linux_dsm_epyc7002/drivers/mmc/host/sunxi-mmc.c
Linus Torvalds 18a8d49973 The clock framework changes for 3.20 contain the usual driver additions,
enhancements and fixes mostly for ARM32, ARM64, MIPS and Power-based
 devices. Additionaly the framework core underwent a bit of surgery with
 two major changes. The boundary between the clock core and clock
 providers (e.g clock drivers) is now more well defined with dedicated
 provider helper functions. struct clk no longer maps 1:1 with the
 hardware clock but is a true per-user cookie which helps us tracker
 users of hardware clocks and debug bad behavior. The second major change
 is the addition of rate constraints for clocks. Rate ranges are now
 supported which are analogous to the voltage ranges in the regulator
 framework. Unfortunately these changes to the core created some
 breakeage. We think we fixed it all up but for this reason there are
 lots of last minute commits trying to undo the damage.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJU54D5AAoJEDqPOy9afJhJs6AQAK5YuUwjDchdpNZx9p7OnT1q
 +poehuUwE/gYjmdACqYFyaPrI/9f43iNCfFAgKGLQqmB5ZK4sm4ktzfBEhjWINR2
 iiCx9QYMQVGiKwC8KU0ddeBciglE2b/DwxB45m9TsJEjowucUeBzwLEIj5DsGxf7
 teXRoOWgXdz1MkQJ4pnA09Q3qEPQgmu8prhMfka/v75/yn7nb9VWiJ6seR2GqTKY
 sIKL9WbKjN4AzctggdqHnMSIqZoq6vew850bv2C1fPn7GiYFQfWW+jvMlVY40dp8
 nNa2ixSQSIXVw4fCtZhTIZcIvZ8puc7WVLcl8fz3mUe3VJn1VaGs0E+Yd3GexpIV
 7bwkTOIdS8gSRlsUaIPiMnUob5TUMmMqjF4KIh/AhP4dYrmVbU7Ie8ccvSxe31Ku
 lK7ww6BFv3KweTnW/58856ZXDlXLC6x3KT+Fw58L23VhPToFgYOdTxn8AVtE/LKP
 YR3UnY9BqFx6WHXVoNvg3Piyej7RH8fYmE9om8tyWc/Ab8Eo501SHs9l3b2J8snf
 w/5STd2CYxyKf1/9JLGnBvGo754O9NvdzBttRlygB14gCCtS/SDk/ELG2Ae+/a9P
 YgRk2+257h8PMD3qlp94dLidEZN4kYxP/J6oj0t1/TIkERWfZjzkg5tKn3/hEcU9
 qM97ZBTplTm6FM+Dt/Vk
 =zCVK
 -----END PGP SIGNATURE-----

Merge tag 'clk-for-linus-3.20' of git://git.linaro.org/people/mike.turquette/linux

Pull clock framework updates from Mike Turquette:
 "The clock framework changes contain the usual driver additions,
  enhancements and fixes mostly for ARM32, ARM64, MIPS and Power-based
  devices.

  Additionally the framework core underwent a bit of surgery with two
  major changes:

   - The boundary between the clock core and clock providers (e.g clock
     drivers) is now more well defined with dedicated provider helper
     functions.  struct clk no longer maps 1:1 with the hardware clock
     but is a true per-user cookie which helps us tracker users of
     hardware clocks and debug bad behavior.

   - The addition of rate constraints for clocks.  Rate ranges are now
     supported which are analogous to the voltage ranges in the
     regulator framework.

  Unfortunately these changes to the core created some breakeage.  We
  think we fixed it all up but for this reason there are lots of last
  minute commits trying to undo the damage"

* tag 'clk-for-linus-3.20' of git://git.linaro.org/people/mike.turquette/linux: (113 commits)
  clk: Only recalculate the rate if needed
  Revert "clk: mxs: Fix invalid 32-bit access to frac registers"
  clk: qoriq: Add support for the platform PLL
  powerpc/corenet: Enable CLK_QORIQ
  clk: Replace explicit clk assignment with __clk_hw_set_clk
  clk: Add __clk_hw_set_clk helper function
  clk: Don't dereference parent clock if is NULL
  MIPS: Alchemy: Remove bogus args from alchemy_clk_fgcs_detr
  clkdev: Always allocate a struct clk and call __clk_get() w/ CCF
  clk: shmobile: div6: Avoid division by zero in .round_rate()
  clk: mxs: Fix invalid 32-bit access to frac registers
  clk: omap: compile legacy omap3 clocks conditionally
  clkdev: Export clk_register_clkdev
  clk: Add rate constraints to clocks
  clk: remove clk-private.h
  pci: xgene: do not use clk-private.h
  arm: omap2+ remove dead clock code
  clk: Make clk API return per-user struct clk instances
  clk: tegra: Define PLLD_DSI and remove dsia(b)_mux
  clk: tegra: Add support for the Tegra132 CAR IP block
  ...
