mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 07:39:29 +07:00
c84ef3c5e6
Add and set a new CP flag CP_RESIZEFS_FLAG during online resize FS to help fsck fix the metadata mismatch that may happen due to SPO during resize, where SB got updated but CP data couldn't be written yet. fsck errors - Info: CKPT version = 6ed7bccb Wrong user_block_count(2233856) [f2fs_do_mount:3365] Checkpoint is polluted Signed-off-by: Sahitya Tummala <stummala@codeaurora.org> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
1667 lines
41 KiB
C
1667 lines
41 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* fs/f2fs/checkpoint.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *ino_entry_slab;
|
|
struct kmem_cache *f2fs_inode_entry_slab;
|
|
|
|
void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
|
|
{
|
|
f2fs_build_fault_attr(sbi, 0, 0);
|
|
set_ckpt_flags(sbi, CP_ERROR_FLAG);
|
|
if (!end_io)
|
|
f2fs_flush_merged_writes(sbi);
|
|
}
|
|
|
|
/*
|
|
* We guarantee no failure on the returned page.
|
|
*/
|
|
struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page = NULL;
|
|
repeat:
|
|
page = f2fs_grab_cache_page(mapping, index, false);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
return page;
|
|
}
|
|
|
|
static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
|
|
bool is_meta)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
struct page *page;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.op = REQ_OP_READ,
|
|
.op_flags = REQ_META | REQ_PRIO,
|
|
.old_blkaddr = index,
|
|
.new_blkaddr = index,
|
|
.encrypted_page = NULL,
|
|
.is_por = !is_meta,
|
|
};
|
|
int err;
|
|
|
|
if (unlikely(!is_meta))
|
|
fio.op_flags &= ~REQ_META;
|
|
repeat:
|
|
page = f2fs_grab_cache_page(mapping, index, false);
|
|
if (!page) {
|
|
cond_resched();
|
|
goto repeat;
|
|
}
|
|
if (PageUptodate(page))
|
|
goto out;
|
|
|
|
fio.page = page;
|
|
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
lock_page(page);
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, true);
|
|
}
|
|
|
|
struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
int count = 0;
|
|
|
|
retry:
|
|
page = __get_meta_page(sbi, index, true);
|
|
if (IS_ERR(page)) {
|
|
if (PTR_ERR(page) == -EIO &&
|
|
++count <= DEFAULT_RETRY_IO_COUNT)
|
|
goto retry;
|
|
f2fs_stop_checkpoint(sbi, false);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/* for POR only */
|
|
struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
return __get_meta_page(sbi, index, false);
|
|
}
|
|
|
|
static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
|
|
int type)
|
|
{
|
|
struct seg_entry *se;
|
|
unsigned int segno, offset;
|
|
bool exist;
|
|
|
|
if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
|
|
return true;
|
|
|
|
segno = GET_SEGNO(sbi, blkaddr);
|
|
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
|
se = get_seg_entry(sbi, segno);
|
|
|
|
exist = f2fs_test_bit(offset, se->cur_valid_map);
|
|
if (!exist && type == DATA_GENERIC_ENHANCE) {
|
|
f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
|
|
blkaddr, exist);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
WARN_ON(1);
|
|
}
|
|
return exist;
|
|
}
|
|
|
|
bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
|
|
block_t blkaddr, int type)
|
|
{
|
|
switch (type) {
|
|
case META_NAT:
|
|
break;
|
|
case META_SIT:
|
|
if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
|
|
return false;
|
|
break;
|
|
case META_SSA:
|
|
if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
|
|
blkaddr < SM_I(sbi)->ssa_blkaddr))
|
|
return false;
|
|
break;
|
|
case META_CP:
|
|
if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
|
|
blkaddr < __start_cp_addr(sbi)))
|
|
return false;
|
|
break;
|
|
case META_POR:
|
|
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
|
|
blkaddr < MAIN_BLKADDR(sbi)))
|
|
return false;
|
|
break;
|
|
case DATA_GENERIC:
|
|
case DATA_GENERIC_ENHANCE:
|
|
case DATA_GENERIC_ENHANCE_READ:
|
|
if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
|
|
blkaddr < MAIN_BLKADDR(sbi))) {
|
|
f2fs_warn(sbi, "access invalid blkaddr:%u",
|
|
blkaddr);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
WARN_ON(1);
|
|
return false;
|
|
} else {
|
|
return __is_bitmap_valid(sbi, blkaddr, type);
|
|
}
|
|
break;
|
|
case META_GENERIC:
|
|
if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
|
|
blkaddr >= MAIN_BLKADDR(sbi)))
|
|
return false;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Readahead CP/NAT/SIT/SSA/POR pages
|
|
*/
|
|
int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
|
|
int type, bool sync)
|
|
{
|
|
struct page *page;
|
|
block_t blkno = start;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = META,
|
|
.op = REQ_OP_READ,
|
|
.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
|
|
.encrypted_page = NULL,
|
|
.in_list = false,
|
|
.is_por = (type == META_POR),
|
|
};
|
|
struct blk_plug plug;
|
|
|
|
if (unlikely(type == META_POR))
|
|
fio.op_flags &= ~REQ_META;
|
|
|
|
blk_start_plug(&plug);
|
|
for (; nrpages-- > 0; blkno++) {
|
|
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
|
|
goto out;
|
|
|
|
switch (type) {
|
|
case META_NAT:
|
|
if (unlikely(blkno >=
|
|
NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
|
|
blkno = 0;
|
|
/* get nat block addr */
|
|
fio.new_blkaddr = current_nat_addr(sbi,
|
|
blkno * NAT_ENTRY_PER_BLOCK);
|
|
break;
|
|
case META_SIT:
|
|
/* get sit block addr */
|
|
fio.new_blkaddr = current_sit_addr(sbi,
|
|
