linux_dsm_epyc7002/fs/f2fs/extent_cache.c
Chao Yu 19b2c30d3c f2fs: update extent tree in batches
This patch introduce a new helper f2fs_update_extent_tree_range which can
do extent mapping update at a specified range.

The main idea is:
1) punch all mapping info in extent node(s) which are at a specified range;
2) try to merge new extent mapping with adjacent node, or failing that,
   insert the mapping into extent tree as a new node.

In order to see the benefit, I add a function for stating time stamping
count as below:

uint64_t rdtsc(void)
{
	uint32_t lo, hi;
	__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
	return (uint64_t)hi << 32 | lo;
}

My test environment is: ubuntu, intel i7-3770, 16G memory, 256g micron ssd.

truncation path:	update extent cache from truncate_data_blocks_range
non-truncataion path:	update extent cache from other paths
total:			all update paths

a) Removing 128MB file which has one extent node mapping whole range of
file:
1. dd if=/dev/zero of=/mnt/f2fs/128M bs=1M count=128
2. sync
3. rm /mnt/f2fs/128M

Before:
		total		count		average
truncation:	7651022		32768		233.49

Patched:
		total		count		average
truncation:	3321		33		100.64

b) fsstress:
fsstress -d /mnt/f2fs -l 5 -n 100 -p 20
Test times:		5 times.

Before:
		total		count		average
truncation:	5812480.6	20911.6		277.95
non-truncation:	7783845.6	13440.8		579.12
total:		13596326.2	34352.4		395.79

Patched:
		total		count		average
truncation:	1281283.0	3041.6		421.25
non-truncation:	7355844.4	13662.8		538.38
total:		8637127.4	16704.4		517.06

1) For the updates in truncation path:
 - we can see updating in batches leads total tsc and update count reducing
   explicitly;
 - besides, for a single batched updating, punching multiple extent nodes
   in a loop, result in executing more operations, so our average tsc
   increase intensively.
2) For the updates in non-truncation path:
 - there is a little improvement, that is because for the scenario that we
   just need to update in the head or tail of extent node, new interface
   optimize to update info in extent node directly, rather than removing
   original extent node for updating and then inserting that updated one
   into cache as new node.

Signed-off-by: Chao Yu <chao2.yu@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-08-26 11:50:35 -07:00