2015-02-21 12:30:30 -08:00

1087 lines
29 KiB
C
Raw Blame History

/*
* Driver for sunxi SD/MMC host controllers
* (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd.
* (C) Copyright 2007-2011 Aaron Maoye <leafy.myeh@reuuimllatech.com>
* (C) Copyright 2013-2014 O2S GmbH <www.o2s.ch>
* (C) Copyright 2013-2014 David Lanzend<6E>rfer <david.lanzendoerfer@o2s.ch>
* (C) Copyright 2013-2014 Hans de Goede <hdegoede@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/reset.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <linux/of_platform.h>
#include <linux/mmc/host.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/core.h>
#include <linux/mmc/card.h>
#include <linux/mmc/slot-gpio.h>
/* register offset definitions */
#define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */
#define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */
#define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */
#define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */
#define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */
#define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */
#define SDXC_REG_CMDR (0x18) /* SMC Command Register */
#define SDXC_REG_CARG (0x1C) /* SMC Argument Register */
#define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */
#define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */
#define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */
#define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */
#define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */
#define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */
#define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */
#define SDXC_REG_STAS (0x3C) /* SMC Status Register */
#define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */
#define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */
#define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */
#define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */
#define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */
#define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */
#define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */
#define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */
#define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */
#define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */
#define SDXC_REG_CHDA (0x90)
#define SDXC_REG_CBDA (0x94)
#define mmc_readl(host, reg) \
readl((host)->reg_base + SDXC_##reg)
#define mmc_writel(host, reg, value) \
writel((value), (host)->reg_base + SDXC_##reg)
/* global control register bits */
#define SDXC_SOFT_RESET BIT(0)
#define SDXC_FIFO_RESET BIT(1)
#define SDXC_DMA_RESET BIT(2)
#define SDXC_INTERRUPT_ENABLE_BIT BIT(4)
#define SDXC_DMA_ENABLE_BIT BIT(5)
#define SDXC_DEBOUNCE_ENABLE_BIT BIT(8)
#define SDXC_POSEDGE_LATCH_DATA BIT(9)
#define SDXC_DDR_MODE BIT(10)
#define SDXC_MEMORY_ACCESS_DONE BIT(29)
#define SDXC_ACCESS_DONE_DIRECT BIT(30)
#define SDXC_ACCESS_BY_AHB BIT(31)
#define SDXC_ACCESS_BY_DMA (0 << 31)
#define SDXC_HARDWARE_RESET \
(SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET)
/* clock control bits */
#define SDXC_CARD_CLOCK_ON BIT(16)
#define SDXC_LOW_POWER_ON BIT(17)
/* bus width */
#define SDXC_WIDTH1 0
#define SDXC_WIDTH4 1
#define SDXC_WIDTH8 2
/* smc command bits */
#define SDXC_RESP_EXPIRE BIT(6)
#define SDXC_LONG_RESPONSE BIT(7)
#define SDXC_CHECK_RESPONSE_CRC BIT(8)
#define SDXC_DATA_EXPIRE BIT(9)