blkno * SIT_ENTRY_PER_BLOCK);
|
|
break;
|
|
case META_SSA:
|
|
case META_CP:
|
|
case META_POR:
|
|
fio.new_blkaddr = blkno;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
page = f2fs_grab_cache_page(META_MAPPING(sbi),
|
|
fio.new_blkaddr, false);
|
|
if (!page)
|
|
continue;
|
|
if (PageUptodate(page)) {
|
|
f2fs_put_page(page, 1);
|
|
continue;
|
|
}
|
|
|
|
fio.page = page;
|
|
f2fs_submit_page_bio(&fio);
|
|
f2fs_put_page(page, 0);
|
|
}
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return blkno - start;
|
|
}
|
|
|
|
void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
|
|
{
|
|
struct page *page;
|
|
bool readahead = false;
|
|
|
|
page = find_get_page(META_MAPPING(sbi), index);
|
|
if (!page || !PageUptodate(page))
|
|
readahead = true;
|
|
f2fs_put_page(page, 0);
|
|
|
|
if (readahead)
|
|
f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
|
|
}
|
|
|
|
static int __f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
|
|
|
|
trace_f2fs_writepage(page, META);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
|
|
goto redirty_out;
|
|
|
|
f2fs_do_write_meta_page(sbi, page, io_type);
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
|
|
if (wbc->for_reclaim)
|
|
f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
|
|
|
|
unlock_page(page);
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
f2fs_submit_merged_write(sbi, META);
|
|
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int f2fs_write_meta_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
return __f2fs_write_meta_page(page, wbc, FS_META_IO);
|
|
}
|
|
|
|
static int f2fs_write_meta_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
long diff, written;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
/* collect a number of dirty meta pages and write together */
|
|
if (wbc->sync_mode != WB_SYNC_ALL &&
|
|
get_pages(sbi, F2FS_DIRTY_META) <
|
|
nr_pages_to_skip(sbi, META))
|
|
goto skip_write;
|
|
|
|
/* if locked failed, cp will flush dirty pages instead */
|
|
if (!mutex_trylock(&sbi->cp_mutex))
|
|
goto skip_write;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, META);
|
|
diff = nr_pages_to_write(sbi, META, wbc);
|
|
written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
|
|
return 0;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
|
|
trace_f2fs_writepages(mapping->host, wbc, META);
|
|
return 0;
|
|
}
|
|
|
|
long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
|
|
long nr_to_write, enum iostat_type io_type)
|
|
{
|
|
struct address_space *mapping = META_MAPPING(sbi);
|
|
pgoff_t index = 0, prev = ULONG_MAX;
|
|
struct pagevec pvec;
|
|
long nwritten = 0;
|
|
int nr_pages;
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
|
|
pagevec_init(&pvec);
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
|
|
PAGECACHE_TAG_DIRTY))) {
|
|
int i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (prev == ULONG_MAX)
|
|
prev = page->index - 1;
|
|
if (nr_to_write != LONG_MAX && page->index != prev + 1) {
|
|
pagevec_release(&pvec);
|
|
goto stop;
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
if (__f2fs_write_meta_page(page, &wbc, io_type)) {
|
|
unlock_page(page);
|
|
break;
|
|
}
|
|
nwritten++;
|
|
prev = page->index;
|
|
if (unlikely(nwritten >= nr_to_write))
|
|
break;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
stop:
|
|
if (nwritten)
|
|
f2fs_submit_merged_write(sbi, type);
|
|
|
|
blk_finish_plug(&plug);
|
|
|
|
return nwritten;
|
|
}
|
|
|
|
static int f2fs_set_meta_page_dirty(struct page *page)
|
|
{
|
|
trace_f2fs_set_page_dirty(page, META);
|
|
|
|
if (!PageUptodate(page))
|
|
SetPageUptodate(page);
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
|
|
f2fs_set_page_private(page, 0);
|
|
f2fs_trace_pid(page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
const struct address_space_operations f2fs_meta_aops = {
|
|
.writepage = f2fs_write_meta_page,
|
|
.writepages = f2fs_write_meta_pages,
|
|
.set_page_dirty = f2fs_set_meta_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
#ifdef CONFIG_MIGRATION
|
|
.migratepage = f2fs_migrate_page,
|
|
#endif
|
|
};
|
|
|
|
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e, *tmp;
|
|
|
|
tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
|
|
|
|
radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (!e) {
|
|
e = tmp;
|
|
if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
memset(e, 0, sizeof(struct ino_entry));
|
|
e->ino = ino;
|
|
|
|
list_add_tail(&e->list, &im->ino_list);
|
|
if (type != ORPHAN_INO)
|
|
im->ino_num++;
|
|
}
|
|
|
|
if (type == FLUSH_INO)
|
|
f2fs_set_bit(devidx, (char *)&e->dirty_device);
|
|
|
|
spin_unlock(&im->ino_lock);
|
|
radix_tree_preload_end();
|
|
|
|
if (e != tmp)
|
|
kmem_cache_free(ino_entry_slab, tmp);
|
|
}
|
|
|
|
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (e) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, ino);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
return;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* add new dirty ino entry into list */
|
|
__add_ino_entry(sbi, ino, 0, type);
|
|
}
|
|
|
|
void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|
{
|
|
/* remove dirty ino entry from list */
|
|
__remove_ino_entry(sbi, ino, type);
|
|
}
|
|
|
|
/* mode should be APPEND_INO or UPDATE_INO */
|
|
bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
|
|
{
|
|
struct inode_management *im = &sbi->im[mode];
|
|
struct ino_entry *e;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