784 lines
19 KiB
C

/*
* f2fs extent cache support
*
* Copyright (c) 2015 Motorola Mobility
* Copyright (c) 2015 Samsung Electronics
* Authors: Jaegeuk Kim <jaegeuk@kernel.org>
* Chao Yu <chao2.yu@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "node.h"
#include <trace/events/f2fs.h>
static struct kmem_cache *extent_tree_slab;
static struct kmem_cache *extent_node_slab;
static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node *parent, struct rb_node **p)
{
struct extent_node *en;
en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
if (!en)
return NULL;
en->ei = *ei;
INIT_LIST_HEAD(&en->list);
rb_link_node(&en->rb_node, parent, p);
rb_insert_color(&en->rb_node, &et->root);
et->count++;
atomic_inc(&sbi->total_ext_node);
return en;
}
static void __detach_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_node *en)
{
rb_erase(&en->rb_node, &et->root);
et->count--;
atomic_dec(&sbi->total_ext_node);
if (et->cached_en == en)
et->cached_en = NULL;
}
static struct extent_tree *__grab_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
nid_t ino = inode->i_ino;
down_write(&sbi->extent_tree_lock);
et = radix_tree_lookup(&sbi->extent_tree_root, ino);
if (!et) {
et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
memset(et, 0, sizeof(struct extent_tree));
et->ino = ino;
et->root = RB_ROOT;
et->cached_en = NULL;
rwlock_init(&et->lock);
atomic_set(&et->refcount, 0);
et->count = 0;
sbi->total_ext_tree++;
}
atomic_inc(&et->refcount);
up_write(&sbi->extent_tree_lock);
/* never died until evict_inode */
F2FS_I(inode)->extent_tree = et;
return et;
}
static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, unsigned int fofs)
{
struct rb_node *node = et->root.rb_node;
struct extent_node *en = et->cached_en;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
stat_inc_cached_node_hit(sbi);
return en;
}
}
while (node) {
en = rb_entry(node, struct extent_node, rb_node);
if (fofs < en->ei.fofs) {
node = node->rb_left;
} else if (fofs >= en->ei.fofs + en->ei.len) {
node = node->rb_right;
} else {
stat_inc_rbtree_node_hit(sbi);
return en;
}
}
return NULL;
}
static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei)
{
struct rb_node **p = &et->root.rb_node;
struct extent_node *en;
en = __attach_extent_node(sbi, et, ei, NULL, p);
if (!en)
return NULL;
et->largest = en->ei;
et->cached_en = en;
return en;
}
static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, bool free_all)
{
struct rb_node *node, *next;
struct extent_node *en;
unsigned int count = et->count;
node = rb_first(&et->root);
while (node) {
next = rb_next(node);
en = rb_entry(node, struct extent_node, rb_node);
if (free_all) {
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_del_init(&en->list);
spin_unlock(&sbi->extent_lock);
}
if (free_all || list_empty(&en->list)) {
__detach_extent_node(sbi, et, en);
kmem_cache_free(extent_node_slab, en);
}
node = next;
}
return count - et->count;
}
void f2fs_drop_largest_extent(struct inode *inode, pgoff_t fofs)
{
struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
largest->len = 0;
}
void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et;
struct extent_node *en;
struct extent_info ei;
if (!f2fs_may_extent_tree(inode))
return;
et = __grab_extent_tree(inode);
if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
return;
set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
write_lock(&et->lock);
if (et->count)
goto out;
en = __init_extent_tree(sbi, et, &ei);
if (en) {
spin_lock(&sbi->extent_lock);
list_add_tail(&en->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
}
out:
write_unlock(&et->lock);
}
static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en;
bool ret = false;
f2fs_bug_on(sbi, !et);
trace_f2fs_lookup_extent_tree_start(inode, pgofs);
read_lock(&et->lock);
if (et->largest.fofs <= pgofs &&
et->largest.fofs + et->largest.len > pgofs) {
*ei = et->largest;
ret = true;
stat_inc_largest_node_hit(sbi);
goto out;
}
en = __lookup_extent_tree(sbi, et, pgofs);
if (en) {
*ei = en->ei;
