mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 10:16:58 +07:00
be1faa92e8
Currently the port based VLAN maps should be configured to allow every
port to egress frames on all other ports, except themselves.
The debugfs interface shows that they are misconfigured. For instance, a
7-port switch has the following content in the related register 0x06:
GLOBAL GLOBAL2 SERDES 0 1 2 3 4 5 6
...
6: 1fa4 1f0f 4 7f 7e 7d 7c 7b 7a 79
...
This means that port 3 is allowed to talk to port 2-6, but cannot talk
to ports 0 and 1. With this fix, port 3 can correctly talk to all ports
except 3 itself:
GLOBAL GLOBAL2 SERDES 0 1 2 3 4 5 6
...
6: 1fa4 1f0f 4 7e 7d 7b 77 6f 5f 3f
...
Fixes: ede8098d0f
("net: dsa: mv88e6xxx: bridges do not need an FID")
Reported-by: Kevin Smith <kevin.smith@elecsyscorp.com>
Signed-off-by: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Tested-by: Kevin Smith <kevin.smith@elecsyscorp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2689 lines
64 KiB
C
2689 lines
64 KiB
C
/*
|
|
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
|
|
* Copyright (c) 2008 Marvell Semiconductor
|
|
*
|
|
* Copyright (c) 2015 CMC Electronics, Inc.
|
|
* Added support for VLAN Table Unit operations
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/phy.h>
|
|
#include <net/dsa.h>
|
|
#include <net/switchdev.h>
|
|
#include "mv88e6xxx.h"
|
|
|
|
static void assert_smi_lock(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
|
|
dev_err(ds->master_dev, "SMI lock not held!\n");
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
|
|
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
|
|
* will be directly accessible on some {device address,register address}
|
|
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
|
|
* will only respond to SMI transactions to that specific address, and
|
|
* an indirect addressing mechanism needs to be used to access its
|
|
* registers.
|
|
*/
|
|
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if ((ret & SMI_CMD_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
|
|
int reg)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_read_nested(bus, addr, reg);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the read command. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_READ | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the read command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Read the data. */
|
|
ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return ret & 0xffff;
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
int ret;
|
|
|
|
assert_smi_lock(ds);
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, ds->pd->sw_addr, addr, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
dev_dbg(ds->master_dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_read(ds, addr, reg);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
|
|
int reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
if (sw_addr == 0)
|
|
return mdiobus_write_nested(bus, addr, reg, val);
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the data to write. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the write command. */
|
|
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the write command to complete. */
|
|
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg,
|
|
u16 val)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(ds->master_dev);
|
|
|
|
assert_smi_lock(ds);
|
|
|
|
if (bus == NULL)
|
|
return -EINVAL;
|
|
|
|
dev_dbg(ds->master_dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, val);
|
|
|
|
return __mv88e6xxx_reg_write(bus, ds->pd->sw_addr, addr, reg, val);
|
|
}
|
|
|
|
int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_reg_write(ds, addr, reg, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_01, (addr[0] << 8) | addr[1]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_23, (addr[2] << 8) | addr[3]);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_MAC_45, (addr[4] << 8) | addr[5]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
int j;
|
|
|
|
/* Write the MAC address byte. */
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
|
|
GLOBAL2_SWITCH_MAC_BUSY | (i << 8) | addr[i]);
|
|
|
|
/* Wait for the write to complete. */
|
|
for (j = 0; j < 16; j++) {
|
|
ret = REG_READ(REG_GLOBAL2, GLOBAL2_SWITCH_MAC);
|
|
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (j == 16)
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_read(ds, addr, regnum);
|
|
return 0xffff;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum,
|
|
u16 val)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
|
|
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL,
|
|
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_CONTROL);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_CONTROL, ret | GLOBAL_CONTROL_PPU_ENABLE);
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, GLOBAL_STATUS);
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
|
|
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
|
|
if (mutex_trylock(&ps->ppu_mutex)) {
|
|
struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
if (mv88e6xxx_ppu_enable(ds) == 0)
|
|
ps->ppu_disabled = 0;
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = (void *)_ps;
|
|
|
|
schedule_work(&ps->ppu_work);
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->ppu_mutex);
|
|
|
|
/* If the PHY polling unit is enabled, disable it so that
|
|
* we can access the PHY registers. If it was already
|
|
* disabled, cancel the timer that is going to re-enable
|
|
* it.