spin_unlock(&im->ino_lock);
|
|
return e ? true : false;
|
|
}
|
|
|
|
void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
|
|
{
|
|
struct ino_entry *e, *tmp;
|
|
int i;
|
|
|
|
for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
|
|
list_del(&e->list);
|
|
radix_tree_delete(&im->ino_root, e->ino);
|
|
kmem_cache_free(ino_entry_slab, e);
|
|
im->ino_num--;
|
|
}
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
}
|
|
|
|
void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
__add_ino_entry(sbi, ino, devidx, type);
|
|
}
|
|
|
|
bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
|
|
unsigned int devidx, int type)
|
|
{
|
|
struct inode_management *im = &sbi->im[type];
|
|
struct ino_entry *e;
|
|
bool is_dirty = false;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
e = radix_tree_lookup(&im->ino_root, ino);
|
|
if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
|
|
is_dirty = true;
|
|
spin_unlock(&im->ino_lock);
|
|
return is_dirty;
|
|
}
|
|
|
|
int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
int err = 0;
|
|
|
|
spin_lock(&im->ino_lock);
|
|
|
|
if (time_to_inject(sbi, FAULT_ORPHAN)) {
|
|
spin_unlock(&im->ino_lock);
|
|
f2fs_show_injection_info(sbi, FAULT_ORPHAN);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (unlikely(im->ino_num >= sbi->max_orphans))
|
|
err = -ENOSPC;
|
|
else
|
|
im->ino_num++;
|
|
spin_unlock(&im->ino_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
spin_lock(&im->ino_lock);
|
|
f2fs_bug_on(sbi, im->ino_num == 0);
|
|
im->ino_num--;
|
|
spin_unlock(&im->ino_lock);
|
|
}
|
|
|
|
void f2fs_add_orphan_inode(struct inode *inode)
|
|
{
|
|
/* add new orphan ino entry into list */
|
|
__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
|
|
f2fs_update_inode_page(inode);
|
|
}
|
|
|
|
void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
/* remove orphan entry from orphan list */
|
|
__remove_ino_entry(sbi, ino, ORPHAN_INO);
|
|
}
|
|
|
|
static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct inode *inode;
|
|
struct node_info ni;
|
|
int err;
|
|
|
|
inode = f2fs_iget_retry(sbi->sb, ino);
|
|
if (IS_ERR(inode)) {
|
|
/*
|
|
* there should be a bug that we can't find the entry
|
|
* to orphan inode.
|
|
*/
|
|
f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
|
|
return PTR_ERR(inode);
|
|
}
|
|
|
|
err = dquot_initialize(inode);
|
|
if (err) {
|
|
iput(inode);
|
|
goto err_out;
|
|
}
|
|
|
|
clear_nlink(inode);
|
|
|
|
/* truncate all the data during iput */
|
|
iput(inode);
|
|
|
|
err = f2fs_get_node_info(sbi, ino, &ni);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* ENOMEM was fully retried in f2fs_evict_inode. */
|
|
if (ni.blk_addr != NULL_ADDR) {
|
|
err = -EIO;
|
|
goto err_out;
|
|
}
|
|
return 0;
|
|
|
|
err_out:
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
|
|
__func__, ino);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
|
|
{
|
|
block_t start_blk, orphan_blocks, i, j;
|
|
unsigned int s_flags = sbi->sb->s_flags;
|
|
int err = 0;
|
|
#ifdef CONFIG_QUOTA
|
|
int quota_enabled;
|
|
#endif
|
|
|
|
if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
|
|
return 0;
|
|
|
|
if (bdev_read_only(sbi->sb->s_bdev)) {
|
|
f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
|
|
return 0;
|
|
}
|
|
|
|
if (s_flags & SB_RDONLY) {
|
|
f2fs_info(sbi, "orphan cleanup on readonly fs");
|
|
sbi->sb->s_flags &= ~SB_RDONLY;
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Needed for iput() to work correctly and not trash data */
|
|
sbi->sb->s_flags |= SB_ACTIVE;
|
|
|
|
/*
|
|
* Turn on quotas which were not enabled for read-only mounts if
|
|
* filesystem has quota feature, so that they are updated correctly.
|
|
*/
|
|
quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
|
|
#endif
|
|
|
|
start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
|
|
orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
|
|
|
|
f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
|
|
|
|
for (i = 0; i < orphan_blocks; i++) {
|
|
struct page *page;
|
|
struct f2fs_orphan_block *orphan_blk;
|
|
|
|
page = f2fs_get_meta_page(sbi, start_blk + i);
|
|
if (IS_ERR(page)) {
|
|
err = PTR_ERR(page);
|
|
goto out;
|
|
}
|
|
|
|
orphan_blk = (struct f2fs_orphan_block *)page_address(page);
|
|
for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
|
|
nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
|
|
err = recover_orphan_inode(sbi, ino);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
goto out;
|
|
}
|
|
}
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
/* clear Orphan Flag */
|
|
clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
|
|
out:
|
|
set_sbi_flag(sbi, SBI_IS_RECOVERED);
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
/* Turn quotas off */
|
|
if (quota_enabled)
|
|
f2fs_quota_off_umount(sbi->sb);
|
|
#endif
|
|
sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
|
|
|
|
return err;
|
|
}
|
|
|
|
static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|
{
|
|
struct list_head *head;
|
|
struct f2fs_orphan_block *orphan_blk = NULL;
|
|
unsigned int nentries = 0;
|
|
unsigned short index = 1;
|
|
unsigned short orphan_blocks;
|
|
struct page *page = NULL;
|
|
struct ino_entry *orphan = NULL;
|
|
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
|
|
|
|
/*
|
|
* we don't need to do spin_lock(&im->ino_lock) here, since all the
|
|
* orphan inode operations are covered under f2fs_lock_op().
