ARM64_ALT_PAN_NOT_UAO 10
|
|
#define ARM64_HAS_VIRT_HOST_EXTN 11
|
|
#define ARM64_WORKAROUND_CAVIUM_27456 12
|
|
#define ARM64_HAS_32BIT_EL0 13
|
|
#define ARM64_HYP_OFFSET_LOW 14
|
|
#define ARM64_MISMATCHED_CACHE_LINE_SIZE 15
|
|
|
|
#define ARM64_NCAPS 16
|
|
|
|
#ifndef __ASSEMBLY__
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
/* CPU feature register tracking */
|
|
enum ftr_type {
|
|
FTR_EXACT, /* Use a predefined safe value */
|
|
FTR_LOWER_SAFE, /* Smaller value is safe */
|
|
FTR_HIGHER_SAFE,/* Bigger value is safe */
|
|
};
|
|
|
|
#define FTR_STRICT true /* SANITY check strict matching required */
|
|
#define FTR_NONSTRICT false /* SANITY check ignored */
|
|
|
|
#define FTR_SIGNED true /* Value should be treated as signed */
|
|
#define FTR_UNSIGNED false /* Value should be treated as unsigned */
|
|
|
|
struct arm64_ftr_bits {
|
|
bool sign; /* Value is signed ? */
|
|
bool strict; /* CPU Sanity check: strict matching required ? */
|
|
enum ftr_type type;
|
|
u8 shift;
|
|
u8 width;
|
|
s64 safe_val; /* safe value for FTR_EXACT features */
|
|
};
|
|
|
|
/*
|
|
* @arm64_ftr_reg - Feature register
|
|
* @strict_mask Bits which should match across all CPUs for sanity.
|
|
* @sys_val Safe value across the CPUs (system view)
|
|
*/
|
|
struct arm64_ftr_reg {
|
|
const char *name;
|
|
u64 strict_mask;
|
|
u64 sys_val;
|
|
const struct arm64_ftr_bits *ftr_bits;
|
|
};
|
|
|
|
extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
|
|
|
|
/* scope of capability check */
|
|
enum {
|
|
SCOPE_SYSTEM,
|
|
SCOPE_LOCAL_CPU,
|
|
};
|
|
|
|
struct arm64_cpu_capabilities {
|
|
const char *desc;
|
|
u16 capability;
|
|
int def_scope; /* default scope */
|
|
bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
|
|
void (*enable)(void *); /* Called on all active CPUs */
|
|
union {
|
|
struct { /* To be used for erratum handling only */
|
|
u32 midr_model;
|
|
u32 midr_range_min, midr_range_max;
|
|
};
|
|
|
|
struct { /* Feature register checking */
|
|
u32 sys_reg;
|
|
u8 field_pos;
|
|
u8 min_field_value;
|
|
u8 hwcap_type;
|
|
bool sign;
|
|
unsigned long hwcap;
|
|
};
|
|
};
|
|
};
|
|
|
|
extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
|
|
extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
|
|
|
|
bool this_cpu_has_cap(unsigned int cap);
|
|
|
|
static inline bool cpu_have_feature(unsigned int num)
|
|
{
|
|
return elf_hwcap & (1UL << num);
|
|
}
|
|
|
|
static inline bool cpus_have_cap(unsigned int num)
|
|
{
|
|
if (num >= ARM64_NCAPS)
|
|
return false;
|
|
if (__builtin_constant_p(num))
|
|
return static_branch_unlikely(&cpu_hwcap_keys[num]);
|
|
else
|
|
return test_bit(num, cpu_hwcaps);
|
|
}
|
|
|
|
static inline void cpus_set_cap(unsigned int num)
|
|
{
|
|
if (num >= ARM64_NCAPS) {
|
|
pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
|
|
num, ARM64_NCAPS);
|
|
} else {
|
|
__set_bit(num, cpu_hwcaps);
|
|
static_branch_enable(&cpu_hwcap_keys[num]);
|
|
}
|
|
}
|
|
|
|
static inline int __attribute_const__
|
|
cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
|
|
{
|
|
return (s64)(features << (64 - width - field)) >> (64 - width);
|
|
}
|
|
|
|
static inline int __attribute_const__
|
|
cpuid_feature_extract_signed_field(u64 features, int field)
|
|
{
|
|
return cpuid_feature_extract_signed_field_width(features, field, 4);
|
|
}
|
|
|
|
static inline unsigned int __attribute_const__
|
|
cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
|
|
{
|
|
return (u64)(features << (64 - width - field)) >> (64 - width);
|
|
}
|
|
|
|
static inline unsigned int __attribute_const__
|
|
cpuid_feature_extract_unsigned_field(u64 features, int field)
|
|
{
|
|
return cpuid_feature_extract_unsigned_field_width(features, field, 4);
|
|
}
|
|
|
|
static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
|
|
{
|
|
return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
|
|
}
|
|
|
|
static inline int __attribute_const__
|
|
cpuid_feature_extract_field(u64 features, int field, bool sign)
|
|
{
|
|
return (sign) ?
|
|
cpuid_feature_extract_signed_field(features, field) :
|
|
cpuid_feature_extract_unsigned_field(features, field);
|
|
}
|
|
|
|
static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
|
|
{
|
|
return (s64)cpuid_feature_extract_field(val, ftrp->shift, ftrp->sign);
|
|
}
|
|
|
|
static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
|
|
{
|
|
return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
|
|
cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
|
|
}
|
|
|
|
static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
|
|
{
|
|
u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
|
|
|
|
return val == ID_AA64PFR0_EL0_32BIT_64BIT;
|
|
}
|
|
|
|
void __init setup_cpu_features(void);
|
|
|
|
void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
|
|
const char *info);
|
|
void enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps);
|
|
void check_local_cpu_capabilities(void);
|
|
|
|
void update_cpu_errata_workarounds(void);
|
|
void __init enable_errata_workarounds(void);
|
|
void verify_local_cpu_errata_workarounds(void);
|
|
|
|
u64 read_system_reg(u32 id);
|
|
|
|
static inline bool cpu_supports_mixed_endian_el0(void)
|
|
{
|
|
return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
|
|
}
|
|
|
|
static inline bool system_supports_32bit_el0(void)
|
|
{
|
|
return cpus_have_cap(ARM64_HAS_32BIT_EL0);
|
|
}
|
|
|
|
static inline bool system_supports_mixed_endian_el0(void)
|
|
{
|
|
return id_aa64mmfr0_mixed_endian_el0(read_system_reg(SYS_ID_AA64MMFR0_EL1));
|
|
}
|
|
|
|
#endif /* __ASSEMBLY__ */
|
|
|
|
#endif
|