|
|
*/
|
|
if (!ps->ppu_disabled) {
|
|
ret = mv88e6xxx_ppu_disable(ds);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
return ret;
|
|
}
|
|
ps->ppu_disabled = 1;
|
|
} else {
|
|
del_timer(&ps->ppu_timer);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
/* Schedule a timer to re-enable the PHY polling unit. */
|
|
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
|
|
mutex_unlock(&ps->ppu_mutex);
|
|
}
|
|
|
|
void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->ppu_mutex);
|
|
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
|
|
init_timer(&ps->ppu_timer);
|
|
ps->ppu_timer.data = (unsigned long)ps;
|
|
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
|
|
}
|
|
|
|
int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_read(ds, addr, regnum);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(ds);
|
|
if (ret >= 0) {
|
|
ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
|
|
mv88e6xxx_ppu_access_put(ds);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static bool mv88e6xxx_6065_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6031:
|
|
case PORT_SWITCH_ID_6061:
|
|
case PORT_SWITCH_ID_6035:
|
|
case PORT_SWITCH_ID_6065:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6095_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6092:
|
|
case PORT_SWITCH_ID_6095:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6097_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6046:
|
|
case PORT_SWITCH_ID_6085:
|
|
case PORT_SWITCH_ID_6096:
|
|
case PORT_SWITCH_ID_6097:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6165_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6123:
|
|
case PORT_SWITCH_ID_6161:
|
|
case PORT_SWITCH_ID_6165:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6185_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6121:
|
|
case PORT_SWITCH_ID_6122:
|
|
case PORT_SWITCH_ID_6152:
|
|
case PORT_SWITCH_ID_6155:
|
|
case PORT_SWITCH_ID_6182:
|
|
case PORT_SWITCH_ID_6185:
|
|
case PORT_SWITCH_ID_6108:
|
|
case PORT_SWITCH_ID_6131:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6320_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6320:
|
|
case PORT_SWITCH_ID_6321:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6351_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6171:
|
|
case PORT_SWITCH_ID_6175:
|
|
case PORT_SWITCH_ID_6350:
|
|
case PORT_SWITCH_ID_6351:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mv88e6xxx_6352_family(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
switch (ps->id) {
|
|
case PORT_SWITCH_ID_6172:
|
|
case PORT_SWITCH_ID_6176:
|
|
case PORT_SWITCH_ID_6240:
|
|
case PORT_SWITCH_ID_6352:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* We expect the switch to perform auto negotiation if there is a real
|
|
* phy. However, in the case of a fixed link phy, we force the port
|
|
* settings from the fixed link settings.
|
|
*/
|
|
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u32 reg;
|
|
int ret;
|
|
|
|
if (!phy_is_pseudo_fixed_link(phydev))
|
|
return;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX |
|
|
PORT_PCS_CTRL_UNFORCED);
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK;
|
|
if (phydev->link)
|
|
reg |= PORT_PCS_CTRL_LINK_UP;
|
|
|
|
if (mv88e6xxx_6065_family(ds) && phydev->speed > SPEED_100)
|
|
goto out;
|
|
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= PORT_PCS_CTRL_100;
|
|
break;
|
|
case SPEED_10:
|
|
reg |= PORT_PCS_CTRL_10;
|
|
break;
|
|
default:
|
|
pr_info("Unknown speed");
|
|
goto out;
|
|
}
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
|
|
|
|
if ((mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds)) &&
|
|
(port >= ps->num_ports - 2)) {
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
|
|
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
|
|
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
|
|
}
|
|
_mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_PCS_CTRL, reg);
|
|
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_wait(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_OP);
|
|
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
|
|
{
|
|
int ret;
|
|
|
|
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
|
|
port = (port + 1) << 5;
|
|
|
|
/* Snapshot the hardware statistics counters for this port. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_CAPTURE_PORT |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | port);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the snapshotting to complete. */
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
|
|
{
|
|
u32 _val;
|
|
int ret;
|
|
|
|
*val = 0;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_READ_CAPTURED |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | stat);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
_val = ret << 16;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
*val = _val | ret;
|
|
}
|
|
|
|
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
|
|
{ "in_good_octets", 8, 0x00, BANK0, },
|
|
{ "in_bad_octets", 4, 0x02, BANK0, },
|
|
{ "in_unicast", 4, 0x04, BANK0, },
|
|
{ "in_broadcasts", 4, 0x06, BANK0, },
|
|
{ "in_multicasts", 4, 0x07, BANK0, },
|
|
{ "in_pause", 4, 0x16, BANK0, },
|
|
{ "in_undersize", 4, 0x18, BANK0, },
|
|
{ "in_fragments", 4, 0x19, BANK0, },
|
|
{ "in_oversize", 4, 0x1a, BANK0, },
|
|
{ "in_jabber", 4, 0x1b, BANK0, },
|
|
{ "in_rx_error", 4, 0x1c, BANK0, },
|
|
{ "in_fcs_error", 4, 0x1d, BANK0, },
|
|
{ "out_octets", 8, 0x0e, BANK0, },
|
|
{ "out_unicast", 4, 0x10, BANK0, },
|
|
{ "out_broadcasts", 4, 0x13, BANK0, },
|
|
{ "out_multicasts", 4, 0x12, BANK0, },
|
|
{ "out_pause", 4, 0x15, BANK0, },
|
|
{ "excessive", 4, 0x11, BANK0, },
|
|
{ "collisions", 4, 0x1e, BANK0, },
|
|
{ "deferred", 4, 0x05, BANK0, },
|
|
{ "single", 4, 0x14, BANK0, },
|
|
{ "multiple", 4, 0x17, BANK0, },
|
|
{ "out_fcs_error", 4, 0x03, BANK0, },
|
|
{ "late", 4, 0x1f, BANK0, },
|
|
{ "hist_64bytes", 4, 0x08, BANK0, },
|
|
{ "hist_65_127bytes", 4, 0x09, BANK0, },
|
|
{ "hist_128_255bytes", 4, 0x0a, BANK0, },
|
|
{ "hist_256_511bytes", 4, 0x0b, BANK0, },
|
|
{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
|
|
{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
|
|
{ "sw_in_discards", 4, 0x10, PORT, },
|
|
{ "sw_in_filtered", 2, 0x12, PORT, },
|
|
{ "sw_out_filtered", 2, 0x13, PORT, },
|
|
{ "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
};
|
|
|
|
static bool mv88e6xxx_has_stat(struct dsa_switch *ds,
|
|
struct mv88e6xxx_hw_stat *stat)
|
|
{
|
|
switch (stat->type) {
|
|
case BANK0:
|
|
return true;
|
|
case BANK1:
|
|
return mv88e6xxx_6320_family(ds);
|
|
case PORT:
|
|
return mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) ||
|
|
mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6352_family(ds);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static uint64_t _mv88e6xxx_get_ethtool_stat(struct dsa_switch *ds,
|
|
struct mv88e6xxx_hw_stat *s,
|
|
int port)
|
|
{
|
|
u32 low;
|
|
u32 high = 0;
|
|
int ret;
|
|
u64 value;
|
|
|
|
switch (s->type) {
|
|
case PORT:
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), s->reg);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
|
|
low = ret;
|
|
if (s->sizeof_stat == 4) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port),
|
|
s->reg + 1);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
high = ret;
|
|
}
|
|
break;
|
|
case BANK0:
|
|
case BANK1:
|
|
_mv88e6xxx_stats_read(ds, s->reg, &low);
|
|
if (s->sizeof_stat == 8)
|
|
_mv88e6xxx_stats_read(ds, s->reg + 1, &high);
|
|
}
|
|
value = (((u64)high) << 16) | low;
|
|
return value;
|
|
}
|
|
|
|
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
|
|
{
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat)) {
|
|
memcpy(data + j * ETH_GSTRING_LEN, stat->string,
|
|
ETH_GSTRING_LEN);
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat))
|
|
j++;
|
|
}
|
|
return j;
|
|
}
|
|
|
|
void
|
|
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
|
|
int port, uint64_t *data)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int ret;
|
|
int i, j;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_stats_snapshot(ds, port);
|
|
if (ret < 0) {
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return;
|
|
}
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(ds, stat)) {
|
|
data[j] = _mv88e6xxx_get_ethtool_stat(ds, stat, port);
|
|
j++;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&ps->smi_mutex);
|
|
}
|
|
|
|
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
|
|
{
|
|
return 32 * sizeof(u16);
|
|
}
|
|
|
|
void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
|
|
struct ethtool_regs *regs, void *_p)
|
|
{
|
|
u16 *p = _p;
|
|
int i;
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0xff, 32 * sizeof(u16));
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), i);
|
|
if (ret >= 0)
|
|
p[i] = ret;
|
|
}
|
|
}
|
|
|
|
static int _mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset,
|
|
u16 mask)
|
|
{
|
|
unsigned long timeout = jiffies + HZ / 10;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, reg, offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!(ret & mask))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_wait(struct dsa_switch *ds, int reg, int offset, u16 mask)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_wait(ds, reg, offset, mask);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_BUSY);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_LOAD);
|
|
}
|
|
|
|
int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
|
|
{
|
|
return mv88e6xxx_wait(ds, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
|
|
GLOBAL2_EEPROM_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_ATU_OP,
|
|
GLOBAL_ATU_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
|
|
regnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_phy_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_reg_read(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA);
|
|
}
|
|
|
|
static int _mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
|
|
regnum);
|
|
|
|
return _mv88e6xxx_phy_wait(ds);
|
|
}
|
|
|
|
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
reg = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_enabled = !!(reg & 0x0200);
|
|
e->tx_lpi_enabled = !!(reg & 0x0100);
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_STATUS);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_active = !!(reg & PORT_STATUS_EEE);
|
|
reg = 0;
|
|
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return reg;
|
|
}
|
|
|
|
int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg;
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, 16);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~0x0300;
|
|
if (e->eee_enabled)
|
|
reg |= 0x0200;
|
|
if (e->tx_lpi_enabled)
|
|
reg |= 0x0100;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 16, reg);
|
|
out:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_cmd(struct dsa_switch *ds, u16 cmd)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_wait(ds);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_data_write(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (entry->trunk) {
|
|
data |= GLOBAL_ATU_DATA_TRUNK;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
data |= (entry->portv_trunkid << shift) & mask;
|
|
}
|
|
|
|
return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_DATA, data);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush_move(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry,
|
|
bool static_too)
|
|
{
|
|
int op;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_atu_wait(ds);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_atu_data_write(ds, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->fid) {
|
|
err = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID,
|
|
entry->fid);
|
|
if (err)
|
|
return err;
|
|
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
|
|
} else {
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
|
|
}
|
|
|
|
return _mv88e6xxx_atu_cmd(ds, op);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush(struct dsa_switch *ds, u16 fid, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.fid = fid,
|
|
.state = 0, /* EntryState bits must be 0 */
|
|
};
|
|
|
|
return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_move(struct dsa_switch *ds, u16 fid, int from_port,
|
|
int to_port, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.trunk = false,
|
|
.fid = fid,
|
|
};
|
|
|
|
/* EntryState bits must be 0xF */
|
|
entry.state = GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
|
|
entry.portv_trunkid = (to_port & 0x0f) << 4;
|
|
entry.portv_trunkid |= from_port & 0x0f;
|
|
|
|
return _mv88e6xxx_atu_flush_move(ds, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_remove(struct dsa_switch *ds, u16 fid, int port,
|
|
bool static_too)
|
|
{
|
|
/* Destination port 0xF means remove the entries */
|
|
return _mv88e6xxx_atu_move(ds, fid, port, 0x0f, static_too);
|
|
}
|
|
|
|
static int mv88e6xxx_set_port_state(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int reg, ret = 0;
|
|
u8 oldstate;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_CONTROL);
|
|
if (reg < 0) {
|
|
ret = reg;
|
|
goto abort;
|
|
}
|
|
|
|
oldstate = reg & PORT_CONTROL_STATE_MASK;
|
|
if (oldstate != state) {
|
|
/* Flush forwarding database if we're moving a port
|
|
* from Learning or Forwarding state to Disabled or
|
|
* Blocking or Listening state.