#define SDXC_WRITE BIT(10)
#define SDXC_SEQUENCE_MODE BIT(11)
#define SDXC_SEND_AUTO_STOP BIT(12)
#define SDXC_WAIT_PRE_OVER BIT(13)
#define SDXC_STOP_ABORT_CMD BIT(14)
#define SDXC_SEND_INIT_SEQUENCE BIT(15)
#define SDXC_UPCLK_ONLY BIT(21)
#define SDXC_READ_CEATA_DEV BIT(22)
#define SDXC_CCS_EXPIRE BIT(23)
#define SDXC_ENABLE_BIT_BOOT BIT(24)
#define SDXC_ALT_BOOT_OPTIONS BIT(25)
#define SDXC_BOOT_ACK_EXPIRE BIT(26)
#define SDXC_BOOT_ABORT BIT(27)
#define SDXC_VOLTAGE_SWITCH BIT(28)
#define SDXC_USE_HOLD_REGISTER BIT(29)
#define SDXC_START BIT(31)
/* interrupt bits */
#define SDXC_RESP_ERROR BIT(1)
#define SDXC_COMMAND_DONE BIT(2)
#define SDXC_DATA_OVER BIT(3)
#define SDXC_TX_DATA_REQUEST BIT(4)
#define SDXC_RX_DATA_REQUEST BIT(5)
#define SDXC_RESP_CRC_ERROR BIT(6)
#define SDXC_DATA_CRC_ERROR BIT(7)
#define SDXC_RESP_TIMEOUT BIT(8)
#define SDXC_DATA_TIMEOUT BIT(9)
#define SDXC_VOLTAGE_CHANGE_DONE BIT(10)
#define SDXC_FIFO_RUN_ERROR BIT(11)
#define SDXC_HARD_WARE_LOCKED BIT(12)
#define SDXC_START_BIT_ERROR BIT(13)
#define SDXC_AUTO_COMMAND_DONE BIT(14)
#define SDXC_END_BIT_ERROR BIT(15)
#define SDXC_SDIO_INTERRUPT BIT(16)
#define SDXC_CARD_INSERT BIT(30)
#define SDXC_CARD_REMOVE BIT(31)
#define SDXC_INTERRUPT_ERROR_BIT \
(SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \
SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \
SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR)
#define SDXC_INTERRUPT_DONE_BIT \
(SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \
SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE)
/* status */
#define SDXC_RXWL_FLAG BIT(0)
#define SDXC_TXWL_FLAG BIT(1)
#define SDXC_FIFO_EMPTY BIT(2)
#define SDXC_FIFO_FULL BIT(3)
#define SDXC_CARD_PRESENT BIT(8)
#define SDXC_CARD_DATA_BUSY BIT(9)
#define SDXC_DATA_FSM_BUSY BIT(10)
#define SDXC_DMA_REQUEST BIT(31)
#define SDXC_FIFO_SIZE 16
/* Function select */
#define SDXC_CEATA_ON (0xceaa << 16)
#define SDXC_SEND_IRQ_RESPONSE BIT(0)
#define SDXC_SDIO_READ_WAIT BIT(1)
#define SDXC_ABORT_READ_DATA BIT(2)
#define SDXC_SEND_CCSD BIT(8)
#define SDXC_SEND_AUTO_STOPCCSD BIT(9)
#define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10)
/* IDMA controller bus mod bit field */
#define SDXC_IDMAC_SOFT_RESET BIT(0)
#define SDXC_IDMAC_FIX_BURST BIT(1)
#define SDXC_IDMAC_IDMA_ON BIT(7)
#define SDXC_IDMAC_REFETCH_DES BIT(31)
/* IDMA status bit field */
#define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0)
#define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1)
#define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2)
#define SDXC_IDMAC_DESTINATION_INVALID BIT(4)
#define SDXC_IDMAC_CARD_ERROR_SUM BIT(5)
#define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8)
#define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9)
#define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10)
#define SDXC_IDMAC_IDLE (0 << 13)
#define SDXC_IDMAC_SUSPEND (1 << 13)
#define SDXC_IDMAC_DESC_READ (2 << 13)
#define SDXC_IDMAC_DESC_CHECK (3 << 13)
#define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13)
#define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13)
#define SDXC_IDMAC_READ (6 << 13)
#define SDXC_IDMAC_WRITE (7 << 13)
#define SDXC_IDMAC_DESC_CLOSE (8 << 13)
/*
* If the idma-des-size-bits of property is ie 13, bufsize bits are:
* Bits 0-12: buf1 size
* Bits 13-25: buf2 size
* Bits 26-31: not used
* Since we only ever set buf1 size, we can simply store it directly.