spin_lock(&sbi->extent_lock);
if (!list_empty(&en->list))
list_move_tail(&en->list, &sbi->extent_list);
et->cached_en = en;
spin_unlock(&sbi->extent_lock);
ret = true;
}
out:
stat_inc_total_hit(sbi);
read_unlock(&et->lock);
trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
return ret;
}
/*
* lookup extent at @fofs, if hit, return the extent
* if not, return NULL and
* @prev_ex: extent before fofs
* @next_ex: extent after fofs
* @insert_p: insert point for new extent at fofs
* in order to simpfy the insertion after.
* tree must stay unchanged between lookup and insertion.
*/
static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
unsigned int fofs,
struct extent_node **prev_ex,
struct extent_node **next_ex,
struct rb_node ***insert_p,
struct rb_node **insert_parent)
{
struct rb_node **pnode = &et->root.rb_node;
struct rb_node *parent = NULL, *tmp_node;
struct extent_node *en = et->cached_en;
*insert_p = NULL;
*insert_parent = NULL;
*prev_ex = NULL;
*next_ex = NULL;
if (RB_EMPTY_ROOT(&et->root))
return NULL;
if (en) {
struct extent_info *cei = &en->ei;
if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
goto lookup_neighbors;
}
while (*pnode) {
parent = *pnode;
en = rb_entry(*pnode, struct extent_node, rb_node);
if (fofs < en->ei.fofs)
pnode = &(*pnode)->rb_left;
else if (fofs >= en->ei.fofs + en->ei.len)
pnode = &(*pnode)->rb_right;
else
goto lookup_neighbors;
}
*insert_p = pnode;
*insert_parent = parent;
en = rb_entry(parent, struct extent_node, rb_node);
tmp_node = parent;
if (parent && fofs > en->ei.fofs)
tmp_node = rb_next(parent);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
tmp_node = parent;
if (parent && fofs < en->ei.fofs)
tmp_node = rb_prev(parent);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
return NULL;
lookup_neighbors:
if (fofs == en->ei.fofs) {
/* lookup prev node for merging backward later */
tmp_node = rb_prev(&en->rb_node);
*prev_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
if (fofs == en->ei.fofs + en->ei.len - 1) {
/* lookup next node for merging frontward later */
tmp_node = rb_next(&en->rb_node);
*next_ex = tmp_node ?
rb_entry(tmp_node, struct extent_node, rb_node) : NULL;
}
return en;
}
static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct extent_node **den,
struct extent_node *prev_ex,
struct extent_node *next_ex)
{
struct extent_node *en = NULL;
if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
prev_ex->ei.len += ei->len;
ei = &prev_ex->ei;
en = prev_ex;
}
if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
if (en) {
__detach_extent_node(sbi, et, prev_ex);
*den = prev_ex;
}
next_ex->ei.fofs = ei->fofs;
next_ex->ei.blk = ei->blk;
next_ex->ei.len += ei->len;
en = next_ex;
}
if (en) {
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
}
return en;
}
static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
struct extent_tree *et, struct extent_info *ei,
struct rb_node **insert_p,
struct rb_node *insert_parent)
{
struct rb_node **p = &et->root.rb_node;
struct rb_node *parent = NULL;
struct extent_node *en = NULL;
if (insert_p && insert_parent) {
parent = insert_parent;
p = insert_p;
goto do_insert;
}
while (*p) {
parent = *p;
en = rb_entry(parent, struct extent_node, rb_node);
if (ei->fofs < en->ei.fofs)
p = &(*p)->rb_left;
else if (ei->fofs >= en->ei.fofs + en->ei.len)
p = &(*p)->rb_right;
else
f2fs_bug_on(sbi, 1);
}
do_insert:
en = __attach_extent_node(sbi, et, ei, parent, p);
if (!en)
return NULL;
if (en->ei.len > et->largest.len)
et->largest = en->ei;
et->cached_en = en;
return en;
}
unsigned int f2fs_update_extent_tree_range(struct inode *inode,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
struct extent_node *prev_en = NULL, *next_en = NULL;
struct extent_info ei, dei, prev;
struct rb_node **insert_p = NULL, *insert_parent = NULL;
unsigned int end = fofs + len;
unsigned int pos = (unsigned int)fofs;
if (!et)
return false;
write_lock(&et->lock);
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
write_unlock(&et->lock);