|
|
*/
|
|
if (oldstate >= PORT_CONTROL_STATE_LEARNING &&
|
|
state <= PORT_CONTROL_STATE_BLOCKING) {
|
|
ret = _mv88e6xxx_atu_remove(ds, 0, port, false);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL,
|
|
reg);
|
|
}
|
|
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_map_set(struct dsa_switch *ds, int port,
|
|
u16 output_ports)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 mask = (1 << ps->num_ports) - 1;
|
|
int reg;
|
|
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_BASE_VLAN);
|
|
if (reg < 0)
|
|
return reg;
|
|
|
|
reg &= ~mask;
|
|
reg |= output_ports & mask;
|
|
|
|
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_BASE_VLAN, reg);
|
|
}
|
|
|
|
int mv88e6xxx_port_stp_update(struct dsa_switch *ds, int port, u8 state)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int stp_state;
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
stp_state = PORT_CONTROL_STATE_DISABLED;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
case BR_STATE_LISTENING:
|
|
stp_state = PORT_CONTROL_STATE_BLOCKING;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
stp_state = PORT_CONTROL_STATE_LEARNING;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
default:
|
|
stp_state = PORT_CONTROL_STATE_FORWARDING;
|
|
break;
|
|
}
|
|
|
|
netdev_dbg(ds->ports[port], "port state %d [%d]\n", state, stp_state);
|
|
|
|
/* mv88e6xxx_port_stp_update may be called with softirqs disabled,
|
|
* so we can not update the port state directly but need to schedule it.
|
|
*/
|
|
ps->port_state[port] = stp_state;
|
|
set_bit(port, &ps->port_state_update_mask);
|
|
schedule_work(&ps->bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*pvid = ret & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_pvid_get(struct dsa_switch *ds, int port, u16 *pvid)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_DEFAULT_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*pvid = ret & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_set(struct dsa_switch *ds, int port, u16 pvid)
|
|
{
|
|
return _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
pvid & PORT_DEFAULT_VLAN_MASK);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_wait(struct dsa_switch *ds)
|
|
{
|
|
return _mv88e6xxx_wait(ds, REG_GLOBAL, GLOBAL_VTU_OP,
|
|
GLOBAL_VTU_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_cmd(struct dsa_switch *ds, u16 op)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_OP, op);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_wait(ds);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_flush(struct dsa_switch *ds)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_FLUSH_ALL);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_read(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 regs[3];
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
regs[i] = ret;
|
|
}
|
|
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u16 reg = regs[i / 4];
|
|
|
|
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_write(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 regs[3] = { 0 };
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u8 data = entry->data[i];
|
|
|
|
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
|
|
}
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_vid_write(struct dsa_switch *ds, u16 vid)
|
|
{
|
|
return _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID,
|
|
vid & GLOBAL_VTU_VID_MASK);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_getnext(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.vid = ret & GLOBAL_VTU_VID_MASK;
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_FID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.fid = ret & GLOBAL_VTU_FID_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
}
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_loadpurge(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port member tags */
|
|
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = entry->fid & GLOBAL_VTU_FID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_FID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_VTU_LOAD_PURGE);
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_getnext(struct dsa_switch *ds, u8 sid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID,
|
|
sid & GLOBAL_VTU_SID_MASK);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = _mv88e6xxx_vtu_stu_data_read(ds, &next, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_loadpurge(struct dsa_switch *ds,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port states */
|
|
ret = _mv88e6xxx_vtu_stu_data_write(ds, entry, 2);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_VTU_SID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(ds, GLOBAL_VTU_OP_STU_LOAD_PURGE);
|
|
}
|
|
|
|
static int _mv88e6xxx_vlan_init(struct dsa_switch *ds, u16 vid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.valid = true,
|
|
.vid = vid,
|
|
.fid = vid, /* We use one FID per VLAN */
|
|
};
|
|
int i;
|
|
|
|
/* exclude all ports except the CPU and DSA ports */
|
|
for (i = 0; i < ps->num_ports; ++i)
|
|
vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
|
|
? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
|
|
: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
if (mv88e6xxx_6097_family(ds) || mv88e6xxx_6165_family(ds) ||
|
|
mv88e6xxx_6351_family(ds) || mv88e6xxx_6352_family(ds)) {
|
|
struct mv88e6xxx_vtu_stu_entry vstp;
|
|
int err;
|
|
|
|
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
|
|
* implemented, only one STU entry is needed to cover all VTU
|
|
* entries. Thus, validate the SID 0.
|
|
*/
|
|
vlan.sid = 0;
|
|
err = _mv88e6xxx_stu_getnext(ds, GLOBAL_VTU_SID_MASK, &vstp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vstp.sid != vlan.sid || !vstp.valid) {
|
|
memset(&vstp, 0, sizeof(vstp));
|
|
vstp.valid = true;
|
|
vstp.sid = vlan.sid;
|
|
|
|
err = _mv88e6xxx_stu_loadpurge(ds, &vstp);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Clear all MAC addresses from the new database */
|
|
err = _mv88e6xxx_atu_flush(ds, vlan.fid, true);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
*entry = vlan;
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We reserve a few VLANs to isolate unbridged ports */
|
|
if (vlan->vid_end >= 4000)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port, u16 vid,
|
|
bool untagged)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vlan.vid != vid || !vlan.valid) {
|
|
err = _mv88e6xxx_vlan_init(ds, vid, &vlan);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
vlan.data[port] = untagged ?