|
|
* And, spin_lock should be avoided due to page operations below.
|
|
*/
|
|
head = &im->ino_list;
|
|
|
|
/* loop for each orphan inode entry and write them in Jornal block */
|
|
list_for_each_entry(orphan, head, list) {
|
|
if (!page) {
|
|
page = f2fs_grab_meta_page(sbi, start_blk++);
|
|
orphan_blk =
|
|
(struct f2fs_orphan_block *)page_address(page);
|
|
memset(orphan_blk, 0, sizeof(*orphan_blk));
|
|
}
|
|
|
|
orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
|
|
|
|
if (nentries == F2FS_ORPHANS_PER_BLOCK) {
|
|
/*
|
|
* an orphan block is full of 1020 entries,
|
|
* then we need to flush current orphan blocks
|
|
* and bring another one in memory
|
|
*/
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
index++;
|
|
nentries = 0;
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
if (page) {
|
|
orphan_blk->blk_addr = cpu_to_le16(index);
|
|
orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
|
|
orphan_blk->entry_count = cpu_to_le32(nentries);
|
|
set_page_dirty(page);
|
|
f2fs_put_page(page, 1);
|
|
}
|
|
}
|
|
|
|
static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
|
|
struct f2fs_checkpoint *ckpt)
|
|
{
|
|
unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
|
|
__u32 chksum;
|
|
|
|
chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
|
|
if (chksum_ofs < CP_CHKSUM_OFFSET) {
|
|
chksum_ofs += sizeof(chksum);
|
|
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
|
|
F2FS_BLKSIZE - chksum_ofs);
|
|
}
|
|
return chksum;
|
|
}
|
|
|
|
static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
|
|
struct f2fs_checkpoint **cp_block, struct page **cp_page,
|
|
unsigned long long *version)
|
|
{
|
|
size_t crc_offset = 0;
|
|
__u32 crc;
|
|
|
|
*cp_page = f2fs_get_meta_page(sbi, cp_addr);
|
|
if (IS_ERR(*cp_page))
|
|
return PTR_ERR(*cp_page);
|
|
|
|
*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
|
|
|
|
crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
|
|
if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
|
|
crc_offset > CP_CHKSUM_OFFSET) {
|
|
f2fs_put_page(*cp_page, 1);
|
|
f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
crc = f2fs_checkpoint_chksum(sbi, *cp_block);
|
|
if (crc != cur_cp_crc(*cp_block)) {
|
|
f2fs_put_page(*cp_page, 1);
|
|
f2fs_warn(sbi, "invalid crc value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
*version = cur_cp_version(*cp_block);
|
|
return 0;
|
|
}
|
|
|
|
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
|
block_t cp_addr, unsigned long long *version)
|
|
{
|
|
struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
|
|
struct f2fs_checkpoint *cp_block = NULL;
|
|
unsigned long long cur_version = 0, pre_version = 0;
|
|
int err;
|
|
|
|
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
|
|
&cp_page_1, version);
|
|
if (err)
|
|
return NULL;
|
|
|
|
if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
|
|
sbi->blocks_per_seg) {
|
|
f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
|
|
le32_to_cpu(cp_block->cp_pack_total_block_count));
|
|
goto invalid_cp;
|
|
}
|
|
pre_version = *version;
|
|
|
|
cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
|
|
err = get_checkpoint_version(sbi, cp_addr, &cp_block,
|
|
&cp_page_2, version);
|
|
if (err)
|
|
goto invalid_cp;
|
|
cur_version = *version;
|
|
|
|
if (cur_version == pre_version) {
|
|
*version = cur_version;
|
|
f2fs_put_page(cp_page_2, 1);
|
|
return cp_page_1;
|
|
}
|
|
f2fs_put_page(cp_page_2, 1);
|
|
invalid_cp:
|
|
f2fs_put_page(cp_page_1, 1);
|
|
return NULL;
|
|
}
|
|
|
|
int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *cp_block;
|
|
struct f2fs_super_block *fsb = sbi->raw_super;
|
|
struct page *cp1, *cp2, *cur_page;
|
|
unsigned long blk_size = sbi->blocksize;
|
|
unsigned long long cp1_version = 0, cp2_version = 0;
|
|
unsigned long long cp_start_blk_no;
|
|
unsigned int cp_blks = 1 + __cp_payload(sbi);
|
|
block_t cp_blk_no;
|
|
int i;
|
|
int err;
|
|
|
|
sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
|
|
GFP_KERNEL);
|
|
if (!sbi->ckpt)
|
|
return -ENOMEM;
|
|
/*
|
|
* Finding out valid cp block involves read both
|
|
* sets( cp pack 1 and cp pack 2)
|
|
*/
|
|
cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
|
|
|
|
/* The second checkpoint pack should start at the next segment */
|
|
cp_start_blk_no += ((unsigned long long)1) <<
|
|
le32_to_cpu(fsb->log_blocks_per_seg);
|