*/
#define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */
#define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */
#define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */
#define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */
#define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */
#define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */
#define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */
struct sunxi_idma_des {
u32 config;
u32 buf_size;
u32 buf_addr_ptr1;
u32 buf_addr_ptr2;
};
struct sunxi_mmc_host {
struct mmc_host *mmc;
struct reset_control *reset;
/* IO mapping base */
void __iomem *reg_base;
/* clock management */
struct clk *clk_ahb;
struct clk *clk_mmc;
struct clk *clk_sample;
struct clk *clk_output;
/* irq */
spinlock_t lock;
int irq;
u32 int_sum;
u32 sdio_imask;
/* dma */
u32 idma_des_size_bits;
dma_addr_t sg_dma;
void *sg_cpu;
bool wait_dma;
struct mmc_request *mrq;
struct mmc_request *manual_stop_mrq;
int ferror;
};
static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET);
do {
rval = mmc_readl(host, REG_GCTRL);
} while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET));
if (rval & SDXC_HARDWARE_RESET) {
dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n");
return -EIO;
}
return 0;
}
static int sunxi_mmc_init_host(struct mmc_host *mmc)
{
u32 rval;
struct sunxi_mmc_host *host = mmc_priv(mmc);
if (sunxi_mmc_reset_host(host))
return -EIO;
mmc_writel(host, REG_FTRGL, 0x20070008);
mmc_writel(host, REG_TMOUT, 0xffffffff);
mmc_writel(host, REG_IMASK, host->sdio_imask);
mmc_writel(host, REG_RINTR, 0xffffffff);
mmc_writel(host, REG_DBGC, 0xdeb);
mmc_writel(host, REG_FUNS, SDXC_CEATA_ON);
mmc_writel(host, REG_DLBA, host->sg_dma);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_INTERRUPT_ENABLE_BIT;
rval &= ~SDXC_ACCESS_DONE_DIRECT;
mmc_writel(host, REG_GCTRL, rval);
return 0;
}
static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu;
struct sunxi_idma_des *pdes_pa = (struct sunxi_idma_des *)host->sg_dma;
int i, max_len = (1 << host->idma_des_size_bits);
for (i = 0; i < data->sg_len; i++) {
pdes[i].config = SDXC_IDMAC_DES0_CH | SDXC_IDMAC_DES0_OWN |
SDXC_IDMAC_DES0_DIC;
if (data->sg[i].length == max_len)
pdes[i].buf_size = 0; /* 0 == max_len */
else
pdes[i].buf_size = data->sg[i].length;
pdes[i].buf_addr_ptr1 = sg_dma_address(&data->sg[i]);
pdes[i].buf_addr_ptr2 = (u32)&pdes_pa[i + 1];
}
pdes[0].config |= SDXC_IDMAC_DES0_FD;
pdes[i - 1].config |= SDXC_IDMAC_DES0_LD | SDXC_IDMAC_DES0_ER;
pdes[i - 1].config &= ~SDXC_IDMAC_DES0_DIC;
pdes[i - 1].buf_addr_ptr2 = 0;
/*
* Avoid the io-store starting the idmac hitting io-mem before the
* descriptors hit the main-mem.
*/
wmb();
}
static enum dma_data_direction sunxi_mmc_get_dma_dir(struct mmc_data *data)
{
if (data->flags & MMC_DATA_WRITE)
return DMA_TO_DEVICE;
else
return DMA_FROM_DEVICE;
}
static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 i, dma_len;
struct scatterlist *sg;
dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
sunxi_mmc_get_dma_dir(data));
if (dma_len == 0) {
dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n");
return -ENOMEM;
}
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 3 || sg->length & 3) {
dev_err(mmc_dev(host->mmc),
"unaligned scatterlist: os %x length %d\n",
sg->offset, sg->length);
return -EINVAL;
}
}
return 0;
}
static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host,
struct mmc_data *data)
{
u32 rval;
sunxi_mmc_init_idma_des(host, data);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET);
if (!(data->flags & MMC_DATA_WRITE))
mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT);
mmc_writel(host, REG_DMAC,
SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON);
}
static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host,
struct mmc_request *req)
{
u32 arg, cmd_val, ri;
unsigned long expire = jiffies + msecs_to_jiffies(1000);
cmd_val = SDXC_START | SDXC_RESP_EXPIRE |
SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC;
if (req->cmd->opcode == SD_IO_RW_EXTENDED) {
cmd_val |= SD_IO_RW_DIRECT;
arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
((req->cmd->arg >> 28) & 0x7);
} else {
cmd_val |= MMC_STOP_TRANSMISSION;
arg = 0;
}
mmc_writel(host, REG_CARG, arg);
mmc_writel(host, REG_CMDR, cmd_val);
do {
ri = mmc_readl(host, REG_RINTR);
} while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) &&
time_before(jiffies, expire));
if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) {
dev_err(mmc_dev(host->mmc), "send stop command failed\n");
if (req->stop)
