linux_dsm_epyc7002/fs/mbcache.c
Andreas Gruenbacher 6048c64b26 mbcache: add reusable flag to cache entries
To reduce amount of damage caused by single bad block, we limit number
of inodes sharing an xattr block to 1024. Thus there can be more xattr
blocks with the same contents when there are lots of files with the same
extended attributes. These xattr blocks naturally result in hash
collisions and can form long hash chains and we unnecessarily check each
such block only to find out we cannot use it because it is already
shared by too many inodes.

Add a reusable flag to cache entries which is cleared when a cache entry
has reached its maximum refcount.  Cache entries which are not marked
reusable are skipped by mb_cache_entry_find_{first,next}. This
significantly speeds up mbcache when there are many same xattr blocks.
For example for xattr-bench with 5 values and each process handling
20000 files, the run for 64 processes is 25x faster with this patch.
Even for 8 processes the speedup is almost 3x. We have also verified
that for situations where there is only one xattr block of each kind,
the patch doesn't have a measurable cost.

[JK: Remove handling of setting the same value since it is not needed
anymore, check for races in e_reusable setting, improve changelog,
add measurements]

Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2016-02-22 22:44:04 -05:00

434 lines
12 KiB
C

#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/list_bl.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/mbcache.h>
/*
* Mbcache is a simple key-value store. Keys need not be unique, however
* key-value pairs are expected to be unique (we use this fact in
* mb_cache_entry_delete_block()).
*
* Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
* They use hash of a block contents as a key and block number as a value.
* That's why keys need not be unique (different xattr blocks may end up having
* the same hash). However block number always uniquely identifies a cache
* entry.
*
* We provide functions for creation and removal of entries, search by key,
* and a special "delete entry with given key-value pair" operation. Fixed
* size hash table is used for fast key lookups.
*/
struct mb_cache {
/* Hash table of entries */
struct hlist_bl_head *c_hash;
/* log2 of hash table size */
int c_bucket_bits;
/* Maximum entries in cache to avoid degrading hash too much */
int c_max_entries;
/* Protects c_list, c_entry_count */
spinlock_t c_list_lock;
struct list_head c_list;
/* Number of entries in cache */
unsigned long c_entry_count;
struct shrinker c_shrink;
/* Work for shrinking when the cache has too many entries */
struct work_struct c_shrink_work;
};
static struct kmem_cache *mb_entry_cache;
static unsigned long mb_cache_shrink(struct mb_cache *cache,
unsigned int nr_to_scan);
static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
u32 key)
{
return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
}
/*
* Number of entries to reclaim synchronously when there are too many entries
* in cache
*/
#define SYNC_SHRINK_BATCH 64
/*
* mb_cache_entry_create - create entry in cache
* @cache - cache where the entry should be created
* @mask - gfp mask with which the entry should be allocated
* @key - key of the entry
* @block - block that contains data
* @reusable - is the block reusable by other inodes?
*
* Creates entry in @cache with key @key and records that data is stored in
* block @block. The function returns -EBUSY if entry with the same key
* and for the same block already exists in cache. Otherwise 0 is returned.
*/
int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
sector_t block, bool reusable)
{
struct mb_cache_entry *entry, *dup;
struct hlist_bl_node *dup_node;
struct hlist_bl_head *head;
/* Schedule background reclaim if there are too many entries */
if (cache->c_entry_count >= cache->c_max_entries)
schedule_work(&cache->c_shrink_work);
/* Do some sync reclaim if background reclaim cannot keep up */
if (cache->c_entry_count >= 2*cache->c_max_entries)
mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
entry = kmem_cache_alloc(mb_entry_cache, mask);
if (!entry)
return -ENOMEM;
INIT_LIST_HEAD(&entry->e_list);
/* One ref for hash, one ref returned */
atomic_set(&entry->e_refcnt, 1);