|
cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
|
|
|
|
if (cp1 && cp2) {
|
|
if (ver_after(cp2_version, cp1_version))
|
|
cur_page = cp2;
|
|
else
|
|
cur_page = cp1;
|
|
} else if (cp1) {
|
|
cur_page = cp1;
|
|
} else if (cp2) {
|
|
cur_page = cp2;
|
|
} else {
|
|
err = -EFSCORRUPTED;
|
|
goto fail_no_cp;
|
|
}
|
|
|
|
cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
|
|
memcpy(sbi->ckpt, cp_block, blk_size);
|
|
|
|
if (cur_page == cp1)
|
|
sbi->cur_cp_pack = 1;
|
|
else
|
|
sbi->cur_cp_pack = 2;
|
|
|
|
/* Sanity checking of checkpoint */
|
|
if (f2fs_sanity_check_ckpt(sbi)) {
|
|
err = -EFSCORRUPTED;
|
|
goto free_fail_no_cp;
|
|
}
|
|
|
|
if (cp_blks <= 1)
|
|
goto done;
|
|
|
|
cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
|
|
if (cur_page == cp2)
|
|
cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
|
|
|
|
for (i = 1; i < cp_blks; i++) {
|
|
void *sit_bitmap_ptr;
|
|
unsigned char *ckpt = (unsigned char *)sbi->ckpt;
|
|
|
|
cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
|
|
if (IS_ERR(cur_page)) {
|
|
err = PTR_ERR(cur_page);
|
|
goto free_fail_no_cp;
|
|
}
|
|
sit_bitmap_ptr = page_address(cur_page);
|
|
memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
|
|
f2fs_put_page(cur_page, 1);
|
|
}
|
|
done:
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
return 0;
|
|
|
|
free_fail_no_cp:
|
|
f2fs_put_page(cp1, 1);
|
|
f2fs_put_page(cp2, 1);
|
|
fail_no_cp:
|
|
kvfree(sbi->ckpt);
|
|
return err;
|
|
}
|
|
|
|
static void __add_dirty_inode(struct inode *inode, enum inode_type type)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
|
|
|
|
if (is_inode_flag_set(inode, flag))
|
|
return;
|
|
|
|
set_inode_flag(inode, flag);
|
|
if (!f2fs_is_volatile_file(inode))
|
|
list_add_tail(&F2FS_I(inode)->dirty_list,
|
|
&sbi->inode_list[type]);
|
|
stat_inc_dirty_inode(sbi, type);
|
|
}
|
|
|
|
static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
|
|
{
|
|
int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
|
|
|
|
if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
|
|
return;
|
|
|
|
list_del_init(&F2FS_I(inode)->dirty_list);
|
|
clear_inode_flag(inode, flag);
|
|
stat_dec_dirty_inode(F2FS_I_SB(inode), type);
|
|
}
|
|
|
|
void f2fs_update_dirty_page(struct inode *inode, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
|
|
|
|
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
|
|
!S_ISLNK(inode->i_mode))
|
|
return;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
|
|
__add_dirty_inode(inode, type);
|
|
inode_inc_dirty_pages(inode);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
|
|
f2fs_set_page_private(page, 0);
|
|
f2fs_trace_pid(page);
|
|
}
|
|
|
|
void f2fs_remove_dirty_inode(struct inode *inode)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
|
|
|
|
if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
|
|
!S_ISLNK(inode->i_mode))
|
|
return;
|
|
|
|
if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
|
|
return;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
__remove_dirty_inode(inode, type);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
}
|
|
|
|
int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
|
|
{
|
|
struct list_head *head;
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
bool is_dir = (type == DIR_INODE);
|
|
unsigned long ino = 0;
|
|
|
|
trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
|
|
get_pages(sbi, is_dir ?
|
|
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
|
|
retry:
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return -EIO;
|
|
|
|
spin_lock(&sbi->inode_lock[type]);
|
|
|
|
head = &sbi->inode_list[type];
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
|
|
get_pages(sbi, is_dir ?
|
|
F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
|
|
return 0;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
|
|
inode = igrab(&fi->vfs_inode);
|
|
spin_unlock(&sbi->inode_lock[type]);
|
|
if (inode) {
|
|
unsigned long cur_ino = inode->i_ino;
|
|
|
|
F2FS_I(inode)->cp_task = current;
|
|
|
|
filemap_fdatawrite(inode->i_mapping);
|
|
|
|
F2FS_I(inode)->cp_task = NULL;
|
|
|
|
iput(inode);
|
|
/* We need to give cpu to another writers. */
|
|
if (ino == cur_ino)
|
|
cond_resched();
|
|
else
|
|
ino = cur_ino;
|
|
} else {
|
|
/*
|
|
* We should submit bio, since it exists several
|
|
* wribacking dentry pages in the freeing inode.