req->stop->resp[0] = -ETIMEDOUT;
} else {
if (req->stop)
req->stop->resp[0] = mmc_readl(host, REG_RESP0);
}
mmc_writel(host, REG_RINTR, 0xffff);
}
static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host)
{
struct mmc_command *cmd = host->mrq->cmd;
struct mmc_data *data = host->mrq->data;
/* For some cmds timeout is normal with sd/mmc cards */
if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) ==
SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND ||
cmd->opcode == SD_IO_RW_DIRECT))
return;
dev_err(mmc_dev(host->mmc),
"smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n",
host->mmc->index, cmd->opcode,
data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "",
host->int_sum & SDXC_RESP_ERROR ? " RE" : "",
host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "",
host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "",
host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "",
host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "",
host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "",
host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "",
host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "",
host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : ""
);
}
/* Called in interrupt context! */
static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host)
{
struct mmc_request *mrq = host->mrq;
struct mmc_data *data = mrq->data;
u32 rval;
mmc_writel(host, REG_IMASK, host->sdio_imask);
mmc_writel(host, REG_IDIE, 0);
if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) {
sunxi_mmc_dump_errinfo(host);
mrq->cmd->error = -ETIMEDOUT;
if (data) {
data->error = -ETIMEDOUT;
host->manual_stop_mrq = mrq;
}
if (mrq->stop)
mrq->stop->error = -ETIMEDOUT;
} else {
if (mrq->cmd->flags & MMC_RSP_136) {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3);
mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2);
mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1);
mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0);
} else {
mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0);
}
if (data)
data->bytes_xfered = data->blocks * data->blksz;
}
if (data) {
mmc_writel(host, REG_IDST, 0x337);
mmc_writel(host, REG_DMAC, 0);
rval = mmc_readl(host, REG_GCTRL);
rval |= SDXC_DMA_RESET;
mmc_writel(host, REG_GCTRL, rval);
rval &= ~SDXC_DMA_ENABLE_BIT;
mmc_writel(host, REG_GCTRL, rval);
rval |= SDXC_FIFO_RESET;
mmc_writel(host, REG_GCTRL, rval);
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
sunxi_mmc_get_dma_dir(data));
}
mmc_writel(host, REG_RINTR, 0xffff);
host->mrq = NULL;
host->int_sum = 0;
host->wait_dma = false;
return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
u32 msk_int, idma_int;
bool finalize = false;
bool sdio_int = false;
irqreturn_t ret = IRQ_HANDLED;
spin_lock(&host->lock);
idma_int = mmc_readl(host, REG_IDST);
msk_int = mmc_readl(host, REG_MISTA);
dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n",
host->mrq, msk_int, idma_int);
mrq = host->mrq;
if (mrq) {
if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT)
host->wait_dma = false;
host->int_sum |= msk_int;
/* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */
if ((host->int_sum & SDXC_RESP_TIMEOUT) &&
!(host->int_sum & SDXC_COMMAND_DONE))
mmc_writel(host, REG_IMASK,
host->sdio_imask | SDXC_COMMAND_DONE);
/* Don't wait for dma on error */
else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT)
finalize = true;
else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) &&
!host->wait_dma)
finalize = true;
}
if (msk_int & SDXC_SDIO_INTERRUPT)
sdio_int = true;
mmc_writel(host, REG_RINTR, msk_int);
mmc_writel(host, REG_IDST, idma_int);
if (finalize)
ret = sunxi_mmc_finalize_request(host);
spin_unlock(&host->lock);
if (finalize && ret == IRQ_HANDLED)
mmc_request_done(host->mmc, mrq);
if (sdio_int)
mmc_signal_sdio_irq(host->mmc);
return ret;
}
static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id)
{
struct sunxi_mmc_host *host = dev_id;
struct mmc_request *mrq;
unsigned long iflags;
spin_lock_irqsave(&host->lock, iflags);
mrq = host->manual_stop_mrq;
spin_unlock_irqrestore(&host->lock, iflags);
if (!mrq) {
dev_err(mmc_dev(host->mmc), "no request for manual stop\n");
return IRQ_HANDLED;
}
dev_err(mmc_dev(host->mmc), "data error, sending stop command\n");
/*
* We will never have more than one outstanding request,
* and we do not complete the request until after
* we've cleared host->manual_stop_mrq so we do not need to
* spin lock this function.
* Additionally we have wait states within this function
* so having it in a lock is a very bad idea.