return false;
}
prev = et->largest;
dei.len = 0;
/* we do not guarantee that the largest extent is cached all the time */
f2fs_drop_largest_extent(inode, fofs);
/* 1. lookup first extent node in range [fofs, fofs + len - 1] */
en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
&insert_p, &insert_parent);
if (!en) {
if (next_en) {
en = next_en;
f2fs_bug_on(sbi, en->ei.fofs <= pos);
pos = en->ei.fofs;
} else {
/*
* skip searching in the tree since there is no
* larger extent node in the cache.
*/
goto update_extent;
}
}
/* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
while (en) {
struct rb_node *node;
if (pos >= end)
break;
dei = en->ei;
en1 = en2 = NULL;
node = rb_next(&en->rb_node);
/*
* 2.1 there are four cases when we invalidate blkaddr in extent
* node, |V: valid address, X: will be invalidated|
*/
/* case#1, invalidate right part of extent node |VVVVVXXXXX| */
if (pos > dei.fofs && end >= dei.fofs + dei.len) {
en->ei.len = pos - dei.fofs;
if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
__detach_extent_node(sbi, et, en);
insert_p = NULL;
insert_parent = NULL;
goto update;
}
if (__is_extent_same(&dei, &et->largest))
et->largest = en->ei;
goto next;
}
/* case#2, invalidate left part of extent node |XXXXXVVVVV| */
if (pos <= dei.fofs && end < dei.fofs + dei.len) {
en->ei.fofs = end;
en->ei.blk += end - dei.fofs;
en->ei.len -= end - dei.fofs;
if (en->ei.len < F2FS_MIN_EXTENT_LEN) {
__detach_extent_node(sbi, et, en);
insert_p = NULL;
insert_parent = NULL;
goto update;
}
if (__is_extent_same(&dei, &et->largest))
et->largest = en->ei;
goto next;
}
__detach_extent_node(sbi, et, en);
/*
* if we remove node in rb-tree, our parent node pointer may
* point the wrong place, discard them.
*/
insert_p = NULL;
insert_parent = NULL;
/* case#3, invalidate entire extent node |XXXXXXXXXX| */
if (pos <= dei.fofs && end >= dei.fofs + dei.len) {
if (__is_extent_same(&dei, &et->largest))
et->largest.len = 0;
goto update;
}
/*
* case#4, invalidate data in the middle of extent node
* |VVVXXXXVVV|
*/
if (dei.len > F2FS_MIN_EXTENT_LEN) {
unsigned int endofs;
/* insert left part of split extent into cache */
if (pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, dei.fofs, dei.blk,
pos - dei.fofs);
en1 = __insert_extent_tree(sbi, et, &ei,
NULL, NULL);
}
/* insert right part of split extent into cache */
endofs = dei.fofs + dei.len;
if (endofs - end >= F2FS_MIN_EXTENT_LEN) {
set_extent_info(&ei, end,
end - dei.fofs + dei.blk,
endofs - end);
en2 = __insert_extent_tree(sbi, et, &ei,
NULL, NULL);
}
}
update:
/* 2.2 update in global extent list */
spin_lock(&sbi->extent_lock);
if (en && !list_empty(&en->list))
list_del(&en->list);
if (en1)
list_add_tail(&en1->list, &sbi->extent_list);
if (en2)
list_add_tail(&en2->list, &sbi->extent_list);
spin_unlock(&sbi->extent_lock);
/* 2.3 release extent node */
if (en)
kmem_cache_free(extent_node_slab, en);
next:
en = node ? rb_entry(node, struct extent_node, rb_node) : NULL;
next_en = en;
if (en)
pos = en->ei.fofs;
}
update_extent:
/* 3. update extent in extent cache */
if (blkaddr) {
struct extent_node *den = NULL;
set_extent_info(&ei, fofs, blkaddr, len);
en3 = __try_merge_extent_node(sbi, et, &ei, &den,
prev_en, next_en);
if (!en3)
en3 = __insert_extent_tree(sbi, et, &ei,
insert_p, insert_parent);
/* give up extent_cache, if split and small updates happen */
if (dei.len >= 1 &&
prev.len < F2FS_MIN_EXTENT_LEN &&
et->largest.len < F2FS_MIN_EXTENT_LEN) {
et->largest.len = 0;
set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
}
spin_lock(&sbi->extent_lock);
if (en3) {
if (list_empty(&en3->list))
list_add_tail(&en3->list, &sbi->extent_list);
else
list_move_tail(&en3->list, &sbi->extent_list);
}
if (den && !list_empty(&den->list))
list_del(&den->list);
spin_unlock(&sbi->extent_lock);
if (den)
kmem_cache_free(extent_node_slab, den);
}
if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
__free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return !__is_extent_same(&prev, &et->largest);
}
unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
struct extent_node *en, *tmp;
unsigned long ino = F2FS_ROOT_INO(sbi);
struct radix_tree_root *root = &sbi->extent_tree_root;
unsigned int found;
unsigned int node_cnt = 0, tree_cnt = 0;
int remained;
if (!test_opt(sbi, EXTENT_CACHE))
return 0;
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
/* 1. remove unreferenced extent tree */
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
if (!atomic_read(&et->refcount)) {
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
radix_tree_delete(root, et->ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
tree_cnt++;
if (node_cnt + tree_cnt >= nr_shrink)
goto unlock_out;
}
}
}
up_write(&sbi->extent_tree_lock);
/* 2. remove LRU extent entries */
if (!down_write_trylock(&sbi->extent_tree_lock))
goto out;
remained = nr_shrink - (node_cnt + tree_cnt);
spin_lock(&sbi->extent_lock);
list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
if (!remained--)
break;
list_del_init(&en->list);
}
spin_unlock(&sbi->extent_lock);
while ((found = radix_tree_gang_lookup(root,
(void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
unsigned i;
ino = treevec[found - 1]->ino + 1;
for (i = 0; i < found; i++) {
struct extent_tree *et = treevec[i];
write_lock(&et->lock);
node_cnt += __free_extent_tree(sbi, et, false);
write_unlock(&et->lock);
if (node_cnt + tree_cnt >= nr_shrink)
break;
}
}
unlock_out:
up_write(&sbi->extent_tree_lock);
out:
trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
return node_cnt + tree_cnt;
}
unsigned int f2fs_destroy_extent_node(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return 0;
write_lock(&et->lock);
node_cnt = __free_extent_tree(sbi, et, true);
write_unlock(&et->lock);
return node_cnt;
}
void f2fs_destroy_extent_tree(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct extent_tree *et = F2FS_I(inode)->extent_tree;
unsigned int node_cnt = 0;
if (!et)
return;
if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
atomic_dec(&et->refcount);
return;
}
/* free all extent info belong to this extent tree */
node_cnt = f2fs_destroy_extent_node(inode);
/* delete extent tree entry in radix tree */
down_write(&sbi->extent_tree_lock);
atomic_dec(&et->refcount);
f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
kmem_cache_free(extent_tree_slab, et);
sbi->total_ext_tree--;
up_write(&sbi->extent_tree_lock);
F2FS_I(inode)->extent_tree = NULL;
trace_f2fs_destroy_extent_tree(inode, node_cnt);
}
bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
struct extent_info *ei)
{
if (!f2fs_may_extent_tree(inode))
return false;
return f2fs_lookup_extent_tree(inode, pgofs, ei);
}
void f2fs_update_extent_cache(struct dnode_of_data *dn)
{
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
pgoff_t fofs;
if (!f2fs_may_extent_tree(dn->inode))
return;
f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
dn->ofs_in_node;
if (f2fs_update_extent_tree_range(dn->inode, fofs, dn->data_blkaddr, 1))
sync_inode_page(dn);
}
void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
pgoff_t fofs, block_t blkaddr, unsigned int len)
{
if (!f2fs_may_extent_tree(dn->inode))
return;
if (f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len))
sync_inode_page(dn);
}
void init_extent_cache_info(struct f2fs_sb_info *sbi)
{
INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
init_rwsem(&sbi->extent_tree_lock);
INIT_LIST_HEAD(&sbi->extent_list);
spin_lock_init(&sbi->extent_lock);
sbi->total_ext_tree = 0;
atomic_set(&sbi->total_ext_node, 0);
}
int __init create_extent_cache(void)
{
extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
sizeof(struct extent_tree));
if (!extent_tree_slab)
return -ENOMEM;
extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
sizeof(struct extent_node));
if (!extent_node_slab) {
kmem_cache_destroy(extent_tree_slab);
return -ENOMEM;
}
return 0;
}
void destroy_extent_cache(void)
{
kmem_cache_destroy(extent_node_slab);
kmem_cache_destroy(extent_tree_slab);
}