|
|
*/
|
|
f2fs_submit_merged_write(sbi, DATA);
|
|
cond_resched();
|
|
}
|
|
goto retry;
|
|
}
|
|
|
|
int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct list_head *head = &sbi->inode_list[DIRTY_META];
|
|
struct inode *inode;
|
|
struct f2fs_inode_info *fi;
|
|
s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
|
|
|
|
while (total--) {
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
return -EIO;
|
|
|
|
spin_lock(&sbi->inode_lock[DIRTY_META]);
|
|
if (list_empty(head)) {
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
return 0;
|
|
}
|
|
fi = list_first_entry(head, struct f2fs_inode_info,
|
|
gdirty_list);
|
|
inode = igrab(&fi->vfs_inode);
|
|
spin_unlock(&sbi->inode_lock[DIRTY_META]);
|
|
if (inode) {
|
|
sync_inode_metadata(inode, 0);
|
|
|
|
/* it's on eviction */
|
|
if (is_inode_flag_set(inode, FI_DIRTY_INODE))
|
|
f2fs_update_inode_page(inode);
|
|
iput(inode);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __prepare_cp_block(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
nid_t last_nid = nm_i->next_scan_nid;
|
|
|
|
next_free_nid(sbi, &last_nid);
|
|
ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
|
|
ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
|
|
ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
|
|
ckpt->next_free_nid = cpu_to_le32(last_nid);
|
|
}
|
|
|
|
static bool __need_flush_quota(struct f2fs_sb_info *sbi)
|
|
{
|
|
bool ret = false;
|
|
|
|
if (!is_journalled_quota(sbi))
|
|
return false;
|
|
|
|
down_write(&sbi->quota_sem);
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
|
|
ret = false;
|
|
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
|
|
ret = false;
|
|
} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
|
|
clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
|
|
ret = true;
|
|
} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
|
|
ret = true;
|
|
}
|
|
up_write(&sbi->quota_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Freeze all the FS-operations for checkpoint.
|
|
*/
|
|
static int block_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_ALL,
|
|
.nr_to_write = LONG_MAX,
|
|
.for_reclaim = 0,
|
|
};
|
|
struct blk_plug plug;
|
|
int err = 0, cnt = 0;
|
|
|
|
blk_start_plug(&plug);
|
|
|
|
retry_flush_quotas:
|
|
f2fs_lock_all(sbi);
|
|
if (__need_flush_quota(sbi)) {
|
|
int locked;
|
|
|
|
if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
|
|
set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
|
|
set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
|
|
goto retry_flush_dents;
|
|
}
|
|
f2fs_unlock_all(sbi);
|
|
|
|
/* only failed during mount/umount/freeze/quotactl */
|
|
locked = down_read_trylock(&sbi->sb->s_umount);
|
|
f2fs_quota_sync(sbi->sb, -1);
|
|
if (locked)
|
|
up_read(&sbi->sb->s_umount);
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
retry_flush_dents:
|
|
/* write all the dirty dentry pages */
|
|
if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
|
|
f2fs_unlock_all(sbi);
|
|
err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
|
|
if (err)
|
|
goto out;
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
/*
|
|
* POR: we should ensure that there are no dirty node pages
|
|
* until finishing nat/sit flush. inode->i_blocks can be updated.
|
|
*/
|
|
down_write(&sbi->node_change);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
|
|
up_write(&sbi->node_change);
|
|
f2fs_unlock_all(sbi);
|
|
err = f2fs_sync_inode_meta(sbi);
|
|
if (err)
|
|
goto out;
|
|
cond_resched();
|
|
goto retry_flush_quotas;
|
|
}
|
|
|
|
retry_flush_nodes:
|
|
down_write(&sbi->node_write);
|
|
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES)) {
|
|
up_write(&sbi->node_write);
|
|
atomic_inc(&sbi->wb_sync_req[NODE]);
|
|
err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
|
|
atomic_dec(&sbi->wb_sync_req[NODE]);
|
|
if (err) {
|
|
up_write(&sbi->node_change);
|
|
f2fs_unlock_all(sbi);
|
|
goto out;
|
|
}
|
|
cond_resched();
|
|
goto retry_flush_nodes;
|
|
}
|
|
|
|
/*
|
|
* sbi->node_change is used only for AIO write_begin path which produces
|
|
* dirty node blocks and some checkpoint values by block allocation.
|
|
*/
|
|
__prepare_cp_block(sbi);
|
|
up_write(&sbi->node_change);
|
|
out:
|
|
blk_finish_plug(&plug);
|
|
return err;
|
|
}
|
|
|
|
static void unblock_operations(struct f2fs_sb_info *sbi)
|
|
{
|
|
up_write(&sbi->node_write);
|
|
f2fs_unlock_all(sbi);
|
|
}
|
|
|
|
void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
|
|
|
|
if (!get_pages(sbi, type))
|
|
break;
|
|
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
break;
|
|
|
|
io_schedule_timeout(DEFAULT_IO_TIMEOUT);
|
|
}
|
|
finish_wait(&sbi->cp_wait, &wait);
|
|
}
|
|
|
|
static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sbi->cp_lock, flags);
|
|
|
|
if ((cpc->reason & CP_UMOUNT) &&
|
|
le32_to_cpu(ckpt->cp_pack_total_block_count) >
|
|
sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
|
|
disable_nat_bits(sbi, false);
|
|
|
|
if (cpc->reason & CP_TRIMMED)
|
|
__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
|
|
|
|
if (cpc->reason & CP_UMOUNT)
|
|
__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
|
|
|
|
if (cpc->reason & CP_FASTBOOT)
|
|
__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
|
|
|
|
if (orphan_num)
|
|
__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
|
|
__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
|
|
__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
|
|
__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
|
|
__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
|
|
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
|
|
if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
|
|
__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
|
|
|
|
/* set this flag to activate crc|cp_ver for recovery */
|
|
__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
|
|
__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
|
|
|
|
spin_unlock_irqrestore(&sbi->cp_lock, flags);
|
|
}
|
|
|
|
static void commit_checkpoint(struct f2fs_sb_info *sbi,
|
|
void *src, block_t blk_addr)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.for_reclaim = 0,
|
|
};
|
|
|
|
/*
|
|
* pagevec_lookup_tag and lock_page again will take
|
|
* some extra time. Therefore, f2fs_update_meta_pages and
|
|
* f2fs_sync_meta_pages are combined in this function.