entry->e_key = key;
entry->e_block = block;
entry->e_reusable = reusable;
head = mb_cache_entry_head(cache, key);
hlist_bl_lock(head);
hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
if (dup->e_key == key && dup->e_block == block) {
hlist_bl_unlock(head);
kmem_cache_free(mb_entry_cache, entry);
return -EBUSY;
}
}
hlist_bl_add_head(&entry->e_hash_list, head);
hlist_bl_unlock(head);
spin_lock(&cache->c_list_lock);
list_add_tail(&entry->e_list, &cache->c_list);
/* Grab ref for LRU list */
atomic_inc(&entry->e_refcnt);
cache->c_entry_count++;
spin_unlock(&cache->c_list_lock);
return 0;
}
EXPORT_SYMBOL(mb_cache_entry_create);
void __mb_cache_entry_free(struct mb_cache_entry *entry)
{
kmem_cache_free(mb_entry_cache, entry);
}
EXPORT_SYMBOL(__mb_cache_entry_free);
static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
struct mb_cache_entry *entry,
u32 key)
{
struct mb_cache_entry *old_entry = entry;
struct hlist_bl_node *node;
struct hlist_bl_head *head;
head = mb_cache_entry_head(cache, key);
hlist_bl_lock(head);
if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
node = entry->e_hash_list.next;
else
node = hlist_bl_first(head);
while (node) {
entry = hlist_bl_entry(node, struct mb_cache_entry,
e_hash_list);
if (entry->e_key == key && entry->e_reusable) {
atomic_inc(&entry->e_refcnt);
goto out;
}
node = node->next;
}
entry = NULL;
out:
hlist_bl_unlock(head);
if (old_entry)
mb_cache_entry_put(cache, old_entry);
return entry;
}
/*
* mb_cache_entry_find_first - find the first entry in cache with given key
* @cache: cache where we should search
* @key: key to look for
*
* Search in @cache for entry with key @key. Grabs reference to the first
* entry found and returns the entry.
*/
struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
u32 key)
{
return __entry_find(cache, NULL, key);
}
EXPORT_SYMBOL(mb_cache_entry_find_first);
/*
* mb_cache_entry_find_next - find next entry in cache with the same
* @cache: cache where we should search
* @entry: entry to start search from
*
* Finds next entry in the hash chain which has the same key as @entry.
* If @entry is unhashed (which can happen when deletion of entry races
* with the search), finds the first entry in the hash chain. The function
* drops reference to @entry and returns with a reference to the found entry.
*/
struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
struct mb_cache_entry *entry)
{
return __entry_find(cache, entry, entry->e_key);
}
EXPORT_SYMBOL(mb_cache_entry_find_next);
/*
* mb_cache_entry_get - get a cache entry by block number (and key)
* @cache - cache we work with
* @key - key of block number @block
* @block - block number
*/
struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
sector_t block)
{
struct hlist_bl_node *node;
struct hlist_bl_head *head;
struct mb_cache_entry *entry;
head = mb_cache_entry_head(cache, key);
hlist_bl_lock(head);
hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
if (entry->e_key == key && entry->e_block == block) {
atomic_inc(&entry->e_refcnt);
goto out;
}
}
entry = NULL;
out:
hlist_bl_unlock(head);
return entry;
}
EXPORT_SYMBOL(mb_cache_entry_get);
/* mb_cache_entry_delete_block - remove information about block from cache
* @cache - cache we work with
* @key - key of block @block
* @block - block number
*
* Remove entry from cache @cache with key @key with data stored in @block.
*/
void mb_cache_entry_delete_block(struct mb_cache *cache, u32 key,
sector_t block)
{
struct hlist_bl_node *node;
struct hlist_bl_head *head;
struct mb_cache_entry *entry;
head = mb_cache_entry_head(cache, key);
hlist_bl_lock(head);
hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
if (entry->e_key == key && entry->e_block == block) {
/* We keep hash list reference to keep entry alive */
hlist_bl_del_init(&entry->e_hash_list);
hlist_bl_unlock(head);
spin_lock(&cache->c_list_lock);
if (!list_empty(&entry->e_list)) {
list_del_init(&entry->e_list);
cache->c_entry_count--;
atomic_dec(&entry->e_refcnt);
}
spin_unlock(&cache->c_list_lock);
mb_cache_entry_put(cache, entry);
return;
}
}
hlist_bl_unlock(head);
}
EXPORT_SYMBOL(mb_cache_entry_delete_block);
/* mb_cache_entry_touch - cache entry got used
* @cache - cache the entry belongs to
* @entry - entry that got used