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
|
|
|
|
return _mv88e6xxx_vtu_loadpurge(ds, &vlan);
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
|
|
u16 vid;
|
|
int err = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
err = _mv88e6xxx_port_vlan_add(ds, port, vid, untagged);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
|
|
/* no PVID with ranges, otherwise it's a bug */
|
|
if (pvid)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, vlan->vid_end);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port, u16 vid)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int i, err;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vid - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vlan.vid != vid || !vlan.valid ||
|
|
vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
|
|
return -ENOENT;
|
|
|
|
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
/* keep the VLAN unless all ports are excluded */
|
|
vlan.valid = false;
|
|
for (i = 0; i < ps->num_ports; ++i) {
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
continue;
|
|
|
|
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
|
|
vlan.valid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
err = _mv88e6xxx_vtu_loadpurge(ds, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
return _mv88e6xxx_atu_remove(ds, vlan.fid, port, false);
|
|
}
|
|
|
|
int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 pvid, vid;
|
|
int err = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
err = _mv88e6xxx_port_pvid_get(ds, port, &pvid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
err = _mv88e6xxx_port_vlan_del(ds, port, vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (vid == pvid) {
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, 0);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_vlan_getnext(struct dsa_switch *ds, u16 *vid,
|
|
unsigned long *ports, unsigned long *untagged)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry next;
|
|
int port;
|
|
int err;
|
|
|
|
if (*vid == 4095)
|
|
return -ENOENT;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_vtu_vid_write(ds, *vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &next);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
if (!next.valid)
|
|
return -ENOENT;
|
|
|
|
*vid = next.vid;
|
|
|
|
for (port = 0; port < ps->num_ports; ++port) {
|
|
clear_bit(port, ports);
|
|
clear_bit(port, untagged);
|
|
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
|
|
continue;
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED ||
|
|
next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
|
|
set_bit(port, ports);
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
|
|
set_bit(port, untagged);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_write(struct dsa_switch *ds,
|
|
const unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_write(
|
|
ds, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
|
|
(addr[i * 2] << 8) | addr[i * 2 + 1]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_read(struct dsa_switch *ds, unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL,
|
|
GLOBAL_ATU_MAC_01 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
addr[i * 2] = ret >> 8;
|
|
addr[i * 2 + 1] = ret & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_load(struct dsa_switch *ds,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_write(ds, entry->mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_data_write(ds, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, entry->fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_LOAD_DB);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fdb_load(struct dsa_switch *ds, int port,
|
|
const unsigned char *addr, u16 vid,
|
|
u8 state)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = { 0 };
|
|
|
|
entry.fid = vid; /* We use one FID per VLAN */
|
|
entry.state = state;
|
|
ether_addr_copy(entry.mac, addr);
|
|
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
entry.trunk = false;
|
|
entry.portv_trunkid = BIT(port);
|
|
}
|
|
|
|
return _mv88e6xxx_atu_load(ds, &entry);
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We don't use per-port FDB */
|
|
if (fdb->vid == 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
int state = is_multicast_ether_addr(fdb->addr) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC;
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid, state);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_port_fdb_load(ds, port, fdb->addr, fdb->vid,
|
|
GLOBAL_ATU_DATA_STATE_UNUSED);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_getnext(struct dsa_switch *ds, u16 fid,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_atu_entry next = { 0 };
|
|
int ret;
|
|
|
|
next.fid = fid;
|
|
|
|
ret = _mv88e6xxx_atu_wait(ds);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_GLOBAL, GLOBAL_ATU_FID, fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_cmd(ds, GLOBAL_ATU_OP_GET_NEXT_DB);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_read(ds, next.mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(ds, REG_GLOBAL, GLOBAL_ATU_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
|
|
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (ret & GLOBAL_ATU_DATA_TRUNK) {
|
|
next.trunk = true;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
next.trunk = false;
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
next.portv_trunkid = (ret & mask) >> shift;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.vid = GLOBAL_VTU_VID_MASK, /* all ones */
|
|
};
|
|
int err;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(ds, vlan.vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
struct mv88e6xxx_atu_entry addr = {
|
|
.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
};
|
|
|
|
err = _mv88e6xxx_vtu_getnext(ds, &vlan);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (!vlan.valid)
|
|
break;
|
|
|
|
err = _mv88e6xxx_atu_mac_write(ds, addr.mac);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
err = _mv88e6xxx_atu_getnext(ds, vlan.fid, &addr);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
|
|
break;
|
|
|
|
if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
|
|
bool is_static = addr.state ==
|
|
(is_multicast_ether_addr(addr.mac) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC);
|
|
|
|
fdb->vid = vlan.vid;
|
|
ether_addr_copy(fdb->addr, addr.mac);
|
|
fdb->ndm_state = is_static ? NUD_NOARP :
|
|
NUD_REACHABLE;
|
|
|
|
err = cb(&fdb->obj);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
} while (!is_broadcast_ether_addr(addr.mac));
|
|
|
|
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
|
|
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port, u32 members)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
|
|
int err;
|
|
|
|