|
|
*/
|
|
struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
|
|
int err;
|
|
|
|
f2fs_wait_on_page_writeback(page, META, true, true);
|
|
|
|
memcpy(page_address(page), src, PAGE_SIZE);
|
|
|
|
set_page_dirty(page);
|
|
if (unlikely(!clear_page_dirty_for_io(page)))
|
|
f2fs_bug_on(sbi, 1);
|
|
|
|
/* writeout cp pack 2 page */
|
|
err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
|
|
if (unlikely(err && f2fs_cp_error(sbi))) {
|
|
f2fs_put_page(page, 1);
|
|
return;
|
|
}
|
|
|
|
f2fs_bug_on(sbi, err);
|
|
f2fs_put_page(page, 0);
|
|
|
|
/* submit checkpoint (with barrier if NOBARRIER is not set) */
|
|
f2fs_submit_merged_write(sbi, META_FLUSH);
|
|
}
|
|
|
|
static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
|
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
|
|
block_t start_blk;
|
|
unsigned int data_sum_blocks, orphan_blocks;
|
|
__u32 crc32 = 0;
|
|
int i;
|
|
int cp_payload_blks = __cp_payload(sbi);
|
|
struct super_block *sb = sbi->sb;
|
|
struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
|
|
u64 kbytes_written;
|
|
int err;
|
|
|
|
/* Flush all the NAT/SIT pages */
|
|
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
|
|
|
|
/* start to update checkpoint, cp ver is already updated previously */
|
|
ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
|
|
ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
|
|
for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
|
|
ckpt->cur_node_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->cur_node_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
|
|
ckpt->alloc_type[i + CURSEG_HOT_NODE] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
|
|
}
|
|
for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
|
|
ckpt->cur_data_segno[i] =
|
|
cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->cur_data_blkoff[i] =
|
|
cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
|
|
ckpt->alloc_type[i + CURSEG_HOT_DATA] =
|
|
curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
|
|
}
|
|
|
|
/* 2 cp + n data seg summary + orphan inode blocks */
|
|
data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
|
|
spin_lock_irqsave(&sbi->cp_lock, flags);
|
|
if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
|
|
__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
else
|
|
__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
|
spin_unlock_irqrestore(&sbi->cp_lock, flags);
|
|
|
|
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
|
|
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
|
|
orphan_blocks);
|
|
|
|
if (__remain_node_summaries(cpc->reason))
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks + NR_CURSEG_NODE_TYPE);
|
|
else
|
|
ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
|
|
cp_payload_blks + data_sum_blocks +
|
|
orphan_blocks);
|
|
|
|
/* update ckpt flag for checkpoint */
|
|
update_ckpt_flags(sbi, cpc);
|
|
|
|
/* update SIT/NAT bitmap */
|
|
get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
|
|
get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
|
|
|
|
crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
|
|
*((__le32 *)((unsigned char *)ckpt +
|
|
le32_to_cpu(ckpt->checksum_offset)))
|
|
= cpu_to_le32(crc32);
|
|
|
|
start_blk = __start_cp_next_addr(sbi);
|
|
|
|
/* write nat bits */
|
|
if (enabled_nat_bits(sbi, cpc)) {
|
|
__u64 cp_ver = cur_cp_version(ckpt);
|
|
block_t blk;
|
|
|
|
cp_ver |= ((__u64)crc32 << 32);
|
|
*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
|
|
|
|
blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
|
|
for (i = 0; i < nm_i->nat_bits_blocks; i++)
|
|
f2fs_update_meta_page(sbi, nm_i->nat_bits +
|
|
(i << F2FS_BLKSIZE_BITS), blk + i);
|
|
}
|
|
|
|
/* write out checkpoint buffer at block 0 */
|
|
f2fs_update_meta_page(sbi, ckpt, start_blk++);
|
|
|
|
for (i = 1; i < 1 + cp_payload_blks; i++)
|
|
f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
|
|
start_blk++);
|
|
|
|
if (orphan_num) {
|
|
write_orphan_inodes(sbi, start_blk);
|
|
start_blk += orphan_blocks;
|
|
}
|
|
|
|
f2fs_write_data_summaries(sbi, start_blk);
|
|
start_blk += data_sum_blocks;
|
|
|
|
/* Record write statistics in the hot node summary */
|
|
kbytes_written = sbi->kbytes_written;
|
|
if (sb->s_bdev->bd_part)
|
|
kbytes_written += BD_PART_WRITTEN(sbi);
|
|
|
|
seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
|
|
|
|
if (__remain_node_summaries(cpc->reason)) {
|
|
f2fs_write_node_summaries(sbi, start_blk);
|
|
start_blk += NR_CURSEG_NODE_TYPE;
|
|
}
|
|
|
|
/* update user_block_counts */
|
|
sbi->last_valid_block_count = sbi->total_valid_block_count;
|
|
percpu_counter_set(&sbi->alloc_valid_block_count, 0);
|
|
|
|
/* Here, we have one bio having CP pack except cp pack 2 page */
|
|
f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
|
|
/* Wait for all dirty meta pages to be submitted for IO */
|
|
f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
|
|
|
|
/* wait for previous submitted meta pages writeback */
|
|
f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
|
|
|
|
/* flush all device cache */
|
|
err = f2fs_flush_device_cache(sbi);
|
|
if (err)
|
|
return err;
|
|
|
|
/* barrier and flush checkpoint cp pack 2 page if it can */
|
|
commit_checkpoint(sbi, ckpt, start_blk);
|
|
f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
|
|
|
|
/*
|
|
* invalidate intermediate page cache borrowed from meta inode which are
|
|
* used for migration of encrypted or verity inode's blocks.