*
* Marks entry as used to give hit higher chances of surviving in cache.
*/
void mb_cache_entry_touch(struct mb_cache *cache,
struct mb_cache_entry *entry)
{
entry->e_referenced = 1;
}
EXPORT_SYMBOL(mb_cache_entry_touch);
static unsigned long mb_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct mb_cache *cache = container_of(shrink, struct mb_cache,
c_shrink);
return cache->c_entry_count;
}
/* Shrink number of entries in cache */
static unsigned long mb_cache_shrink(struct mb_cache *cache,
unsigned int nr_to_scan)
{
struct mb_cache_entry *entry;
struct hlist_bl_head *head;
unsigned int shrunk = 0;
spin_lock(&cache->c_list_lock);
while (nr_to_scan-- && !list_empty(&cache->c_list)) {
entry = list_first_entry(&cache->c_list,
struct mb_cache_entry, e_list);
if (entry->e_referenced) {
entry->e_referenced = 0;
list_move_tail(&cache->c_list, &entry->e_list);
continue;
}
list_del_init(&entry->e_list);
cache->c_entry_count--;
/*
* We keep LRU list reference so that entry doesn't go away
* from under us.
*/
spin_unlock(&cache->c_list_lock);
head = mb_cache_entry_head(cache, entry->e_key);
hlist_bl_lock(head);
if (!hlist_bl_unhashed(&entry->e_hash_list)) {
hlist_bl_del_init(&entry->e_hash_list);
atomic_dec(&entry->e_refcnt);
}
hlist_bl_unlock(head);
if (mb_cache_entry_put(cache, entry))
shrunk++;
cond_resched();
spin_lock(&cache->c_list_lock);
}
spin_unlock(&cache->c_list_lock);
return shrunk;
}
static unsigned long mb_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
int nr_to_scan = sc->nr_to_scan;
struct mb_cache *cache = container_of(shrink, struct mb_cache,
c_shrink);
return mb_cache_shrink(cache, nr_to_scan);
}
/* We shrink 1/X of the cache when we have too many entries in it */
#define SHRINK_DIVISOR 16
static void mb_cache_shrink_worker(struct work_struct *work)
{
struct mb_cache *cache = container_of(work, struct mb_cache,
c_shrink_work);
mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
}
/*
* mb_cache_create - create cache
* @bucket_bits: log2 of the hash table size
*
* Create cache for keys with 2^bucket_bits hash entries.
*/
struct mb_cache *mb_cache_create(int bucket_bits)
{
struct mb_cache *cache;
int bucket_count = 1 << bucket_bits;
int i;
if (!try_module_get(THIS_MODULE))
return NULL;
cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
if (!cache)
goto err_out;
cache->c_bucket_bits = bucket_bits;
cache->c_max_entries = bucket_count << 4;
INIT_LIST_HEAD(&cache->c_list);
spin_lock_init(&cache->c_list_lock);
cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head),
GFP_KERNEL);
if (!cache->c_hash) {
kfree(cache);
goto err_out;
}
for (i = 0; i < bucket_count; i++)
INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
cache->c_shrink.count_objects = mb_cache_count;
cache->c_shrink.scan_objects = mb_cache_scan;
cache->c_shrink.seeks = DEFAULT_SEEKS;
register_shrinker(&cache->c_shrink);
INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
return cache;
err_out:
module_put(THIS_MODULE);
return NULL;
}
EXPORT_SYMBOL(mb_cache_create);
/*
* mb_cache_destroy - destroy cache
* @cache: the cache to destroy
*
* Free all entries in cache and cache itself. Caller must make sure nobody
* (except shrinker) can reach @cache when calling this.
*/
void mb_cache_destroy(struct mb_cache *cache)
{
struct mb_cache_entry *entry, *next;
unregister_shrinker(&cache->c_shrink);
/*
* We don't bother with any locking. Cache must not be used at this
* point.
*/
list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
if (!hlist_bl_unhashed(&entry->e_hash_list)) {
hlist_bl_del_init(&entry->e_hash_list);
atomic_dec(&entry->e_refcnt);
} else
WARN_ON(1);
list_del(&entry->e_list);
WARN_ON(atomic_read(&entry->e_refcnt) != 1);
mb_cache_entry_put(cache, entry);
}
kfree(cache->c_hash);
kfree(cache);
module_put(THIS_MODULE);
}
EXPORT_SYMBOL(mb_cache_destroy);
static int __init mbcache_init(void)
{
mb_entry_cache = kmem_cache_create("mbcache",
sizeof(struct mb_cache_entry), 0,
SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
BUG_ON(!mb_entry_cache);
return 0;
}
static void __exit mbcache_exit(void)
{
kmem_cache_destroy(mb_entry_cache);
}
module_init(mbcache_init)
module_exit(mbcache_exit)
MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
MODULE_LICENSE("GPL");