/* The port joined a bridge, so leave its reserved VLAN */
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_port_vlan_del(ds, port, pvid);
|
|
if (!err)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, 0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return err;
|
|
}
|
|
|
|
int mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port, u32 members)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
const u16 pvid = 4000 + ds->index * DSA_MAX_PORTS + port;
|
|
int err;
|
|
|
|
/* The port left the bridge, so join its reserved VLAN */
|
|
mutex_lock(&ps->smi_mutex);
|
|
err = _mv88e6xxx_port_vlan_add(ds, port, pvid, true);
|
|
if (!err)
|
|
err = _mv88e6xxx_port_pvid_set(ds, port, pvid);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return err;
|
|
}
|
|
|
|
static void mv88e6xxx_bridge_work(struct work_struct *work)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps;
|
|
struct dsa_switch *ds;
|
|
int port;
|
|
|
|
ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
|
|
ds = ((struct dsa_switch *)ps) - 1;
|
|
|
|
while (ps->port_state_update_mask) {
|
|
port = __ffs(ps->port_state_update_mask);
|
|
clear_bit(port, &ps->port_state_update_mask);
|
|
mv88e6xxx_set_port_state(ds, port, ps->port_state[port]);
|
|
}
|
|
}
|
|
|
|
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
u16 reg;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6065_family(ds) || mv88e6xxx_6320_family(ds)) {
|
|
/* MAC Forcing register: don't force link, speed,
|
|
* duplex or flow control state to any particular
|
|
* values on physical ports, but force the CPU port
|
|
* and all DSA ports to their maximum bandwidth and
|
|
* full duplex.
|
|
*/
|
|
reg = _mv88e6xxx_reg_read(ds, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
|
|
reg &= ~PORT_PCS_CTRL_UNFORCED;
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (mv88e6xxx_6065_family(ds))
|
|
reg |= PORT_PCS_CTRL_100;
|
|
else
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
} else {
|
|
reg |= PORT_PCS_CTRL_UNFORCED;
|
|
}
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PCS_CTRL, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
|
|
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
|
|
* tunneling, determine priority by looking at 802.1p and IP
|
|
* priority fields (IP prio has precedence), and set STP state
|
|
* to Forwarding.
|
|
*
|
|
* If this is the CPU link, use DSA or EDSA tagging depending
|
|
* on which tagging mode was configured.
|
|
*
|
|
* If this is a link to another switch, use DSA tagging mode.
|
|
*
|
|
* If this is the upstream port for this switch, enable
|
|
* forwarding of unknown unicasts and multicasts.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
|
|
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
|
|
PORT_CONTROL_STATE_FORWARDING;
|
|
if (dsa_is_cpu_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
|
|
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
|
|
else
|
|
reg |= PORT_CONTROL_FRAME_MODE_DSA;
|
|
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6065_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6320_family(ds)) {
|
|
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
|
|
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
|
|
}
|
|
}
|
|
if (dsa_is_dsa_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
reg |= PORT_CONTROL_FRAME_MODE_DSA;
|
|
}
|
|
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_CONTROL, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control 2: don't force a good FCS, set the maximum frame size to
|
|
* 10240 bytes, enable secure 802.1q tags, don't discard tagged or
|
|
* untagged frames on this port, do a destination address lookup on all
|
|
* received packets as usual, disable ARP mirroring and don't send a
|
|
* copy of all transmitted/received frames on this port to the CPU.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6095_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg = PORT_CONTROL_2_MAP_DA;
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6320_family(ds))
|
|
reg |= PORT_CONTROL_2_JUMBO_10240;
|
|
|
|
if (mv88e6xxx_6095_family(ds) || mv88e6xxx_6185_family(ds)) {
|
|
/* Set the upstream port this port should use */
|
|
reg |= dsa_upstream_port(ds);
|
|
/* enable forwarding of unknown multicast addresses to
|
|
* the upstream port
|
|
*/
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
|
|
}
|
|
|
|
reg |= PORT_CONTROL_2_8021Q_SECURE;
|
|
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_CONTROL_2, reg);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Association Vector: when learning source addresses
|
|
* of packets, add the address to the address database using
|
|
* a port bitmap that has only the bit for this port set and
|
|
* the other bits clear.
|
|
*/
|
|
reg = 1 << port;
|
|
/* Disable learning for DSA and CPU ports */
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))
|
|
reg = PORT_ASSOC_VECTOR_LOCKED_PORT;
|
|
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Egress rate control 2: disable egress rate control. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_RATE_CONTROL_2,
|
|
0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Do not limit the period of time that this port can
|
|
* be paused for by the remote end or the period of
|
|
* time that this port can pause the remote end.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PAUSE_CTRL, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port ATU control: disable limiting the number of
|
|
* address database entries that this port is allowed
|
|
* to use.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_ATU_CONTROL, 0x0000);
|
|
/* Priority Override: disable DA, SA and VTU priority
|
|
* override.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_PRI_OVERRIDE, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port Ethertype: use the Ethertype DSA Ethertype
|
|
* value.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_ETH_TYPE, ETH_P_EDSA);
|
|
if (ret)
|
|
goto abort;
|
|
/* Tag Remap: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_TAG_REGMAP_0123, 0x3210);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Tag Remap 2: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_TAG_REGMAP_4567, 0x7654);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Rate Control: disable ingress rate limiting. */
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port),
|
|
PORT_RATE_CONTROL, 0x0001);
|
|
if (ret)
|
|
goto abort;
|
|
}
|
|
|
|
/* Port Control 1: disable trunking, disable sending
|
|
* learning messages to this port.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_CONTROL_1, 0x0000);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Port based VLAN map: do not give each port its own address
|
|
* database, and allow every port to egress frames on all other ports.