|
|
*/
|
|
if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi))
|
|
invalidate_mapping_pages(META_MAPPING(sbi),
|
|
MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
|
|
|
|
f2fs_release_ino_entry(sbi, false);
|
|
|
|
f2fs_reset_fsync_node_info(sbi);
|
|
|
|
clear_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
clear_sbi_flag(sbi, SBI_NEED_CP);
|
|
clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
|
|
|
|
spin_lock(&sbi->stat_lock);
|
|
sbi->unusable_block_count = 0;
|
|
spin_unlock(&sbi->stat_lock);
|
|
|
|
__set_cp_next_pack(sbi);
|
|
|
|
/*
|
|
* redirty superblock if metadata like node page or inode cache is
|
|
* updated during writing checkpoint.
|
|
*/
|
|
if (get_pages(sbi, F2FS_DIRTY_NODES) ||
|
|
get_pages(sbi, F2FS_DIRTY_IMETA))
|
|
set_sbi_flag(sbi, SBI_IS_DIRTY);
|
|
|
|
f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
|
|
|
|
return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
|
|
}
|
|
|
|
int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|
{
|
|
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
|
unsigned long long ckpt_ver;
|
|
int err = 0;
|
|
|
|
if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
|
|
return -EROFS;
|
|
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
|
|
if (cpc->reason != CP_PAUSE)
|
|
return 0;
|
|
f2fs_warn(sbi, "Start checkpoint disabled!");
|
|
}
|
|
mutex_lock(&sbi->cp_mutex);
|
|
|
|
if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
|
|
((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
|
|
((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
|
|
goto out;
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
|
|
|
|
err = block_operations(sbi);
|
|
if (err)
|
|
goto out;
|
|
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
|
|
|
|
f2fs_flush_merged_writes(sbi);
|
|
|
|
/* this is the case of multiple fstrims without any changes */
|
|
if (cpc->reason & CP_DISCARD) {
|
|
if (!f2fs_exist_trim_candidates(sbi, cpc)) {
|
|
unblock_operations(sbi);
|
|
goto out;
|
|
}
|
|
|
|
if (NM_I(sbi)->dirty_nat_cnt == 0 &&
|
|
SIT_I(sbi)->dirty_sentries == 0 &&
|
|
prefree_segments(sbi) == 0) {
|
|
f2fs_flush_sit_entries(sbi, cpc);
|
|
f2fs_clear_prefree_segments(sbi, cpc);
|
|
unblock_operations(sbi);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* update checkpoint pack index
|
|
* Increase the version number so that
|
|
* SIT entries and seg summaries are written at correct place
|
|
*/
|
|
ckpt_ver = cur_cp_version(ckpt);
|
|
ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
|
|
|
|
/* write cached NAT/SIT entries to NAT/SIT area */
|
|
err = f2fs_flush_nat_entries(sbi, cpc);
|
|
if (err)
|
|
goto stop;
|
|
|
|
f2fs_flush_sit_entries(sbi, cpc);
|
|
|
|
err = do_checkpoint(sbi, cpc);
|
|
if (err)
|
|
f2fs_release_discard_addrs(sbi);
|
|
else
|
|
f2fs_clear_prefree_segments(sbi, cpc);
|
|
stop:
|
|
unblock_operations(sbi);
|
|
stat_inc_cp_count(sbi->stat_info);
|
|
|
|
if (cpc->reason & CP_RECOVERY)
|
|
f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
|
|
|
|
/* update CP_TIME to trigger checkpoint periodically */
|
|
f2fs_update_time(sbi, CP_TIME);
|
|
trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
|
|
out:
|
|
mutex_unlock(&sbi->cp_mutex);
|
|
return err;
|
|
}
|
|
|
|
void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_INO_ENTRY; i++) {
|
|
struct inode_management *im = &sbi->im[i];
|
|
|
|
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
|
|
spin_lock_init(&im->ino_lock);
|
|
INIT_LIST_HEAD(&im->ino_list);
|
|
im->ino_num = 0;
|
|
}
|
|
|
|
sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
|
|
NR_CURSEG_TYPE - __cp_payload(sbi)) *
|
|
F2FS_ORPHANS_PER_BLOCK;
|
|
}
|
|
|
|
int __init f2fs_create_checkpoint_caches(void)
|
|
{
|
|
ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
|
|
sizeof(struct ino_entry));
|
|
if (!ino_entry_slab)
|
|
return -ENOMEM;
|
|
f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
|
|
sizeof(struct inode_entry));
|
|
if (!f2fs_inode_entry_slab) {
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_checkpoint_caches(void)
|
|
{
|
|
kmem_cache_destroy(ino_entry_slab);
|
|
kmem_cache_destroy(f2fs_inode_entry_slab);
|
|
}
|