*/
sunxi_mmc_send_manual_stop(host, mrq);
spin_lock_irqsave(&host->lock, iflags);
host->manual_stop_mrq = NULL;
spin_unlock_irqrestore(&host->lock, iflags);
mmc_request_done(host->mmc, mrq);
return IRQ_HANDLED;
}
static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en)
{
unsigned long expire = jiffies + msecs_to_jiffies(250);
u32 rval;
rval = mmc_readl(host, REG_CLKCR);
rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON);
if (oclk_en)
rval |= SDXC_CARD_CLOCK_ON;
mmc_writel(host, REG_CLKCR, rval);
rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER;
mmc_writel(host, REG_CMDR, rval);
do {
rval = mmc_readl(host, REG_CMDR);
} while (time_before(jiffies, expire) && (rval & SDXC_START));
/* clear irq status bits set by the command */
mmc_writel(host, REG_RINTR,
mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT);
if (rval & SDXC_START) {
dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n");
return -EIO;
}
return 0;
}
static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host,
struct mmc_ios *ios)
{
u32 rate, oclk_dly, rval, sclk_dly;
int ret;
rate = clk_round_rate(host->clk_mmc, ios->clock);
dev_dbg(mmc_dev(host->mmc), "setting clk to %d, rounded %d\n",
ios->clock, rate);
/* setting clock rate */
ret = clk_set_rate(host->clk_mmc, rate);
if (ret) {
dev_err(mmc_dev(host->mmc), "error setting clk to %d: %d\n",
rate, ret);
return ret;
}
ret = sunxi_mmc_oclk_onoff(host, 0);
if (ret)
return ret;
/* clear internal divider */
rval = mmc_readl(host, REG_CLKCR);
rval &= ~0xff;
mmc_writel(host, REG_CLKCR, rval);
/* determine delays */
if (rate <= 400000) {
oclk_dly = 180;
sclk_dly = 42;
} else if (rate <= 25000000) {
oclk_dly = 180;
sclk_dly = 75;
} else if (rate <= 50000000) {
if (ios->timing == MMC_TIMING_UHS_DDR50) {
oclk_dly = 60;
sclk_dly = 120;
} else {
oclk_dly = 90;
sclk_dly = 150;
}
} else if (rate <= 100000000) {
oclk_dly = 6;
sclk_dly = 24;
} else if (rate <= 200000000) {
oclk_dly = 3;
sclk_dly = 12;
} else {
return -EINVAL;
}
clk_set_phase(host->clk_sample, sclk_dly);
clk_set_phase(host->clk_output, oclk_dly);
return sunxi_mmc_oclk_onoff(host, 1);
}
static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
u32 rval;
/* Set the power state */
switch (ios->power_mode) {
case MMC_POWER_ON:
break;
case MMC_POWER_UP:
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
host->ferror = sunxi_mmc_init_host(mmc);
if (host->ferror)
return;
dev_dbg(mmc_dev(mmc), "power on!\n");
break;
case MMC_POWER_OFF:
dev_dbg(mmc_dev(mmc), "power off!\n");
sunxi_mmc_reset_host(host);
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
break;
}
/* set bus width */
switch (ios->bus_width) {
case MMC_BUS_WIDTH_1:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH1);
break;
case MMC_BUS_WIDTH_4:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH4);
break;
case MMC_BUS_WIDTH_8:
mmc_writel(host, REG_WIDTH, SDXC_WIDTH8);
break;
}
/* set ddr mode */
rval = mmc_readl(host, REG_GCTRL);
if (ios->timing == MMC_TIMING_UHS_DDR50)
rval |= SDXC_DDR_MODE;
else
rval &= ~SDXC_DDR_MODE;
mmc_writel(host, REG_GCTRL, rval);
/* set up clock */
if (ios->clock && ios->power_mode) {
host->ferror = sunxi_mmc_clk_set_rate(host, ios);
/* Android code had a usleep_range(50000, 55000); here */
}
}
static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
unsigned long flags;
u32 imask;
spin_lock_irqsave(&host->lock, flags);
imask = mmc_readl(host, REG_IMASK);
if (enable) {
host->sdio_imask = SDXC_SDIO_INTERRUPT;
imask |= SDXC_SDIO_INTERRUPT;
} else {
host->sdio_imask = 0;
imask &= ~SDXC_SDIO_INTERRUPT;
}
mmc_writel(host, REG_IMASK, imask);
spin_unlock_irqrestore(&host->lock, flags);
}
static void sunxi_mmc_hw_reset(struct mmc_host *mmc)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_writel(host, REG_HWRST, 0);
udelay(10);
mmc_writel(host, REG_HWRST, 1);
udelay(300);