|
|
*/
|
|
reg = BIT(ps->num_ports) - 1; /* all ports */
|
|
reg &= ~BIT(port); /* except itself */
|
|
ret = _mv88e6xxx_port_vlan_map_set(ds, port, reg);
|
|
if (ret)
|
|
goto abort;
|
|
|
|
/* Default VLAN ID and priority: don't set a default VLAN
|
|
* ID, and set the default packet priority to zero.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(ds, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
0x0000);
|
|
abort:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < ps->num_ports; i++) {
|
|
ret = mv88e6xxx_setup_port(ds, i);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
continue;
|
|
|
|
/* setup the unbridged state */
|
|
ret = mv88e6xxx_port_bridge_leave(ds, i, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_setup_common(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
mutex_init(&ps->smi_mutex);
|
|
|
|
ps->id = REG_READ(REG_PORT(0), PORT_SWITCH_ID) & 0xfff0;
|
|
|
|
INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_setup_global(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set the default address aging time to 5 minutes, and
|
|
* enable address learn messages to be sent to all message
|
|
* ports.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_ATU_CONTROL,
|
|
0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
|
|
|
|
/* Configure the IP ToS mapping registers. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
|
|
|
|
/* Configure the IEEE 802.1p priority mapping register. */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
|
|
|
|
/* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:0x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
|
|
|
|
/* Ignore removed tag data on doubly tagged packets, disable
|
|
* flow control messages, force flow control priority to the
|
|
* highest, and send all special multicast frames to the CPU
|
|
* port at the highest priority.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
|
|
0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
|
|
GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
|
|
|
|
/* Program the DSA routing table. */
|
|
for (i = 0; i < 32; i++) {
|
|
int nexthop = 0x1f;
|
|
|
|
if (ds->pd->rtable &&
|
|
i != ds->index && i < ds->dst->pd->nr_chips)
|
|
nexthop = ds->pd->rtable[i] & 0x1f;
|
|
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING,
|
|
GLOBAL2_DEVICE_MAPPING_UPDATE |
|
|
(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) |
|
|
nexthop);
|
|
}
|
|
|
|
/* Clear all trunk masks. */
|
|
for (i = 0; i < 8; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
|
|
0x8000 | (i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
|
|
((1 << ps->num_ports) - 1));
|
|
|
|
/* Clear all trunk mappings. */
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING,
|
|
GLOBAL2_TRUNK_MAPPING_UPDATE |
|
|
(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Send all frames with destination addresses matching
|
|
* 01:80:c2:00:00:2x to the CPU port.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_MGMT_EN_2X, 0xffff);
|
|
|
|
/* Initialise cross-chip port VLAN table to reset
|
|
* defaults.
|
|
*/
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_PVT_ADDR, 0x9000);
|
|
|
|
/* Clear the priority override table. */
|
|
for (i = 0; i < 16; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE,
|
|
0x8000 | (i << 8));
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(ds) || mv88e6xxx_6351_family(ds) ||
|
|
mv88e6xxx_6165_family(ds) || mv88e6xxx_6097_family(ds) ||
|
|
mv88e6xxx_6185_family(ds) || mv88e6xxx_6095_family(ds) ||
|
|
mv88e6xxx_6320_family(ds)) {
|
|
/* Disable ingress rate limiting by resetting all
|
|
* ingress rate limit registers to their initial
|
|
* state.
|
|
*/
|
|
for (i = 0; i < ps->num_ports; i++)
|
|
REG_WRITE(REG_GLOBAL2, GLOBAL2_INGRESS_OP,
|
|
0x9000 | (i << 8));
|
|
}
|
|
|
|
/* Clear the statistics counters for all ports */
|
|
REG_WRITE(REG_GLOBAL, GLOBAL_STATS_OP, GLOBAL_STATS_OP_FLUSH_ALL);
|
|
|
|
/* Wait for the flush to complete. */
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_stats_wait(ds);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* Clear all ATU entries */
|
|
ret = _mv88e6xxx_atu_flush(ds, 0, true);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* Clear all the VTU and STU entries */
|
|
ret = _mv88e6xxx_vtu_stu_flush(ds);
|
|
unlock:
|
|
mutex_unlock(&ps->smi_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_switch_reset(struct dsa_switch *ds, bool ppu_active)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
|
|
struct gpio_desc *gpiod = ds->pd->reset;
|
|
unsigned long timeout;
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set all ports to the disabled state. */
|
|
for (i = 0; i < ps->num_ports; i++) {
|
|
ret = REG_READ(REG_PORT(i), PORT_CONTROL);
|
|
REG_WRITE(REG_PORT(i), PORT_CONTROL, ret & 0xfffc);
|
|
}
|
|
|
|
/* Wait for transmit queues to drain. */
|
|
usleep_range(2000, 4000);
|
|
|
|
/* If there is a gpio connected to the reset pin, toggle it */
|
|
if (gpiod) {
|
|
gpiod_set_value_cansleep(gpiod, 1);
|
|
usleep_range(10000, 20000);
|
|
gpiod_set_value_cansleep(gpiod, 0);
|
|
usleep_range(10000, 20000);
|
|
}
|
|
|
|
/* Reset the switch. Keep the PPU active if requested. The PPU
|
|
* needs to be active to support indirect phy register access
|
|
* through global registers 0x18 and 0x19.