}
static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sunxi_mmc_host *host = mmc_priv(mmc);
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
unsigned long iflags;
u32 imask = SDXC_INTERRUPT_ERROR_BIT;
u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f);
bool wait_dma = host->wait_dma;
int ret;
/* Check for set_ios errors (should never happen) */
if (host->ferror) {
mrq->cmd->error = host->ferror;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
ret = sunxi_mmc_map_dma(host, data);
if (ret < 0) {
dev_err(mmc_dev(mmc), "map DMA failed\n");
cmd->error = ret;
data->error = ret;
mmc_request_done(mmc, mrq);
return;
}
}
if (cmd->opcode == MMC_GO_IDLE_STATE) {
cmd_val |= SDXC_SEND_INIT_SEQUENCE;
imask |= SDXC_COMMAND_DONE;
}
if (cmd->flags & MMC_RSP_PRESENT) {
cmd_val |= SDXC_RESP_EXPIRE;
if (cmd->flags & MMC_RSP_136)
cmd_val |= SDXC_LONG_RESPONSE;
if (cmd->flags & MMC_RSP_CRC)
cmd_val |= SDXC_CHECK_RESPONSE_CRC;
if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) {
cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER;
if (cmd->data->flags & MMC_DATA_STREAM) {
imask |= SDXC_AUTO_COMMAND_DONE;
cmd_val |= SDXC_SEQUENCE_MODE |
SDXC_SEND_AUTO_STOP;
}
if (cmd->data->stop) {
imask |= SDXC_AUTO_COMMAND_DONE;
cmd_val |= SDXC_SEND_AUTO_STOP;
} else {
imask |= SDXC_DATA_OVER;
}
if (cmd->data->flags & MMC_DATA_WRITE)
cmd_val |= SDXC_WRITE;
else
wait_dma = true;
} else {
imask |= SDXC_COMMAND_DONE;
}
} else {
imask |= SDXC_COMMAND_DONE;
}
dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n",
cmd_val & 0x3f, cmd_val, cmd->arg, imask,
mrq->data ? mrq->data->blksz * mrq->data->blocks : 0);
spin_lock_irqsave(&host->lock, iflags);
if (host->mrq || host->manual_stop_mrq) {
spin_unlock_irqrestore(&host->lock, iflags);
if (data)
dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len,
sunxi_mmc_get_dma_dir(data));
dev_err(mmc_dev(mmc), "request already pending\n");
mrq->cmd->error = -EBUSY;
mmc_request_done(mmc, mrq);
return;
}
if (data) {
mmc_writel(host, REG_BLKSZ, data->blksz);
mmc_writel(host, REG_BCNTR, data->blksz * data->blocks);
sunxi_mmc_start_dma(host, data);
}
host->mrq = mrq;
host->wait_dma = wait_dma;
mmc_writel(host, REG_IMASK, host->sdio_imask | imask);
mmc_writel(host, REG_CARG, cmd->arg);
mmc_writel(host, REG_CMDR, cmd_val);
spin_unlock_irqrestore(&host->lock, iflags);
}
static const struct of_device_id sunxi_mmc_of_match[] = {
{ .compatible = "allwinner,sun4i-a10-mmc", },
{ .compatible = "allwinner,sun5i-a13-mmc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match);
static struct mmc_host_ops sunxi_mmc_ops = {
.request = sunxi_mmc_request,
.set_ios = sunxi_mmc_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = mmc_gpio_get_cd,
.enable_sdio_irq = sunxi_mmc_enable_sdio_irq,
.hw_reset = sunxi_mmc_hw_reset,
};
static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host,
struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
int ret;
if (of_device_is_compatible(np, "allwinner,sun4i-a10-mmc"))
host->idma_des_size_bits = 13;
else
host->idma_des_size_bits = 16;
ret = mmc_regulator_get_supply(host->mmc);
if (ret) {
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "Could not get vmmc supply\n");
return ret;
}
host->reg_base = devm_ioremap_resource(&pdev->dev,
platform_get_resource(pdev, IORESOURCE_MEM, 0));
if (IS_ERR(host->reg_base))
return PTR_ERR(host->reg_base);
host->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(host->clk_ahb)) {
dev_err(&pdev->dev, "Could not get ahb clock\n");
return PTR_ERR(host->clk_ahb);
}
host->clk_mmc = devm_clk_get(&pdev->dev, "mmc");
if (IS_ERR(host->clk_mmc)) {
dev_err(&pdev->dev, "Could not get mmc clock\n");
return PTR_ERR(host->clk_mmc);
}
host->clk_output = devm_clk_get(&pdev->dev, "output");
if (IS_ERR(host->clk_output)) {
dev_err(&pdev->dev, "Could not get output clock\n");
return PTR_ERR(host->clk_output);
}
host->clk_sample = devm_clk_get(&pdev->dev, "sample");
if (IS_ERR(host->clk_sample)) {
dev_err(&pdev->dev, "Could not get sample clock\n");
return PTR_ERR(host->clk_sample);
}
host->reset = devm_reset_control_get(&pdev->dev, "ahb");
ret = clk_prepare_enable(host->clk_ahb);
if (ret) {
dev_err(&pdev->dev, "Enable ahb clk err %d\n", ret);
return ret;
}
ret = clk_prepare_enable(host->clk_mmc);
if (ret) {
dev_err(&pdev->dev, "Enable mmc clk err %d\n", ret);
goto error_disable_clk_ahb;
}
ret = clk_prepare_enable(host->clk_output);
if (ret) {
dev_err(&pdev->dev, "Enable output clk err %d\n", ret);
goto error_disable_clk_mmc;
}
ret = clk_prepare_enable(host->clk_sample);
if (ret) {
dev_err(&pdev->dev, "Enable sample clk err %d\n", ret);
goto error_disable_clk_output;
}
if (!IS_ERR(host->reset)) {
ret = reset_control_deassert(host->reset);
if (ret) {
dev_err(&pdev->dev, "reset err %d\n", ret);
goto error_disable_clk_sample;
}
}
/*
* Sometimes the controller asserts the irq on boot for some reason,
* make sure the controller is in a sane state before enabling irqs.
*/
ret = sunxi_mmc_reset_host(host);
if (ret)
goto error_assert_reset;
host->irq = platform_get_irq(pdev, 0);
return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq,
sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host);
error_assert_reset:
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
error_disable_clk_sample:
clk_disable_unprepare(host->clk_sample);
error_disable_clk_output:
clk_disable_unprepare(host->clk_output);
error_disable_clk_mmc:
clk_disable_unprepare(host->clk_mmc);
error_disable_clk_ahb:
clk_disable_unprepare(host->clk_ahb);
return ret;
}
static int sunxi_mmc_probe(struct platform_device *pdev)
{
struct sunxi_mmc_host *host;
struct mmc_host *mmc;
int ret;
mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev);
if (!mmc) {
dev_err(&pdev->dev, "mmc alloc host failed\n");
return -ENOMEM;
}
host = mmc_priv(mmc);
host->mmc = mmc;
spin_lock_init(&host->lock);
ret = sunxi_mmc_resource_request(host, pdev);
if (ret)
goto error_free_host;
host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
&host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n");
ret = -ENOMEM;
goto error_free_host;
}
mmc->ops = &sunxi_mmc_ops;
mmc->max_blk_count = 8192;
mmc->max_blk_size = 4096;
mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des);
mmc->max_seg_size = (1 << host->idma_des_size_bits);
mmc->max_req_size = mmc->max_seg_size * mmc->max_segs;
/* 400kHz ~ 50MHz */
mmc->f_min = 400000;
mmc->f_max = 50000000;
mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
MMC_CAP_ERASE;
ret = mmc_of_parse(mmc);
if (ret)
goto error_free_dma;
ret = mmc_add_host(mmc);
if (ret)
goto error_free_dma;
dev_info(&pdev->dev, "base:0x%p irq:%u\n", host->reg_base, host->irq);
platform_set_drvdata(pdev, mmc);
return 0;
error_free_dma:
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
error_free_host:
mmc_free_host(mmc);
return ret;
}
static int sunxi_mmc_remove(struct platform_device *pdev)
{
struct mmc_host *mmc = platform_get_drvdata(pdev);
struct sunxi_mmc_host *host = mmc_priv(mmc);
mmc_remove_host(mmc);
disable_irq(host->irq);
sunxi_mmc_reset_host(host);
if (!IS_ERR(host->reset))
reset_control_assert(host->reset);
clk_disable_unprepare(host->clk_mmc);
clk_disable_unprepare(host->clk_ahb);
dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
mmc_free_host(mmc);
return 0;
}
static struct platform_driver sunxi_mmc_driver = {
.driver = {
.name = "sunxi-mmc",
.of_match_table = of_match_ptr(sunxi_mmc_of_match),
},
.probe = sunxi_mmc_probe,
.remove = sunxi_mmc_remove,
};
module_platform_driver(sunxi_mmc_driver);
MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("David Lanzend<6E>rfer <david.lanzendoerfer@o2s.ch>");
MODULE_ALIAS("platform:sunxi-mmc");