|
|
*/
|
|
if (ppu_active)
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc000);
|
|
else
|
|
REG_WRITE(REG_GLOBAL, 0x04, 0xc400);
|
|
|
|
/* Wait up to one second for reset to complete. */
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = REG_READ(REG_GLOBAL, 0x00);
|
|
if ((ret & is_reset) == is_reset)
|
|
break;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
if (time_after(jiffies, timeout))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, port, reg);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
|
|
int reg, int val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, port, reg, val);
|
|
error:
|
|
_mv88e6xxx_phy_write_indirect(ds, port, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_port_to_phy_addr(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
|
|
if (port >= 0 && port < ps->num_ports)
|
|
return port;
|
|
return -EINVAL;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_read(ds, addr, regnum);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_read_indirect(struct dsa_switch *ds, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_read_indirect(ds, addr, regnum);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
mv88e6xxx_phy_write_indirect(struct dsa_switch *ds, int port, int regnum,
|
|
u16 val)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int addr = mv88e6xxx_port_to_phy_addr(ds, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return addr;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
ret = _mv88e6xxx_phy_write_indirect(ds, addr, regnum, val);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
|
|
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
|
|
int ret;
|
|
int val;
|
|
|
|
*temp = 0;
|
|
|
|
mutex_lock(&ps->smi_mutex);
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x6);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Enable temperature sensor */
|
|
ret = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret | (1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Wait for temperature to stabilize */
|
|
usleep_range(10000, 12000);
|
|
|
|
val = _mv88e6xxx_phy_read(ds, 0x0, 0x1a);
|
|
if (val < 0) {
|
|
ret = val;
|
|
goto error;
|
|
}
|
|
|
|
/* Disable temperature sensor */
|
|
ret = _mv88e6xxx_phy_write(ds, 0x0, 0x1a, ret & ~(1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
*temp = ((val & 0x1f) - 5) * 5;
|
|
|
|
error:
|
|
_mv88e6xxx_phy_write(ds, 0x0, 0x16, 0x0);
|
|
mutex_unlock(&ps->smi_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (ret & 0xff) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
if (mv88e6xxx_6320_family(ds) || mv88e6xxx_6352_family(ds))
|
|
return mv88e63xx_get_temp(ds, temp);
|
|
|
|
return mv88e61xx_get_temp(ds, temp);
|
|
}
|
|
|
|
int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
|
|
return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
|
|
(ret & 0xe0ff) | (temp << 8));
|
|
}
|
|
|
|
int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
|
|
{
|
|
int phy = mv88e6xxx_6320_family(ds) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_6320_family(ds) && !mv88e6xxx_6352_family(ds))
|
|
return -EOPNOTSUPP;
|
|
|
|
*alarm = false;
|
|
|
|
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*alarm = !!(ret & 0x40);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NET_DSA_HWMON */
|
|
|
|
char *mv88e6xxx_lookup_name(struct device *host_dev, int sw_addr,
|
|
const struct mv88e6xxx_switch_id *table,
|
|
unsigned int num)
|
|
{
|
|
struct mii_bus *bus = dsa_host_dev_to_mii_bus(host_dev);
|
|
int i, ret;
|
|
|
|
if (!bus)
|
|
return NULL;
|
|
|
|
ret = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
|
|
if (ret < 0)
|
|
return NULL;
|
|
|
|
/* Look up the exact switch ID */
|
|
for (i = 0; i < num; ++i)
|
|
if (table[i].id == ret)
|
|
return table[i].name;
|
|
|
|
/* Look up only the product number */
|
|
for (i = 0; i < num; ++i) {
|
|
if (table[i].id == (ret & PORT_SWITCH_ID_PROD_NUM_MASK)) {
|
|
dev_warn(host_dev, "unknown revision %d, using base switch 0x%x\n",
|
|
ret & PORT_SWITCH_ID_REV_MASK,
|
|
ret & PORT_SWITCH_ID_PROD_NUM_MASK);
|
|
return table[i].name;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int __init mv88e6xxx_init(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
register_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
register_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
|
|
register_switch_driver(&mv88e6352_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
register_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
return 0;
|
|
}
|
|
module_init(mv88e6xxx_init);
|
|
|
|
static void __exit mv88e6xxx_cleanup(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
|
|
unregister_switch_driver(&mv88e6171_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
|
|
unregister_switch_driver(&mv88e6352_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
|
|
unregister_switch_driver(&mv88e6123_61_65_switch_driver);
|
|
#endif
|
|
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
|
|
unregister_switch_driver(&mv88e6131_switch_driver);
|
|
#endif
|
|
}
|
|
module_exit(mv88e6xxx_cleanup);
|
|
|
|
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
|
|
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
|
|
MODULE_LICENSE("GPL");
|